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NATIONAL ADVISORY COMMIT	 FOR AERONAUTICS 

RESEARC H MEMORANDUM 

VELOCITY DISTRIBUTIONS ON ARBITRARY AIRFOILS 

IN CLOSED TUNNELS BY CONFORMAL MAPPING 

By H. E. Moses 

StJNMARY 

Conformal mapping methods are applied to the calculation of 
the effect of channel (two-dimensional tunnel) walls on the ideal 
flow past arbitrary airfoils situated anywhere within the channel. 
The walls of the channel need. not be plane but may have any shape. 
The results are compared in specific cases with those obtained by 
two approximate methods, of which the first is a first-order treat-
ment using image vortices and. doublets and the second is a higher-
order correction developed by Goldstein. 

INTRODUCTION 

In reference 1 a conformal mapping method was developed whereby 
the zero-lift velocity distribution could be found for a symmetrical 
airfoil symmetrically located. in a plane-walled channel. The purpose 
of the present paper is to extend the previous investigation to the 
case of an arbitrary airfoil situated. anywhere within an arbitrarily 
shaped. channel (two-dimensional tunnel). 

The Cartesian mapping function (CMF), introduced in reference 2 
and used in the method. of reference 1, is also used for the problem 
of the present paper. The velocity at any point on the airfoil in 
the channel is found in terms of the C' and the Imown conformal 
transformation of a flat plate in a channel. The difference between 
this velocity and the velocity at the same point on the isolated 
airfoil at the same angle of attack represents the effect of the 
channel walls. In order to obtain the velocity distribution on the 
airfoil within the channel, the CMF is applied to doubly connected 
regions analogously to the manner n which Theodoi'sen t s mapping 
function is applied in reference 3. 

The method. is given, illustrated. numerically by examples, and. 
compared with corresponding results by the first-order image theory
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and by the second-order image theory of Goldstein (reference 4). 
In addition to the velocity on the airfoil, the velocity on the 
channel walls is obtained by the conformal mapping nethod. 

SYMBOLS 

The more imDortant sbols used in this naper are listed as 
follows: 

c	 chord of airfoil 

c 1	 section lift coefficient for isolated airfoil 

section lift coefficient for airfoil in channel 

h	 distance between channel walls 

t	 thickness of airfoil 

V	 undisturbed velocity at great distance from airfoil 

vi	 velocity on surface of airfoil in channel 

V02	 velocity on channel wails 

velocity on isolated airfoil 

v.	 velocity correction, v 1 - 

angle of attack of airfoil 

angle of attack of flat plate 

a1	 effective angle of attack of airfoil with respect to 
curved stream 

plane of straight lines 

z	 physical plane 

circle plane

±: I
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METHOD OF CONFORMAL MAPPING

The MF for One Contour 

In previous applications of the conformal mapping method used 
in the present paper (for example, references 1 and 2), a single 
contour such as an airfoil in the physical plane (z-plane) was 
transformed into a single straight line contour (airfoil chord) in 
another plane (-plane). The line in the -plane is related to a 
circle in a third plane, the p-plane, by a known transformation 
that maps the unit circle with its center at the origin into the 
straight line such that the region outside the circle is mapped 
into the region outside the straight line. Because the contour in 
the z-plane also transforms into the same circle in the p-plane in 
such a manner that the regions exterior to the contours correspond, 
the function z -	 is regular everywhere on and outside the circle 
in the p-plane. This vector difference z - 	 between conformally
related points is called the Cart .esianmaping function (CMF). 

The real and imaginary parts of the C1 v are denoted by dx 
and dy, respectively. Because of the regularity of the CMF outside 
the circle,

z -	 = x (p,)	 Idy ( p .)	 ', C_P	 (1) 

where 

p = pe 

= a + 

On the circle p = e' the following relatIons hold: 

1	 '2t	 ci 
dy (1,p) =	

J	
x (i,p') cot	

2

(2) 

dx (l,) = -	 (1,t) cot 

Equations (2) are the fundamental equations Thereby the transforma-
tion between the z- and c-planes can be calculated. 

Ei
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The CMF for Tio Contours 

In general, two contours in the physical plane. can be trans-
formed into two straight-line contours in the -p1ane. The lines 
in the -plane can, in turn, be transformed. into two concentric 
circles in the p-plane, whose centers are at the origin and whose 
radii are equal to 1 and. q . (q < 1). The transformation is such 
that the region between the two circles is transformed into the 
region between the contours. 

In the case discussed in the present paper one of the contours 
in the z-plane is the airfoil itself; the other contour consists of 
the channel walls, both walls together being considered as one con-
tour extending to infinity in two directions. The contours in the 
-plane consist of a finite straight' line into which the airfoil 

is transformed and a transformed channel whose walls are plane and 
parallel to the real axis. in the p-plane, the finite straight 
line, and hence the airfoil, are mapped into the outer circle whose 
radius is unity, and the channels of both the - and the z-planes 
are mapped into the inner circle whose radius is q . . Thus, as the 
outer circle is traced in a counterclockwise direction, the airfoil 
and the finite straight line are traced in a clockwise direction. 
In the same manner, as the inner circle is traced counterclockwise, 
the channel is traced. clockwise. 

