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NATTIONAL, ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

STATIC TESTS OF FOUR TWO-BLADE NACA PROPELLERS
DIFFERING IN CAMBER AND SOLIDITY

By Robert J. Platt, Jr.
SUMMARY

Outdoor static tests were made on two—blade propellers of the
NACA 4—(3)(08)-03, 4—(5)(08)-03, 4—(10)(08)-03, and 4—(3)(08)-045 designs.
The blade angles tested ranged from 0° to 40° measured at the 0.75R station.
The maximum tip Mach number was 0.93, but this value was not attained at
blade angles above 15° because flutter was encountered. However, some
data on the NACA 4—(5)(08)-03 and 4—-(10)(08)-03 propellers operatlng in
the flutter reglon are included which were obtained in an earlier static
test (unpublished).

The results of the test of the high—camber blade, NACA 4—(10)(08)-03,
indicated the thrust coefficient reached a maximum-and began to decrease
at a tip Mach number of about 0.85 for fixed blade angle settings of 15°
end less. Similar breaks did not occur for the blades of lower camber up
to the maximum tip Mach number attained. The maximim value of the ratio
of thrust coefficlent to power coefficient CT/CP, which occurred at low

power coefficients, decreased with increasing camber, blade width, and
tip Mach number. Except in the reglon of maximum Cp/Cp, the ratio Cp/Cp

increased with both increasing camber and blade width for a constant
value of power coefficient. At the higher power coefficients the value
of CT/CP for a given value of power coefficient was but little affected
by tip Mach number.

INTRODUCTION

The effects of compressibility, camber, and blade width on the
characteristics of two—blade propellers were investigated by the
National Advisory Committee for Aeronautics in the Lengley 8-foot high-
speed tunnel and have been presented in a series of papers (references 1
to 3). The propellers incorporated high—critical-speed NACA 16—series air—
foll sections with thin sections used at the shank. The operating charac—
teristics of the Langley 8-foot high—speed tunnel did not permit the
measurements to be made at low speeds and, consequently, data at low
advance ratios could not be obtained. This made impractical the extra—
polation of the data to zero advance ratio to obtain static—test data.

RESTRICTED



2 NACA RM No. L8H25a

Propeller data at static conditions are useful for take—off run
calculations and propeller selection. The effect of tip speed, airfoil
gection, and blade width on static propeller characteristics has been
previously investigated (reference 4).. However, the blades used were
conventional with round shank sections and were designed for operation
at low advance ratios. The results, then, could not be expected to
apply directly to the propellers used in an investigation at the
Langley 8-foot high—speed tunnel. In order to obtain the characteristics
of these latter propellers at static conditions, a propeller dynamometer,
located outdoors, was used to measure the thrust and torque of the
propellers over a range of tip Mach number and blade angle.

SYMBOLS

Cop thrust coefficient (—L—
' anD)+

b blade width, feet

power coefficient P
pn3D!

cld design section 1ift coefficient

D propellef diameter, feet.

h blade—section maximum thickness, feet

Mg tip Mach number

n - propeller rotational speed, revolutions per second
P power, foot—poupd per second

R propeller tip radius, feet

r radius to a blade element, feet

T thrust, pounds

B blade angle, degrees

P air density, slugs per cubic foot
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APPARATUS

The propeller dynamometer consists of two independent units similar
to the unit shown in figure 1. One unit is located ahead of the propeller
and the other behind the propeller. Each unit contains two 200-horsepower
induction motors, but only the rear unit was connected to the propeller
for this investigation.

Some details of the rear dynamometer may be seen from figure 1. The
two motors are coupled and mounted within a shell to make the motors a
single rigid unit. This motor assembly is floated within the outer
dynamometer barrel by air bearings. Compressed air is supplied to these
bearings which are located at each end of the motor shell. The motor
asgembly is then free to move within the outer barrel in an axial direc—
tion under thrust and to rotate under. torque. This movement is restrained
by hydraulilic thrust and torque capsules mounted at the rear of the
dynamometer. In thils system air bearings are agaln employed to prevent
interaction of the thrust and torque forces. The hydraulic lines are
connected to compensating scales for the measurement of thrust and torque.
The dynamometer is supported from an overhead framework by a streamline
strut through which pass the motor electrical and cooling water leads.

The blades were of the NACA 4—(3)(08)-03, 4—(5)(08)-03, 4—(10)(08)-03,

and 1—(3)(08)-045 designs, and are identical with those used in the tests
of references 1 to 3. The number designations of these blades are
descriptive of their size and shape. The number of the firat group gives
the propeller diameter in feet. The numbers within the first parentheses
represent the design 1ift coefficient (in tenths) at the O.7R station.
The numbers within the second parentheses represent the thickness ratio
(in hundredths) of the blade section at 0.7R. The last group of numbers
represents the solidity (in hundredths or thousandths, for two and three
digits, respectively) of one blade at 0.TR. . ' '

The blades incorporated the NACA 16—series airfoil sections and were
designed for minimum induced-energy loss at a blade angle of approxi-—
mately 45° measured at the 0.TR station. The NACA 4—(3)(08)—03 and
4-(3)(08)-045 blades are shown in figure 2. The other blades are similar
to the NACA 4—(3)(08)-03, except for the higher blade—section design
1ift coefficients. The blade~form curves for these propellers are shown
in figures 3 and k.

