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THE' 'LINEAR PERTURBATION TBEORY OF AXIALLY SYMME'mIC 'COMPRESSIBLE FLOW 

WITH APPLICATION TO' THE EFFECT OF COMPRESSIBILITY' ON 

THE PRESSU'R;E COEFFICIENT AT T11E SURFACE OF A ,B'ODY OF REVOLUTION 
. ~ '.. 

By John G: Herriet 

. ..... 
, SUMMARY 

: ; -: 

Four related methods ' for the study of ' c ompressible flow by means 
-, " 

of : :the linear perturbati'on theory are discus'sed in detail for :the case 
'of' 'three--dJ.mensional flow with axial sYmmetry. ' A general. .metho~ 'which 

, includes 'the ,others is 'also-dis,cussed 'orieflY. ', As an., example of the 
application qf :,these methods, it is shown ' th~t, for 'a , v~ry slender body 
of revolution in a uniform stream of compressible flUid, the pre'ss'ure 
coefficient ,at tht? surface of the body is alniost independent ,of Mach 
nl).mber. A mor.e accurate result ,for the case of a prolate spheroid, 
which was Biv~n by Schmieden and Kawalki, is 'discus,sed, an~ it is pointed 
out , that this result' may be used to ad,vantage f'or most ,bodies of moder
ate :thiqkness. ,Experimental data supporting these results are ' given. 

INTROLUCTION 

• • • I. • 

,Because' of the high speeds' of' 'modern aircraft ,it. , i..e ,d,e~ irable to 
'. dete.rmine the effects of c ompressibility' on th~ loads whiCh may be 

expected. ,oP the various 'parts of :th~ airplane. ,This det-er.mitlation is a 
proble.m in . three-d.1menf3ional :flow~ ., but over the wing at poiIfts not too 
close to ' the tillS or ' to the fuselage ' the fIm. approe,ches closely to 

• '. • j t • 

two.-d1mensional flow', .. This fac,t may be used as a guide in estimating 
the ,:effect of 'c;ompressib'ili ty. qn 'the' 'press ures at , the, wing !3urf'ace . 
On .tlie ',other handj 'the f1:l.s.elages Of most airplanes . a~ ' approximately 
b04:i,.~s of , revoliition ,·and:;', consequently, it is useful to know" t~e effect 
of ~ compres s ibility 'on' the .- pressures ' at ' the surface , of , a "body of revo
lution. 'Since the ei'.fect' of .. compressibility on , th.~ · pr~ssuJ;'e coefficient 
at the surface of a body of revolution ' is not tb.~ same ,as, the effect 
on the pressure coefficient at the surface of a body in: ' Wo-d.::i.mensional 
flow, it follows that, at points of an airplane which are close to both 
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the wing and the fuselage., the effect of ccmpressibility must be more 
complex, being a combination of the effects in two-dimensional flow and 
in three-dimen~ional flow with axial symmetry. Generally, at such pOinte, 
the effeet of the wfng on the pressure coefficient is greater than the 
effect of· the fuselage and, conseCluently, the compressibility effect 
resembles more closely that for two-dimensional flow. On the other hand, 
at ,points of the fuselage far from the wing the flow approximates to 
axial flow and results appropriate to this type of flow are applicable. 

For two-dimensional flow of a compressible fluid past an airfoil 
or other body, the Prandtl-Glauer't law (references 1, 2, and 3) states 
that as the free~8tream Mach number M increases, the pressure coeffi
cient at the surface of the body increases according to the expression 
l/~- M2. For bodies of small or moderate thickness and for Mach 
mi.mbera· ·belo,., the cri.tical, this law gives fairly satisfactory agreement 
wi th experiment, provided' the departures from potential flow are not 
important. It has been assumed by" a number of authors (references 4, 5, 
6, and 7) that the same law "may' be ' applied to three-dimensional flow, 
but this is incorrect, as is shown in references 8. and 9 and ·the preeent 
report. In fact, for very slender bodies 'of revolution it is shown that 
the 'pressure coefficient at the surface of the body is nearly independent 
of ' the Mach .number, being completely independent of the Mach number in 
the liIhi ting case of . zero ' thickness. . For ·the case of the peak pressure 
coefficient (or velOCity-increment ratio) at the surface of an ellipsoid 
b~ revolution, reference 9 gives a more precise result which 1s applicable 
to many bodies of moderate' thickne ss as well as to very slender bodies. 

There 1s a fundamental difference between the pressure-coefficient 
variation with Mach number in 'two- and three--dimensional flow. The form 
of the Prandtl -Gl auert law which is satisfactory for bodies of moderate 
thickness in two-dimens ional f l ow is independent of the thickness ratio 
of the body; where.as for axiall y symmetric flow the law for the pressure-

. coefficient .variation depends strongly .upon the thickness ratio of the 
body. . ' . 

The Prandtl-Glauert ~ormula for tw~imensional flow is obtained by 
'means of ·the linear pei~turbation theory of compressible flow in which the 

. . . .... :. departures' of the fluid veloei ty from ' the ' uniform free-stream velocity 

. ' ,~ · 

: are as,sUIDed small : and their' squares are neglected. It ~s clear that the 
theory fails 'in the ne.ighborhood of a stagnation point and that elsewhere 
it is at best approximate, the approximat i on deteriorating, in the case of 
flow past a streamline body, as the thickness and camber of the body in
'crease ~ . There are ' a nuinber of ways' of ' applying this li~ee.r perturbation 
theory to the study .of .prob'lems of compressible flow, but for any particu
lar problem one method may be more , conyenient than the others. ' Three such 
general methods are described. in ~etail in reference" 4. These methods, 
as described in reference 4, ' e.re ·;applicable only to two-dimensional flow. 

,. 
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A fourth method which is applicable to both two- and three-dimensional 
compressible floyl is presented in reference 8. In all these methods the 
properties of a compressihle flow are deduced. by comparison with a cor
responding incompressible flow ,.hose characteristics are known. In the 
application of the fourth method to the problem of two-dimensional flow 
about a body or three-dimensional flow about a body of revolution it is 
necessary to take account of the fact that the bodies in the correspond
ing compressible and incompressible flows are of different sizes. On 
the other hand~ in method I of reference 4, which Is, unfortunately, 
applicable only to two-..a..imensional flow, the size, shape, and orientation 
of the body are the same in the compressible and incompressible flo~s. 
Consequently this method is more convenient for certain problems. It 
is pointed out in reference 4 that the other methods presented there 
possess certain advantages for other problems. It, may be expected that 
methods for the study of three-dimensional compressible flow analogous 
to those of reference !~ will be useful and convenient for the solution of 
many problems. 'rhe present report describes three methods (methods I, II, 
and III) analogous to those of reference 4, for the ,study of axially sym
metric compressible flmr by means of the linear perturbation theory. 
The method of reference 8, designated method IV, is added for completeness 
and its relation to the other methode is pointed out. A general method 
which includes t he others is also discussed. In method II the size, 
shape, and orientation of the body are the same in the compressible and 
incompressible flows, and concequently, this method is more convenient 
for certain probl ems. On the other hand, methods I a.."1d III may be more 
convenient for other problems . Great care must be exercised in using 
methods I, II, and III as they are appl icable 'only to very slender bodies. 
Method IV is not so restricted . 