As in the case of the single contour, the regions at infinity 
in the z- and -planes correspond, but the vector difference z - 
is regular on the boundary of both circles and within the annulus 
formed by them. As before, z -	 is the CMF and. x and ty are 
its real and imaginary parts. Because of the regularity of z - 
in the annulus, the C may be expanded as follows (cf. equation (1)): 

z -	 = x (pp) + iy (p,) = 	 (3) 

where

icp 
p = pe 

Cnan+ibn 

Inasmuch as the full Laurent series is used in equation (3), the 
relations between ix and y on the two circles differ from the 
simple relations given by equations (2). 

Appendix C of reference 2 provides relations between the com-
ponents of the CMF on the two circles, but the expressions are not 
easily used for the purpose of calculation. More convenient rela-
tions have been derived in reference 3. Alt'hough the correct result

I
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is obtained, the method of derivation is not fully given. The rela-
tions a'e derived in more detail in appendix A of the present paper. 
These relations between the components of the CMF are the following. 

The subscripts 1 and 2 indicate the val u es of the CMF on the 
circle of unit radius and the circle of radius q, respectively. 
That is:

Ax1(cp) = x(l,cp) 

= Ly(l,cp) 

x2 (cp) = ox(q,cp) 

Ay2 () = y(q,) 
J 

Then, as shown in appendix A;

+	 sin n 1 Jd 

	

Axi()=ao^f	 y1)	 cot	 2 2n 

-	 I	 E	 sin n(cp T _cp) dcp 
r2	 2n 

1

) \ 2q = a0	 f 2	 Y^()[
 

cot ('_gn	
sin n(t_)]dt 

1 
(2t 

+	 J0	 i('	
2q	

sin n( -	 d' 
1q2" 

1 

2ic

	

cp)	 2q2r 
i() =b0 -f	 x1(1)[ cot +1	 SLflfl 2n

j 
co 

(2t 
+	 J	

x2(cp?)	 2 sin n(cpt -cp) d.CPT 

1 

27r 

	

Y2 () = b0 + J	 x2 (cp )	 cot	 \ 2q2n	
dcp' 

L	
srn 

(21t 
-	 j	 x (cp') ' _2	 sin n(rp'_) drp' 1	 2n 

l-q 
1

(4)  

(5)
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and

127t	
1 

	

x(cp) 
= )	

tx2 (cp) dcp 
jo

(6) 
r2it	 I2it 

Yi(P)	 y2(cp) 

The introduction of elliptic functions simplifies equations (5). 
The elliptic functions introduced at this point and used at other 
places in this. iaper are treated in various texts with varying 
notations. The notation used throughout this paper is that of 
Tannery and Molk (reference 5).	 'oni reference 5 (t. Iv, p. 100), 
the following series for tke &-functions are obta.ned: 

_____ = cot	 ••• 2q2	 sin 2nu	 (7) 
2r	 i (u)	 2	 L:. l-q2 

4 '(u1)	 '-:-' 2cf'	 • 

2	 4() =	 , lq2n	
2nu	 (8)



	

NACA RM No. E7A23
	

7 

Hence, frrn equation (5):

Iprp\ 

ix1 () = a0
 + 2it2
	 Yj((p)
	 2t	 dp' 

(2c
Ly.., ( :p?)	 / d ep! 

2t ) 

r 2it
	 (p-rp\ 

Lx2(çO) = rI O - 
2r2 jo	 (	 ___

2t I 

+ if 2

4	 2t I 

r2	 , Lpt_cp 
y1 (cp) =	 -	

/	
x1(r') 1	 2tJ

27t2,O
1 \ 2it I 

(2it
X() 

	

2it	 : 

-	 (27t 

	

y2() =	 +	 Ax2(p')	 / d'
2c Jo

(q_cp\

	

- 1	 \x1(p') 
&4	 2it I 

\ 2r I

(9)
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In the same way that the relations expressed by equations (2) 
are a limiting form of Poisson 1 s integral, the inte'als in 
equations (5) or (9) are limiting forms of Villat's analog to 
0j530tg integral. Villat's integral (reference 6) gives the value 

of a function within an annulus when the real part of the function 
is known on the bounding circles. 

The relations expressed-by equations (5) reduce to those 
expressed by equations (2) when the radius of the inner circle 
approaches zero; that is, when the channel wails move to infinity. 
The signs differ, however, because the MF that is defined within 
the annulus in equations (5) is defined within the outer circle as 
the radius of' the inner circle goes to zero, whereas, in the case 
of equatIons (2), the CHF is defined cutside that circle. 

The c-Plane and Its Transfoiation into the p-Plane 

As already described, the -plane contains a plane-walled 
channel within which thoro is a fiat plate. The transformation 
mapping these contours into two concentric circles has been obtained 
by Tomotika (reference 7), who has also obtained the velocity poten-
tial for this case. Tomotika's results will be briefly presented 
and the form in which they are most useful in applying the MF method 
will be given in more detail. 