A cylindrical spinner of a 13—inch diameter (the diameter of the
front and rear dynamometer outer casings) was used with the propellers.
Therefore, only efficient airfoil sections were exposed to the air.
Each propeller consisted of two .blades constructed of sluminum alloy.
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TESTS

The blade angles at which the propellers were tested ranged from 0O°
to 40° (measured at 0.75R) in 5° increments. The construction of the
spinner did not permit tje propellers to be tested at negative blade
angles. Thrust, torque, and rotational speed of the propeller were
measured at Intervals of 500 revolutions per minute. Two readings were
taken at each rotational speed and & few were repeated as the rotatlonal

speed was decreased after reaching the maximum speed.

For reasons of safety, the maximm rotational speed was limited to
5000 revolutions per minute; but even this speed was not attained at
blade angles above 15° because flutter was encountered. An estimate of
the rotational speed at which flutter began, as shown in figure 5 in
terms of tip Mach number, was made by visual and aural means. Additional
date at speeds up to 5000 revolutions per minute, obtained from earlier
static tests of the NACA 4—(5)(08)-03 and 14——(10)(08)—-03 propellers
operating in the flutter region, are, however, included herein.

‘The date were reduced to the usual thrust and power coefficients Crp
and Cp. The tip Mach number M; was based on the rotational tip speed

of the propeller. Typical data obtained are shown in figure 6. Where
only one point is shown at a test rotational speed, the readings were
identical.

Figure 7 presents typical data from the earlier static test in which
operation of the propellers was extended into the flutter region. The
internal mechanism of the dynamometer used 1n this earlier test was
different from that of the present dynamometer, although the dynamometers
were outwardly similar. Repeat runs showed poor agreement and differences
in the faired curves of as much as 15 percent were found at the higher
blade angles. These discrepancies may have been due to the friction which
was definitely present in this earlier dynamomester and to different
gection maximum 1ift coefficients caused by varying roughness of the
blades. No spinner was used in this earlier test. »

The results of both the earlier and the present investigations include
the effects of blade twlst under aerodynamic and centrifugal forces. This
.twist was not measured, but the results of reference 5 indicate that its
magnitude at the O.7R station was of the order of O. 29 to 0. 3° at the
highest rotational speed and was 1n the direction of increasing blade

angle.
" RESULTS AND DISCUSSION

The ba81c data for the four two—blade propellers used in thls
investigation are shown in figures 8 to 15. The dashed curves in
figures 10 to .13 are from the earlier invegtigation and, in most cases,
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were obtained with the propeller fluttering at the higher tip Mach
numbers. Although the accuracy of these earlier data is questionable, it
is presented here because little high—tip Mach number data were obtained
in the present investigation at the higher blade angles. In cases where
repeat runs were made for a given blade angle, the run which showed
‘closest agreement with data from the present investigation was chosen for
presentation in figures 10 to 13.

Considering the dashed curves in figures 10 to 13, large increases
in the coefficients are féund with increasing tip speed in some cases.
These increases begin with the onset of flutter. In the cases of the
NACA 4—(5)(08)-03 propeller at B, — 35° and the NACA 4—(10)(08)-03 pro—

peller at 80.753 = 20°, no flutter was encountered in this earlier

investigation and no sudden increase in the coefficients.was found. It
appears then that the marked rise in the value of the thrust and power
coefficients with increasing rotational speed is caused, at least in
part, by the flutter itself. Since the accuracy of these earlier data
is poor, the following discussion will be concerned only with the data
obtained in the present investigation.

At the low blade angles, increasing tip speed produces a gradual
increase-in thrust and power coefficients (figs. 8 to 15). The effect of
tip speed is most pronouriced on the high—camber blade, NACA 4—(10)(08)-03
(fig. 12), in that the thrust coefficient reaches & maximm and begins to
decrease at a tip Mach number of about 0.85. Since the critical speed
of the highly cambered sections is relatively low, this earlier com—
pressibility loss is to be expected and is in accord with the results of
wind—tunnel tests (references 3 and 6) in which it was found that the
high—camber blade suffered efficiency losses at a tip Mach number well
below that of the lower—camber blades.

At the high blade angles, there is generally a decrease in the
coefficients with tip Mach number for all the propellers, particularly in
the thrust coefficient.