If method II is applied to t he problem of, determining ,the effect of 
comp~es8ibility on the pressure coefficient at the surface of a very 
slender body of revolution, it is found that the press).lre coefficient is 
independent of Mach number. For very slender bodies t hi s result is in 
agreement with that of reference 8, in which only an ell-ipsoid of revo
lution is studted. It is i nstructive to obtain the same result by each 
of the other three methods, but , in order to do so, it is necessary to 
determine hm. the -pressure coefficient at the surface of the body varies 
wi th the fineness r a tio of the body in inc ompressible flo1-T. It is shown 
in this report that, for a very slender streamline body of revolution, 
the pressure coefficient at the surface of the body is inversely pro
portional to the s quare of the fineness ratio. This disagrees with the 
result used in reference 5 but agrees with that in reference 8 for the 
limiting case of a very slender body. The pressure-coefficient varia
tion for bodi es of moderate thickness i s also discussed. 
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SYMBOLS 

The following symbols are used throughout this report: 

p 

p 

V 

x,y,z 

x,r,B 

Vx,vy,Vz 

V' x 

Vr . , 

ao 

q 

p 

, M 

f3 

<p 

V 

h,h' 

22 

t 

cr. 

s,l'l 

2c 

a,b 

static presElure 

mas s dens i ty 

velocity 

Cartesian coordinates 

cylindrical coordinates 

components of velocity in x,y,z directions 

perturbation veloCity in x direction (Vx - Vo)" 

radial component of velocity 

velocity of sound in free stream 

(
1 ' 

dynamic pressure 2P~2) 

pressure coefficient ((p-Po)!qo) 

Mach number in free stream (Vo/ao) 

JI-M2 , .' 
l' : 

velocit~ potential 

stream function 

radii of stream surfaces 

length of body of revolution 

maximum radius of body of revolution 

angle of attack 

elliptic coordinates 

distance between foci of ellipse 

semiaxes of ellipse 
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e eccentricity of ellipse 

Subscripts and Superscripts: 

o in free or undisturbed stream . 

i incompressible or low speed 

c compressible 

* at surface of body (appendix only) 

THE LINEAR PERTURBATION THEORY 

Consider the flow of a compreseible fluid past a solid bony, the 
undisturbed velocity of the fluid relative to axes fixed in the body 
being a ~iform velocity Vo alor~ the axis of x, as shown in figure 
lj assume that the departures of the velocity fram the undisturbed 
velocity Vo are small. The changes in pressure will then be small 
compared with ·the undisturbed pressure and will be proportional to the 
changes in density, the ratio being the square of the velocity of sound . 
in the free stream. On a linear theory in which squares and product~ 
of small quantities are neglected, Bernoulli's eq~ation 

J ~ + ! V2 
:=; constant 

p 2 

for steady -irrotational motion be~qmes . 

p :=; 

From equation (1) there is obtained 

p 

The equation of continuity becomes 

2V' x 

(2) 

5 
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If a velocity potential ~ is introduced satisfying the relations 

and if equation (2) is used, equation (3) becomes the familiar equation 

• 

where 

?/ ?/ rD, '0
2 

2 cp ~ 

f3 'Ox2 + 'Oy2 + 'Oz2 = 0 

2 
·ao 

(4) 

The transformation of this equation into cylin~ical boordinates x, r, 
, ' e yields 

In this report the flow is assumed to possess axial symmetr y about the I 

x-axis unless otherwise stated. In this case 'O~/'Oe2 · = ·0 and .equation 
(5) reduces to 

(6) 

A stream function 'Ijr may now be 1ntroduce.d writing 

From this definition the following approximate rel·ations ar e obtained: 

---~-- - - ~ --------~ 

, 
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1 OW P"Y.r , .', Yr ', 
---=~~ 

- '': .~ '.~ " . 
. (8) 

The points for which W 
called a stream surface. 
streamlines. 

is constant constitute a surface which may be 
The stream surface is in turn made up of 

If a solution for incompressible flow (~= 1) 1s known, solutions 
for values of a less :than one maY be deduced in several ways when shock 
waves are absent and the assumption of small departures from a uniform 
veloCity is approximately correct. 

Method I 

For three-dimensional flow with axial sYmmetry let 

cp = Vox + f(x,r) 

be a solution for the velOCity potential for incompressible flow 
(a = 1). and let 

(10) 

be the corresponding stream function so that the following relations 
must hold true: 

~ 1 . 
, f (x,r) .=-g (~,r), fr.(x,r) 

.. .x, . r r 
. , 

" ", 

It may he nQted that g(-oo,r) = 0 s~ce 'the ' flow is undisturbed at 
infinity upstr,eam. It 'is assumed, that the lim! t of g (x,r) as r . 
tends to zero 'i's. finite and nQt zero for points' x of tb,e body not 
close to a stagnation point. '. (This ·assumption. is correct at least for 
flow abou~ . a Rar~~ne Ovoid or prolate spheroid.) 

. . ~ . . 

~fx denotes the partial derivative of f(x,r) with respect 

namely, of(x,r)/ox and (f:r. = .of/er . . +n .equa.t1op. (13) . fr(x,~r) 
the value of fr at (x,ar)' and not the derivative of f(x,ar) 
respect to r. 

to x: 
is 

with 
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'. 
Than a solution of equation '(6) for i3 ·< .1 .. is 

(12) 

The longitudinal and radial components of velocity are 
, ; . ~ ': 

(13) 

From equations (7), (8), and (11) it follows that 

1 
1 + V r Sr.(x,i3r) 

, 0 : 

and 

.Then the stream function is 

(14) 

If the body were removed, the velocity at all points of the field. 
would be Vo ' and th~ velocit,y potential and stream function would be, 

1 . '. 
respecti vely , Vox and '2V or2 • The stream sUrfaces would be right 

circular cylinqers with axas along the x-axis. The effect of the body 
is to distort 1;-hese stream' surfaces. . Le.t h denote the radius at x 
of . e. given s+;Team surface wi ththe l:)ody pr~8ent. . If the body were 
removed the y~c(~m~ ' <?~this stream . ~ur.face would ,be h';' s 'O that 
h-h' is the ~iGtort+on of the s~eam surface cau~ed by the presence 
of the body . If r';' h · 'is .8ubstltl,<ted. in eqttation (14) and. it is 
observed that ... 1JL .haE! .. :the same value whether the body is present or 
iiot'~ · ·there is ' ·obtained.. . ' ..... '. '. ' ..... .. . " . 

.' ~ 

... . ...... 

..1 
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For values of h and h' which are not too small this equation yields 
approximately 

h-h' = 

The distortion of the stream' surface in the case of incompressible flow 
is obtained by setting ~ = 1 in equation (15). If the paints (x,r) 

9 

in the compressHle flow and (x, I3r) in the incompressible flow are 
called, corresponding points, theI}. it is seen at once from equation (15) 
that at points far from the body the distortion of the stream surface in 
thecompresBib1e flow is the same as th~t at the corresponding point of 
the incompressible flow. To fj.nd the relation between the distortions 
near the body (Le., near r = 0) it iB only neces'sary to set \)r = 0 " . 
in equation (14):. Then, since g(x,/3r) is nearly equal to g(x,O) ' at 
points of a very slender body not cloee to .a stagnation point it follows 
that the radius of the zero 'stream surface at any x i~ the compressible 

l 
flow is 13 -2 times the corresponding radiUS at the same x in the in-
compressible flow. It should be noted that the distortions near the 
body differ from those far from the body. 

From equation (13) it is seen that · the increase in the longitudinal 
velOCity at any point i~ the compressible flow is 1/13 times the increase 
at the corresponding point in the incompressible flow. Near the body the 
longitudinal ~elocity is nearly independent of r and consequently near 
r = 0 the longitudinal velocity increase in the compressible flow is 
1/13 times its value at the same point in the incompressible flow. 
Because of equation (1) the same relations are true for the pressure 
coefficient. Also from equation (13) the radial velocity at any point 
in the compressible flow is the same as at the corresponding point in 
the incompressible flow but no general comparisons can be given near 
r = 0 because the radial velocity depends upon r even for small r • 

. Method II 

Corresponding to the solution given by equations (9) and (10) for 
the incompressible flow 

may be written in place of equation (1.2) for any · 13 < 1. The longitudinal 
and radial components of velocity are ' 
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The stream function is found to be 

The distortion of a stream surface is approximately 

h-h' = .~ 2g(x,./3h) = 
Vo(h+h t) 

NACA RM No. A6m..9 

It follows that the distortion of the stream surface at any point 
far from the body in the compressible flow is /3 times the d·istortion 
of the stream surface at the corresponding point in the incompressible 
flow. The radius of the zero stream surface at any x is the same in 
the compressible and incompre~sible flows or, in other words, the Size, 
shape, and orientation of the body are the same in both flows. The 
pressure coefficient and the increase in the longitudinal velocity at 
any point in the compressible flow are the same as at the corresponding 
point in the incompressible flow. Near r = 0 the pressure coefficient 
and the increase in the longitudinal velocity are the same in the com
pr~ssible ' and incompressible flows. The radial velocity at any point 
in the .compressible flow is /3 times its value at the corresponding 
point in the incompressible flm". 

It may be mentioned -here that Wieselsberger (reference 10) uses a 
method to study compressible flow which 1s essentially method II of the 
present. report, although he does not attempt to formulate any general 
method; - however, he starts from a slightly different point of view._ 
Instead of assuming the velocity potential to be the same at corre-
sponding points of the compressible and incompressible flows, as done 
in th~ present report, . the condition is imposed that the boay shapes 
shall be the same in both flows and it is concluded that the velocity 
potentials must be the same at corr~sponding points. 

Method III 

Corresponding to the solution given by equations (9) and (10) for 
the incompressible flow 

.-

,. 

may be written in place of equation (12) for any 13 < 1. The longitudinal 
and radial components of velocity are 

,. 
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The stream function is found to be 

The distortion of a stream surface Is approximately 

h - h' ::: 
2I3g(x/f3,h) 

Vo(h+h' ) 
:: 

It follovTs that the distortion of the stream surface noar x:: xl. 
and any r in the compressible flow is 13 times the distortion of 
the stream surface near x:: Xl./f3 and the same r in the incompressible 
flow. The rad~us of the zero stream surface .at any x in the compressi-

' ble flow is 13 ~ times the corresponding radius at x/f3 in the incom
pressible flow. The pressure coefficient and the i ncrease in the longi
tudinal vel.oci ty at x::: Xl. and any r in the compressible flow are 
1/f3 times their value s at x:: Xl./f3 and t he same r in the incom
pressible flow. The r acHal velocity at x::: Xl. and any r in the 
compressible flow is t he same as at x::: Xl. / f3 and the same r in the 
incompressible flow. 

Methcd IV 

A f ourth method] which i 13 called an extension of t he Prandtl rule, 
is given in reference 8. ' It is expressed i n the following concise form: 

The streamline pattern of a compressible fl ow to be calculated can 
be compared with the streamline patte~ of an incompressible flow which 
results from the contraction of the y- a~d z-axes including the pro-

file contour by the fac tor f3:: Ji - M2 (x-axis in the direction of 
the free stream). In the compre ssi~le flow the pressure coefficient 
as well as the increase in the 1 011g :!. tudinal vel ,:,c i ty are greater in the 
ratio 1/132

::: 1/(1-M2 ) and the s t reamline slopes greater in the ratio 
1/13 ::: 1/jl-:jM2 than those at the corresponding points of the equiva-
lent i ncompressible flow. 

This method is applicabl e to bot h t wo- and three-dimensional flow t 

The proof given in r ef0rence 8 differs from. the proofs of methods I, II, 
and III given In tb.e present ,r epor t , 'but for the case of axially synnnetric 
flm. the methods of the present report may also be used. In this case 
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i s written in place of equation (12). ~he longitudinal and radial 
componentG of velocity a:ce 

1 1 
Vx == Vo + - f (x Ih' ) Vr ::: - f:c (x,Br) 13 2 x' , p 

The stream function is found to be 

'If ::: 1:Vor2 + 1 g(y. , 131') ::: l r'~0 ( f3r)2 g(x, [3r) ] -I-
2 

13
2 132 L 2 

:' Fr'om this it 1s 'seen that the pOints i'n the incompressible flOi-T which 
correspond ·to the points of a single str eam surface in the compressib"le 

. r lm." themselves l ie on a single stream s1.1r face in the incomprps s nle 
flOi-T. In other wOi'ds j if the compressible-flow fie ld is transformed 
by multiplying the r-coordlnate of each point by [3 , then stream 
surfaces in this fie ld are mapped into stream su rfaces in the 
incompressible-flm., field. Thus, the two fields are entirely simi lar 
and no approximation: is inVOlved in comparinG the shapes of the bodies 
or ~~adii of' the stream surfaces in the tyro flov16 j vThe:'eas ' in methods I, 
II, and III the comparison of the body shapes depends on an approxi
mation and becomes exact only in the limitinG case of a body of zero 
thickness . Thus, method IV lllay be expected to be the most accurate 
of the four methods , especai.lJ.,y fm.' bodies of moderate thiclmess . Of 
course, the thickness of the bocly is still limited by the a sstUllptions 
'of ' the linear p.ertu!;,bation theqI'Y . In this connection it mny be 
pointed out that :for many problems one of ·the othei' methods may be 
preferable from the standpoint of conveniel'lc e , but care must be 

' exere i sed :in their use . 