The thrust and power coefficients for the four propellers tested
have been plotted against blade angle for a constant tip Mach number
of 0.45 in figures 16 and 17. The thrust—coefficient curves are similar
to the 1lift curves of airfoils, and an increase in design 1lift coefficient
would be expected, as the data indicate, to increase the thrust coeffi-
cieht at a given blade angle. However, the difference in thrust coeffi-—
cient between the NACA 4—(3)(08)-03 and the 4—(5)(08)-03 propellers is
not great. Figure 17 indicates that there is also little difference in
the power coefficients of these two propellers. Comparison of the
NACA 4—(3)(08)-03 propeller with the wider-blade NACA 4—(3)(08)-045 pro—
peller indicates that increasing blade width has the effect of increasing
the slope of the thrust—coefficient curve and is accompanied by an
increase in the power coefficient over the blade—engle range tested.

Tne ratio of thrust coefficient to power coefficient is usually used
as a gtatic—thrust figure of merit for propellers operating at the same
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tip speed. This ratio is plotted in figure 18 against blade angle for
the four propellers at a tip Mach number of 0.45. The decrease in the
maximum value of CT/CP with increasing cember is probably the result
of increasing induced velocities and, in the case of the highly cambered
blade, lower lift—drag ratios. At medium blade angles, however, Cp/Cp

increases with camber. This may be explained partially by the fact that
the angle of attack for the maximum lift—drag ratio increases with camber
for the NACA 16-series airfoils, which effectively shifts the Crp/Cp~curves
of the higher—camber blades to higher blade angles. The effect of
widening the blades, holding a fixed value of camber, is to decrease the
maximum value of CT/CP with but 1ittle change in CT/CP at the higher

blade angles. ¢
A more useful comparison of the propellers can be made by plotting
CT/CP against Cp as shown in figure 19. For a given power coefficient,

the curves show an improvement in the static thrust coefficient with
increasing camber, especially from increasing the design 1ift coefficient
from 0.5 to 1.0, and with increasing blade width. Higher values of Cp/Cp

are produced by the higher—camber and wider—blade propellers, since, for
the same power coefficient, the angles of attack along the blade are
lower and less stalling results.

The effect of tip speed on the ratio of thrust coefficient to power
coefficient is shown in figure 20 for blade angles of 5°, 10°, and 15°.
In general, CT/CP decreases with tip speed for a given blade—angle

setting and the decrease is more pronounced as the camber is increased.
For a given power coefficient, CT/CP does not necessarily decrease with

tip speed as shown in figure 21 where CT/CP’ is plotted against Cp for

both a high and a low tip Mach number. At the higher power coefficients
there is, in fact, an increase in CT/CP for the narrow blades when the

tip Mach number is increased from 0.45 to 0.90. The maximum velue
of CT/CP does, however, decrease with tip Mach number.

CONCLUSIONS

Static tests of four two-blade NACA propellers to a maximum tip

Mach number of 0.93 indicated the following conclusions:
L]

1. The results of the test of the high—camber blade, NACA 4—(10)(08)-03,
indicated the thrust coefficient reached a maximum and began to decrease
at a tip Mach number of about 0.85 for fixed blade—engle settings of 15°
and less. Similar breaks did not occur for the blades of lower camber
up to the maximum tip Mach number attained.
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2. The maximm value of the ratio of thrust coefficient to power
coefficient CT/CP, which occurred at low power coefficients, decreased

with increasing camber, blade width, and tip Mach number.

3. Except in the region of maximum CT/CP, the ratio CT/CP increased

with both increasing cember and blade width for a constant value of power
coefficient. At moderate values of power coefficient,:the greatest thrust
was produced by the propeller of the highest camber. At the higher values
of power coefficient {above 0.0k per blade), the greatest thrust was
produced by the wider—blade propeller.

' k. At the higher power coefficients, the value of CT/CP for a given
value of power coefficient was but little affected by tip Mach number.

Langly Aeronautical Laboratory
National Advisory Committee for Aeronautics

Iangley Field, Va. :
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(a) NACA 4-(3)(08)-03. (b) NACA 4-(3)(08)-045.

Figure 2.- Solidity family of NACA 16-series propellers tested.
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36 NACA propeller
4-3)8)-03
—_— 44— 03
: — —— 4-(308)-045 /
/
28 /./
) ' /
24 7
/ 4
/17
c 20 7 /
P | A/

16 : ' / /
s2l ] 1/
0 | V4

. y
.04 L
: o %

-10 o 10 20 30 40 S50
Blade angle at O.75R

Tigure 17.- Comparison of static power characteristics of the two-blade NACA
oropellers. M, = 0.45.
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Figure 18.- Comparison of static characteristics of the two-blade NACA
propellers. M; = 0.45.
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F1gure 19.- Comparison of static characteristics at constant power coefficient
of the two-blade NACA propellers. M; = 0.45.
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© Figure 20.- Effect of tip speed. Two-blade propellers.
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