General Metbod1 

It is n01'T poss ible t o eive a . genoral. method ilhich inc ludes the 
.pI'eeeding methods' as special caGes . 

Corresponding to the solution given by equations (9) and (10) for 
the incompressible f low a potential function 

lThe general method as outlined in this secti on :i,s due t o 
Mr . Dean R. Chapman of the Ames ~eronau~ical labor atoi7 . 

- - - - - - - - --- - _ . 

(16) 

.. 
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is desired. The constants A~, A2:As must be chosen so that equation 
(16) satisfies' equation (6). If equation (16) is substituted in equation 
(6) and it 1s recalled that equation (9) satisfies equation (6) with 
p = 1, i~ is easily found that 

is a necessary and sufficient condition that equation (16) be a solution 
of equation (6). The longi tud.inal and radial components of velocity are 

The stream function may be found as in method I. From equations (7), 
(8), (11), and (17) , it follows that 

and 

. .. . 

Then the ~~ream function is 
" 

. ~ \, " 

, '. 
\. " {19) 

:''' . 
. .. : 

" ' 

Since ,any ' two. of the three' :constants AL, ,A2, and AS ' can be coosen' 
arbitrarily, there is a double infinity 'of methods. 

In general, ' In transforming from the 'compressible,-flow field 'to the, 
incompressi~le~flow field, stream surfaces' are not mapped into ' stream 
surfaces. If, however, it is desired that stream surfaces map into 
stream surfaces, as in me t hod IV, then ~~ additional condi tion must be 
imposed on the A. Equation (19) ~Y- be rewr~t~en 

~ = ~~ [ ~Vo(A3r)2Al~:~ + g(A2x ,Asr) ] 
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In order that stream surfaGes map into stream surfaces it is necessary 
and sufficient tha t 

(20) 

If equation (17) is used, it is seen that equation (20) can be replaced 
by 

1 
. " " 1. 2 ::. p2 

(21) 

There is thus ' a single ini'inlty of methods satisfying both equations 
(17) and (21). 

If' in addition it is desired· to have t~e x-coordinate the same in 
both flows, i t is necessary to choose A.2· = 1 and there is then only 
one method satisfyi ng both equations (17) and (21). From these equa
tions it follows that A.!. = 1/~2 and A.~ = p. This is the same as 
method rI, which has already been discussed. , It is easily seen that for 
methods I, II, and III equation (17) is satisfied but ' equation (21) is 
not. 

It should be pointed out that great care should be exercised when 
using methods for which equation (21) i s not satisfied. For such methods 
the comparison of body shapes is valid only for very slender bodies. 
Methods for which',equation (21.) is sati sfied ' are not so restricted. It 
will be useful to discuss i n mor e detall the general' properties of meth
ods for which both equations (17 ) and (21) are satisfied. From equa
tions (18) and (21) it is seen that the pressure coefficient and the 
increase in the longitudinal ve l ocity at any 'point in the compressible 
flow are 1/~2 times their values at the corresponding point in the 
incompressible flm., . The ~hic.lime8s rati9 of the body in the compressible 
f l ow is A.2/A.3 = 1/13 :··t1mes · the thickness r'atio of the body in the in
compressible flow. Also the streamline slopes in the compressible flow 
are greater in the rati o . A.l~ = 1/13 than those at the corresponding 
pOints of the incompressible flow. " . 

• j • 

It may be noted that, if the general analysis is app~ied to two
dimensional flow,. equati ons (17) end (21,) are unaltered; however, the 
stream function ' is 'given by 
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ins,tead of by equation (19) . It is easily seen that the methods of 
reference 4 s8,tisfy equation (17) but not equation (21) fu'1.d. hence stream 
surfaces in the compressible flow d.o not map into stream surfaces in the 
correspoc1ing incompressible flow. 

VARIl\.TION OF TEE PRESst,rnE COEFFICIENT WI'l'H THE 
; 

FINENESS 'RATIO IN INCOMPRESS:Q3LE FLOW 

It has been shown that in method.s ' I, III, and. IV the fineness ratio 
of the bo~ is not the same in the compressible and. incompressible flows. 
Consequently, in ord.er to study the effect of compressibility on the 
pressure coefficient at the surface of a body of revolution by any of 
these methods, it is necessary to determine how the pressure coefficient 
at the surface of the body d.epend.s on the fineness ratio of the body in 
the case of incompre8sib~e flow. 

Suppose the velocity potential and stream function for the flow 
aoout a slender streamline body of revolution placed. in a uniform stream 
of incompressible :fluid are, 'respectiyely,. 

' <p = Vox + 'f(x,r) 

\jr = !.V or2 + S (x, r ) 
2 

( .. 

so that the following relations must hold true: 

1 ' 
,fx(:x;,r) =;.: ~(x,r), .fr(x,r) = 

\. . . 

1 
- - gx(x,r) 

r ' 

(22) 

. (23) 

: . 

As before it may be ',l1oted that ' g(-<lQ,r) = 0, and 'again 'it wHlbe 
assWn~,d that the li~i-t of s(.x,r)., ~~ r tends to, zero is ·finite and 
not z-ero for points' .,x , of the body not close to a stagnation point. 
The~ ~ tbe v.elocity 'potential and. stream function for ·the flow about a 
,secOIld bod.y , obtainEid frQm the first by multiplying the lateral d.imen-
s,iqns by , n ' are appr,C?ximat~ly .. 

. i .' 2 2 ' 

W· = -Vcr + n g(x,r) 
2· 

(24) 

t· . 
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This is easily seen by consideriI'..g the stream. functions of the two flows, 
noting that \jr:::: 0 on the "bodies, and that g(x,r) is ap:?roxlmately 
equal to g(x,O) since r is small. 

If P1 and P2 denote the pressure coefficients for the same x 
at the surfaces of, the 'resIl8ctivebodies whose radii' are r1 and nr1, 
itfolJ.ows from equations (1), (22), and (24) that 

, 

2(V'X)1 2fx (x,r1) 
P1 - = 

Vo Vo 

P2 
2(V'X)2 2n2f x (x,nr'l) , 

:: -
V ' 

0 , Vo 

H~nce these,,; equations give the approximate relation 

(V'X)2/VO 
---T-"---- = 
(v'x)dvo 

n2f x (x, nr1) 
f x (x,r1) 

= n 2 (26) 

This approximation is valid for' 'a very slender body since close to such a 
body the longitudinal velocity inc~ease fx(x,r) is nearly independent of 

r. It is true that for a prolate spheI'oid fx(x,r) becom~8 logarHbmi
cally infinite but it is stl.1l true' th8:t the iimlt ~i f~(x,nr')/fx('x,r) 
is unity as r tends to zero; this is sufficient to prove equation (26) 
for the limi ting, ,~a8e of, zero ;thicknE;)sS _" ; , 

On the other hand) the relation of Aquation (26) may not be the 
most satisfactory one for bodies (~f moderate thickness. , Approximate ,e'x
pressions fot the pres8ur~ coefficient and velocity ~ncrea8e at 'the sur
face of a prolate spheroid are ,given in , the appendix. Let the subscript 
1 refer to a prolate spheroid ' ,of thickness r.att'o tll" , smd the - sub'script 
2 refer to a body of -thickne'ss r 'atiq nt/l" If tez:msof. ~ order "Ct/l, )~ - " , 
and higher are neglected 'in equation (A6) th,eI'e ,is obt,ained. .• ; : " 

-(nt/n:21og(nt/2) 2 
= 

_(t/2)2 log(t/l)2 
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If terms of order (t/l)2 are retained but terms of higher order are neg
lected in equation (A6) there is obtained 

r l 
i (vtxhnax !2lvo 
1_ ~J . 

; f(V 'x)max ll/VO = 
L J 

(1-1082) ] 

log n2 

+ ---
log(t/l)2 + 2 

(28) 

In applying these relations to the study of compressible flow by means of 
method IV it will he necessary to take n equal to /3. Corresponding to 
a Mach number of 0 .8, /3 is 0.6 . With n, = 0.6 the approximations given 
in equations (27) and (28), as well as the true values o"f the left members 
for a prolate spheroid, are plotted as a flIDction of til in figure 2. 
In addition this l'Ettio is plotted in figure 2 for the NACA 111 series 
(reference 11) of bodies as well as for a series of bodies given in ref
erence 12. Ur~orttmately these series of bodies are not related to one 
another 80 that one body m~y be obtained from another of the series by 
mul tiplication of the radii by a fixed factor. However, the d.istortion 
is not great. Straight lines corresponding to n = 0.6 ' and n2 = 0.36 
are .added to figure 2 for comparison. It ap~ear8 'that for small values of 
til equation (28) gives the best approximation for the prolate spherold; 
whereas for large values ef til equation (27) is better, but neither is 
of much value for values of til in excess of 0 . .30. The approximation 
given by' equation (28) appears to be most satisfactory for general use 
but its application should be restricted to bodies vTh9se thickness ratios 
are less than 0.30. It should be noted that as til tends to zero the 
right members of equations (27) and (28) both reduce to n2 in agreement 
with equation (26). 

VARIATION OF PRESSURE COEFFICIENT WITH MACH 

1'UMBER IN COMPRESSIBLE FLOW ' 

Consider a slender streamline body of revolution of length 21 and 
maximum radius t in a uniform stream of compressible fluid. Suppose 
that the undisturbed flu.id flovTS in the direction of the positive x-axis 
and that the body is placed. '-Tith its axis along the x-axis and its center 
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at the origin as 6ho~n in figure 1. Dencte by Pc the pressure coeffi

cient at any point x of the surface of the body. Let Pi be the pres

sure coefftcient at the 88I'le point of the surface of the same body under 
the assumption that the fluid is incompressible. 

Method II is the most convenient method to use, for the size, shape, 
and orientation of the body are unchanged in the correspondir~ incompressi
ble flow. It follows at once that Pc = Pi or, in other words, that the 

pres sure coefficient is independent of the Mach number. 

In using any of the other methods, it is necessary to take account 
of the change in the shape of the body in pessing from the compressible 
flow to the corresponding incompressiblp. flow. Since methods I and III 
are valid only for very slender bodies the appropriate pressure-coeffleient 
variation vith thickness is given by equati~n (26). When method I is used, 
the corresponding body in the incompressible fl('lw is .o;f length 21 and 

maximum radius tP~ . so that Pc = (l/p)(~Pi) = Pi. Again, if methed III 
is used, the body in the incompressible flow is of length 21/~ and maxi-

1 
mum radius tB-2 so tha t the thickness ratio is decreased in the ratio 1. . . 

132 , It follows that Pc = (lip) ( pP1 ) = Pi' Finally when method IV is 
used the body in t he incomnressible flow ie of length 21 and maximum 
radius tf3 so that Pc = (1/13 2 ) (13 2P t) = Pt, 

Methods I, II, and III are valid oP~y for very slender bodies not 
only because some distortion, is introduced in the comparison of the body 
shapes but also because the slight variati0n of the pressure coefficient 
with distance from the axis of the body is neglected ~hen this distancp. 
is small. This variation with distance mus t be censidered in order to 
avoid inconsistent resul t s if t he closer a~proximations of equations 
(27) and (28) are used in conjunction with methods I, II, and !JI. 
Since this ie inconvenient to do and since method IV is not subject 
to these limitations, it i s preferable to use the latter method when 
the closer approximations g i ven by equations (27) and (~8) are used. 

If equation (27) is used t ogether with me thod IV it is easily f~und 
that 

whereas, 

r - ! 

log 13 2 (Pmax)c 

(Pmax) i 

l (vtx)ma.x l clvo 
::: -- --' - .- = 1 + ---. 

! I V ·) -I Iv i \, x maxi 0 

L i 

log( t/l)~ 

if equation (28) is used, there is obtained 

(PmaJ) c [ (Vfx)ma.xl c/Vo log 13
2 

--- = ~-----"'- --- - 1 + 
[ (V'x)max }/V Ij log( t/l)2 + 2(1-'10g2) 
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Equ.ation· (29) is the result of reference 8 and equation (30) is the 
asymptotic first approyjmation of reference 9. The result of equation 
(30) is shown graphically in figure 3. 

.. . 
Figure 2 shows .. that equa:tion "( 30) 1s likely to be most sui table 

f or general use although for thicker prolate spheroids equation (29) 
would appear to be better. Nei ther of these equations should be used 
for bodies ·whose thickness ratios exceed 0.30. For thicker bodies the 
more exact results of reference 9 may be used. For very slender bodies 
the right members of both equations (29) and (30) reduce to unity in 
agreement with · the result previously obtained. In the application of 
equation (30) to bodies other than prolate spheroids, til may be 
chosen as the actual thickness ratio of the body or as the thickness 
ratio of the spheroid having the same peak pressure coefficient as the 
body, or · til may be chosen in some other appropriate manner. This un
certainty in the choice of til will not materially affect the results 
obtained from equation (30). 

References 8 and 9 ' study only the maximum velocity increment; but 
if equations (A9) and (AlO) of the appendix are used, and terms of order 
(t/l)2 are retained, then it is 'easily shown that at the surface of a 
spheroid 

l og (32 

1 + ------~~----------
10g(t/n.2 ·+, ex/7,) 2/[1-(xll)2] +2-2log2' 

It should be noted that in contra~~ to equation (26) P c /p i and 

[(V'x)c/voJ/[(V 'X)i/voJ are slightly different because ' terms: of higher 
order have been retained: Of course equations (3i.) arjd(32) ~e valid 
only OVer the central portion of the spheroi d and ·are invalid near the 
stagnation points. \{hen . x .=· 0 equations (31) and (32) reduce to 
equatiqn (30). Generally it will pe suff i ciently accurate "to .use equa
tion (30) in place of equations (31) an~ (32). 

' .. ' . 
~STIMATION OF ·CBITICAL MACH ~ERS 

.. .... 

The critical Mach "" ~umber of any body can be." d~teniiined from its 
low-speed peak pr~8sure ' coeffici~nt .. p:i::"ov~ded "the ,variation of p~ak 
pressure coefficient wtth .Mach ":Ii~ber' is known. ·If equation (30) is 

.. , " ,. • • t • . '.: ': •• 

. , ! ~. . .. ~! .~ . 
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used to estimate this variation for a body of revolution and if'in this 
equation t/l is chosen as the thi'ckriess ra.tio of the prolate spheroid 
having the same peak pressure coefficient as the body under considera
tion, then the solid ,curve of figure 4 is obtained. If the law for very 
slender bodies is used, namely, that the pressure coefficient is ' inde
pendent of Mach number, the dashed curve of figure 4 is obtained. The 
curves applicable to two-dimensional flow obtained from the Prandtl
Glauert and Karman-Tsien (ref~rence 5) laws are shown for comparison. 

EXPERIMENTAL ,RESULTS AND DISCUSSION 

In nrder to determine whether the results of the present paper are 
' in agreement with experiment, a considerable amount of experimental pres'
sure data was studied. The fuselages of many airplanes ere approximately 
bodies of revolution but most data have been taken with the wing on the 
fuselage. At stations near the wing the pressure coefficient is more 
influenced by the presence cf the wing than it l :s by the fuselage. Con
sequently, d~ta Qn 'the fuselage without the wing or on the fuselage far 
from the wiLg are needed~ 

Pres sure ,data for a f1.lselage without a wir.g or -:>ther protub'eranceo 
were available f or only one , airplane which, in this report, is designated 
as airplane A. These data were taken in the Ames l6-foot high-speed wind 
tunnel and corrected fo~ tunnel-'wall effects, the correction to the ~ach 
number being in the neighborhood 'of 5 percent. This fuselage is a body 
of revolution. Back of the maximum section, the regular fuselagA was 
replaced by a conical shape as shown in figure 5. The length of thA model 
tested was 135.0 inches and the maximum thickness was 37.56 inches} g iving 
a fineness ratio of 3.595. The, lecations of the pres~ure oriflces are 
also shown in figure 5. The medel was supported in the tunnel by m~ans 
of two struts connected to it about 450 on either side of the bottom 
vertical center line of ' the fuselage. Since the data from the lower 
orifices migh~be influenced by these struts, the variation of pres 3ure 
coeff,icient ', wi th Mach number ' is shown in figure 6 only for the orifices 
on or near the t~p of the modeL The data of orifices T-2 anp, r-3 may 
be influenced by the presence of two holes in the fuselage near ' the nose 
which were to simulate gun ports. For purposes of compar'isc:n a ,: 1/C3 
curve is added in each case. ' For orifices T-7, TR-7, T--8, and TR-8 a 
curve showing the theoretical variation of the peak pressure COefficient 
as given by e quation (30) is added. This curve is seen to lie very close 
to the 1/C3 curve appropriate to two-dimensional flow. It can be seen 
that for the orifices T-7, TR-7, T-8, and TR-8 the experimental pressure 
coefficients rise slightly with Mach number but less than predicted theo
retically by equation (30). At the other orifices the pressure coeffi
cient rises les8 rapidly and even falls at some cf the orifices, chang
ing sign in one or two ca'ses,. This is not predicted by the linear theory .... 
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e..t all. A more accurate and. de.tailed calcuJ.at.ion carried ·out in reference 
'.1-3 for a particular body, however, . reveals such behavior on some par1ts of 
the body. 

The other available data were for a fuselage with wing. It .. was :.'con .. 
sidered that pre'ssure 'data for orifices near the nose of a long fusela~ 
would be little aff ected by the presence of the ",ing . Near the wing, the 
,effect of the wing would. be predominant. 

' . 
Fi~e 7 ShO'\olS the forward :portion of the fuselage of airplane, B 

together with . -the position of the ,,,ing. The fuselage is nearly a body 
of revolution, but the u.pper ~tl.rface is complicated. by the pref;!ence .of 
the pilot's wi~dshield; whereas ~le lower ourface differs from the regu
lar shape only by having a flat bombardier's "Tindo,\-T very ' near the n0ele. 
The locations of five pressure orifices on the ImTer surface of the ' . 
fuselage on its: vertical center .line are also shOlm. These orifices 
are all· to the rear of the bOlllbardier' s Wind01f on that portion Of tJ:l,~ . 
fuselage ,\-Thich approximates most closely to a body of revolution • . . Figure 
8 shows the variation of pressure coefficient with. Macr n~ber att~ese 
five orifices. These data were taken in the Ames 1.6-root . ~;igh .. speed· wind 
tunnel and '\-Tere not -corrected for tunnel-wall effects •. ·. It is seen that 
at those orifices farthest from the ' nose the pressure .coefficient is re
markably constant as the Mach number is changed. 

. Figure 9 shows the fuselage 1 wing, and canopy of .a 1/5-8cale mod!)l 
. of airplane C together ",1th the locations of some .of the pressure orifices. 
The forward portion of this fuselage is approxim&tely a bOdy of re\'9iut10n, 
the . nose duct having been replaced by a plug. Figure 10 shows the v~ia
tion of the pressure coefficient with Mach number 'at a num}:ier of orifices, 
the data having been taken for the wing and basic fuselage bu~ with the 
co,nopy removed.. A number of orifices are not shown in figure ' 9 .as i:t is 
drawn with the canopy on. But the position of each orifice' f~r 'which 
data are giV'en in f+gure 10 is described by giVing i .ts distance in inches 
frpm the"I}ose. of t he f w,elage "'ith plug . These data were obtaiiled in the 
Langley , 8~i'00t high-speed. wipd .tUnnel .. . It is' .seen tha:t, a.t thos.e orifices 
which are well forvlard ,of. the ,fing, ,the ' pressure coeffiCient Is, ~a.tly 
constant or increa!3ss .s .. lowly with .1Ilcreas ing Mach number, its cur.ve re
maining. belo'\-, the ·~/J3 .- c'urve j . pu,t itear the winG the increase .of the pres
sure coefficient .fs mucp 'mor,s .rapl d,. and at s.everal orifices the increase 
1s more rapi~ than l/~~ . At 8~ch .or.ific¢s the ef fect 'of ~he ~1ng is 
greater than tl?,at .of the fus.elage. .Horeover the f low over the wing is 
more nearly. tWo-din:ensional and so the l/fj la,., wo\lld be expected to 
hold. The critical Mach number of the iving is 0.68 and. th:fs may account 
for the drops in some of the cur.ves above M = 0.70. '1 ; 

It ~s cOl1sidered, .,that in the cases of airplanesB and C the bodies 
tested did not. resemble pure bodies of revolu~ic:n)iuf:hcient1y closely 
to warrant a comparison of the test results "Tith the theoretical results 
of equation (30)~ . 
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The Kollsman pitot-static tube F.S.S.C. No. 88-T-2950 is sho~~ in 
figure 11. This tube is a body of revolution, and a short distance back 
of the nose its cross section remains constant for a considerable distance, 
the diameter of this constant portion being seven-eighth inch. The statfu 
orifices are located near the center of this length of constant cross sec
tion and are 5-1/16 inches from the nose. Figure 12 shows the variation 
of pressure coefficient with Mach number at the static orifices of this 
pi tot-static tube. These d'ata were obtainecl in the calibration of this 
instrument in the Ames 1- by ~-foot high-speed wind tunnel and corrected 
for the effect of tunnel blockage. ,The tunnel choked at a Mach number 
of 0.952 and at Mach numbers close to this value the tunnel corrections 
are unreliable. For this reason the sharp drop in the curve occurring 
at Mach numbers over 0.9 should be disregarded. For purposes of com
parison a l/~ curve was added to figure 12 as well as a straight line 
to indicate the theory of the present report for very slender bodies. 
In addition, a curve has been added showing the variation of peak pres
sure coefficient as predicted by equation (30) for a body of fineness 
ratio 20; this being the fin,eness ratio which appears appropriate to 
the model tested. It is seen that the pressure coefficient is nearly 
constant increasing only very slowly with increasing Mach number. The 
increase is very smail and 1s not far from that predicted by equation 
(30) but is 'far belo~ l/~. 

The pressure distribution on the fuselage of a midwing airplane 
has been studied by Delano. (See reference 14.) It was found that the 
peak negative pressures on the fuselage occurred near the wing and were 
more dependent on the wing than on the fuselage. The variation of these 
peak pressures was in good agreement with the l/~ law, but at other 
points on the fuselage the ' pressure-coefficient variation does not 
follow this law. These conclusions are in agreement with the data shown 
in figure 10. It appears that near the wing where the peak pressures 
occur, tho flow is nearly two-dimensional and the l/~ law gives a ' good 
picture of the actual ,rarlation of the pr~ssure c')efficient. But at 
points farther from th,e wing the flow is more nearly three-<limensional 
and at such points which are not too close to a stagnation point the 
pressure coefficient shOuld be constant at least for very slender bodies 
according to the theory developed in this report. For somewr~t thicker 
bodies the pressure coefficient may rise slowly with increasing Mach 
number and equation (30) gives a formula for this increase. The e~
perimental data of Delano sho1-' several different types of pressure
coefficient variation. The type may depend on the proximity of the 
wing and ma~ result from wing and fuselage pressures following different 
laws of variation. ' 

It ' is assumed by Robinson and Wright (reference 6) that the variation 
of the peak pressure coefficient with Mach number can best be represented 
by the l/~ law for three-dimensional flow as well as for two-dimensional 
flow. In view of the foregoing discussion this would appear to be justi
fie~provided the peak pressure coefficient occurs near the wing, and 
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i 

this 1s usually the ease at least for a wing and fuselage combinati~n. 
No attempt is made in reference 6 to predict the ,pressure'-coefficient 
variation at points ether t~ where the peak occurs. 

23 

It appears that, for ' tho~e bodies which ' approximate closely to 
bod'ies of revolution and for poUlts not too close t(') a stagnation po'int, 
the pressure coefficient is nearly constant ,or increases slowly' with 
Mach number. It cannot be said that the' pressure c~efflcient is exactly 
constant in all casss, ' as proved 'in this report for a :very slender body 
of ,revolution. Nevertheless equation (30) appears to overestimate the 
actu~ ' increase for the true bodies ,of revolution tested. 

. ! ' CONCLUSIONS 

1. Four related methods ~nd a general method f~r the study of three
dimensional axially symmetric' compressible flow by means of the linear 
perturbation theory are presented. In each oase the properties of the 
compressible flow are obtained 'from those of' a corresp~nding incompressi
ble flow. Each of the methods possesses certain advantages ever the 
others. For example, in method II the body shape, size, arid orientation 
are the same in the corresponding incompressible flow as in the com
pressible flow; whereas in method IV th,e streamline fields are entirely 
Similar, the incompressible field peing obtained by a contraction of the 
compressible field in the radial direction. 'Methods I, ,II, and III are 
limited to very slender bodies; whereas method IV may' be applied to bodies 
of moderate thickness. 

2. By means of each of these four methods, it is found that the pres
sure ccefficient at the surface of a very slender streamline body of reTa
lution placed in a uniform stream of ccmpressible fluid is nearly independ
ent of the Mach number, being entirely independent of the Mach number in 
the limiting case of zero thickness. This reeul t 1e invalid near a stag
nation pOint and its application is therefore ueually limited to the 
central portion of the body. For a prolate spheroid the variation of the 
peak pressure coefficient with Mach number is givAn by the formula 

2 
log (l-M ) 

= 1 + --------~-----------
log(t/l)2 + 2(1-log2) 

and this result may be used for bodies of moderate thickness (thickness 
ratio less than 0.30). For very slender bodies the second term is neg
ligible while for a thickness ratio of 0.2 the increase in the pressure 
ceefficient is about half that for a two-dimensional body. 
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. , 3. Exper1meI.ltal data f ,or·, oodj 6a of re'Volution' without wings or other 

prot~berance,s show nearly constant or slowly rising pressure coefficient 

as the 'Mach number increases. The rise is usually , less than · that pre~ 

dieted by e~uation (30). Experimental data for oodies of revolution 

with wings Show. nearly constant or slowly rising pressure coefficient 

far from th~ wing ,out rapidly riair~ pressure coefficient near the wing, 

the rise agreei~g ~th that predicted for two~imensional oodies. 

,: 4. ' Or). the ,fuseiage of an airylane near ' the w1n~ the pressure coeffi

cient is 'influenced more by the wi~~ than by the · fuselage .and, at such ' 

pOints, the pressure-coefflcient 'Variation is best . re.preeent by , the " 

lWl - M2 law appropriate to two-dimensional flow. Since the peak 

pressure coefficient uBually occurs near the wing, the variation of peak 

pressure coefficient for a wing-fusela'ge combir.ation is best represented 

by the 1/ JT-- M2 law. On the other hand., at pointe on the fuselage 

far from the wir~ and not close to a stagnation ,point the press~e 

coefficient is nearLY c6neta:nt~, ' In ord.er to o,bta.1n an eElt~te of the 

rise in the preMure coefficient·, the' result (Qr the pea;k; pre'saure coeffi-

cient given by equation (30). may be uEled. . 

:PJn.ee Aeronautical Laboratory, 
National Advisory Committee for' Aeronautics, 

Moffett Field, C~lif., May 13,1946. 

. . ~ , . . . 
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APPENDIX 

PROLATE S?EEROID - INCOMPEESSIBI~ FLOW 

Consider a prolate spheroid immersed in a uniform stream of incom
pressible fluid whose velocity at a large distance from the body is Vo 

in the direction of the positive x-axis. Suppose the spherol'd to be 
located with its center at the origin and 1ts major axis along the x-axis. 
Le:t c denote the ~istance of e1 ther focus from center of spheroid and 
~,n denote the elliptic ' coordinates for a meridian sectlon, . so that the 
following relations between the coordinates are satisfied: 

x == c cosl?- ~ CO B" n . 

r = c sinh s sin n 

Also let 

a = c cosh ~* == semimajor axis of ellipse forming meridian section 

b = c sinh s * ::: eemiminor axis of ellipse forming meridian section 

i 2 C 1 
e = J 1 - (b/a) . = - = = eccentricity of ellipse forming meridian 

a c08h" ~* section 

where ~* is the value of ~ on the ellipse forming meridian section. 
Then the veloc i ty potential for this flow is Si ven in B'ection 105 of 
Lambls Hydrodynamics (reference 15) in .:he fo~ 

2Voc { 1 
q> = Vox - 1 2 cos .n· -cosM 

1 
+e e ' .... · 2. 

cosh ~ + 1 } 
log ..;, . ..:-,. ---- - 1 

'cosh ~ - 1 og----
1-e l-e2 

If the equations which give x and r in terms of ~ and n are 
differentiated partially with respect to x and r, it is found that 

o~ on sinh s cos n -- = -- == ~--------------
dX dr 

Or ox 

C(COBh2~ - C08 2 n) 

cosh £ sin n 
c(cosh2 s - cos 2 

n) 



26 NACA RM No. A6Hl9 

The velocity component in the direction of the x-axis is given by 

dcp ~ 0 ~ CXp OT} 
V =-c--+--
x dx 0 ~ OX 011 OX 

When equation (Al) is used, it 1s easily found that 

Vo {COSh ~ + 1 . . 2 cosh ~ } 
V = V - " log - 2 2 

x 0 l+e 2e cosh t - 1 cosh ~ - cos Tl log- - -- '> 'I 

l-e l--e 2 

(A2) 

Similarly, the radial veloci~ component is given by 

and it is easily found that 

2Vo sin 11 cos 11 
Vr = . 

( 
l+e 2e '\ ( 2 log- -- - J cosh ~ 

. l-:e l-e2, 

(A3) 
- 00S2 T}) sinh ~ 

At the surface of the spheroid equations (A2) and (A3) reduce to 

. l+e 2e 
V * log - - --.~-~-

x l-e l-e2 oos2 11 
- = 1 - -----------" 
Vo l+e 2e 

log - - --2 
l-e l-e 

Vr* 2ae3 sin 11 cos 11 

- = ( 1 +e 2e \( 2 2 Vo log -~ - --2 ' 1-e cos T) 
l-e 1-e / 

(A4) 

(A5) 

., . 
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It follows that 

lim. Vx* /Vo - 1 

b/a---";> 0 (b/a)2 10g(b/a)2 , 

2e 
10g(1+e) - 10g(1-e) - 2 2 

= - lim l-e cos 11 

e~ 1 (1-e2 ) log (1-e2 )[ 10g(1+e) - - 10g(1-e ) ,J ~ 2e 10g(1-e2 ) 

1 

2 

unless 11 = 0 or n. Also 

lim. Vx*/Vo - 1 + ~(b/a)2 10g(b/a)2 
b//j. --:;'O (b/a)2 

= 11m. 

1+e 2e 1 1+e 
-10g:--+ + _(1-e2)10g(1-e~)10g- -"$ 10g(1-e2 ) 

1-e l-e2 C082 Tl 2 l-e 

(1-e2 )[10g(1+e) - 10g(1--e)] - 2e 
' C " - , , ' , 

27 

1 l+e 2e 
(1-e)log(1-e)+-(1-e2 )10g(1--e 2 )10g-- - (l+e)1og(l+e)+ ----

= lim. 2 l-e , " l-e2 cos2.'Tl 

e->l (1-e2 )(10g(1+e) - 10g(1-e») -- 2e 

-21og 2 + 2csc 2 1) 
= -2 

= 10g2 - OS02.' 1) 

unless T] = 0 or 1To If terms of ' ,higher order than 
lected it f01ioW!3 that, except fbr Tl " = 0 or 1(, 

(b/a)2 are neg-

I • I " 
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Vx* 1 (b \ 2 
--- = 1 - - - 1 log 
Vo 2 a J 

( b~ )2_ (b)2 (csc
2 

~ - log 2) ~ (A6) 

In the same way it follows that 

:3 
lim. 2e sin '1 cos '1 lim. 

b/a-> 0 = e ,:;,.1 
-log(l-e) ] - 2e} 

,2,sin '1 cos '1 
-----:-- = -cot '1 

- , -2sin2 '1 

unless '1 = 0 or ~. Thus if t~rms of higher order than (b/a) are 
neglected, there is obtained, except for '1 = 0 or rr, 

(A7) 

If it is remembered that the pressure coefficient at the surface 
of the spheroid is given by 

" 

1'* = 1 - (V -l;' /V )2 - (V */V )2 " , x 0 r 0 

" , ' 

and if wrms of highe'r 'order than (h/a)2 are ne~lected: 'it follows that 

p~, ::: , (b/a)2 log(b/aJ2 + (cot2 '1 ' +. :2-:-2 log 2)(b/a)2 (AB) 

unless T) = 0 or rr. 

For some purposes it is convenient to give expressions for Vx*/Vo' 
and P* in terms of x instead of '1 in which case equa~ions (A6) and 
(AB) become 

( )2 ( \2 V -1", 1 b b 
-L ::: 1 ,- - - log - ) 
Vo ,2 a a 

( )
2 ( " 2 "'C:' ( / )2 )( )2 P* = - log - + ' + 2-2 log 2 - ' b b )' - .I X a b 

a \a 1-(x/a)2 ' a 
(AlO) 

unleSS x/a::: ± 1. 
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