Let E be the angle of attack of the flat plate. The trans-
formation between the -plane and the p-plane is shown in figure 1 
and given mathematically as 

-	 - e()'	
2n / n(l + 2q cos 2 + q 

x [(e + q2fle i8 ) + p(e 1 + q2ne 1	 + T	 (10) 

or in another form 

=	 loge 

(p\fl( -2I 
X	 'e 

\q)

p-qe	 ,	
S	 q2fl sin 

1 -
-i(.,	 /	 2n 

p-qe	 L / ,n(l-2q.

(II) 

- 4n 
cos2+q 

q2fl) - 
( ) fl (e2 - q2fl) ±
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where h is the distance between the channel walls, 	 = - 
and T is a constant. The substitution of p = e1 in equa-
tion (10) yields the equation of the flat plate; the substitution 
of p qe1P in equation (11) yields the equation of the channel 
walls, which are parallel to the real axis. The use of the two 
forms of the transforniation simplifies the resulting equations 
in	 for the fiat plate and channel wails. 

Four values of the central angle cp (p1,p2,	 , ard) re
important in the mapping. Pron. reference 7 the points p e1-, 

'2c-cp )
denoted by B and B.t map into the stagnation Doints 

on the flat plate for zero circulation; the points p = qe2, 
i 

qe	 , denoted by H and H t map into	 respectively; the 
1 3	 icp4 

points p = e , e , denoted by A t and A, map into the 
extremities of the plate. The points are shom in figure 1. 

The a1ues of q and P2 in equations (9) and (10) are 
determined by the length of the plate, its position, and the various 
relations between the four special values of . Prom equation (10) 
or equation (11)

P3 +Z 4 = 2	 (12) 

(cp l Kp 2 '\	 _____ 
&41\ 2	 I - &4' 2	 j =	 (13) (cj+cp\	 . _____ 

4 \2 J	 I 

qfl 

8mc	 COB nCp1 sin nq)2 = 0
/_, i-q2' 

1 

(3-cp2\ IP4P2"\ .. (3- 2	 (P44(P2\	
(24) 2t I '4 2t / = 4\ 2mt I	 2 ) 

L g\)qn	
n(cp3-p4) 

sin nCp 2 sin	 2 

/__ n(l-2q2 cos 2E + q4fl) [cos(n-l) E 
_q2fl cos(n+l) ] 

1
(15)
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n(cp3—tp4)

	

> __51flflCO8	
2 

h	 it.2	 2;	 It	 /	 0	 A 
cos 2 + 

x sin(n-i)	 - 2i sin(n+1) 21 	 (le) 

where L is the length of the plate and d is the vertical distance 
of the midpoint from the center line of the channel. 

In order to find the values of q., c.p1, cc2, ;4 	 and	 for 

a given length and position of the plate, equations (12) to (16) 
should be solved simultaneously. 

In principle, it is possible to transform the . flat plate at 
any value of E into the airfoil at angle of attack set at a. 
The value of E is fixed at the value that accomplishes the trans-
formation with tho least laboi'. In the case to be calculated, 

is set equal to zero. For this value of E, Tomotika's formulas 
(reference 7) are considerably simplified. If the distance between 
the channOl walls is taken as unity, the equations sim1ify as 
follows:

•2q' sin n	
(fl__fl) + T	 (17) 

It	 n(l-q2) 

or equivalently

1L 

= !	
p-qe	 q	 sin n	 (P''	 /p'\I 

It )2i	 e.jqo_i2	 n(i-q2')	
-	 i) J + ¶ ( 18) 

and	 can be found by using the equation 

1
	

(19) 
It 

The quantities q,	 (p3; and cp 4 may be found by solving 

simultaneously equations (12), (13), (14), and (15), which also 
become simpler than the equations for the general case. The 
constant	 may be restricted to real values, because it merely 
determines the position of the channel and the flat plate with 
respect to the axes in the -plane.



I 
=	 I

sin 

1 
=	 = - - d 

P2	 (1	 \ 
=	 - 1 = -	

+ d)
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A snecial case useful for nwierical work is that for which 
d = 0. For this position of the flat plate cp, = 	 = P3 =	 t/2 and

2n-' 
L='\ -	 q -	 (20) 4, (2nh)[1q2(2fl_l)J 

Hence, q. can be found from equation (20) alone when the length 
of the plate is prescribed. 

If	 is separated into its real and imaginary parts, 
= + ir,	 and	 can be found as functions of p. The 

equation of the flat plate is found by setting p 	 ,in equa-
tion (17). Then, when the subscri pts 1 and 2 denote the values of 
the function on the plate and on the channel, respectively, 

qsin 2 

- . ,>	 Sin fl3 + T	 (21) 
__ 

1 

ThL =0 	 (22) 

Thus the flat plate lies on the real axis of the - plane, The 
equation of the channel walls is found by setting p = qe1 	 in 
equation (18). Then 

- 4\ q2flj
	

Sin np ± T (23) 
n(1q2n1)	 I 

(2r-p2 >	 > P2)

(24) 

2>	 >-:p2)	 J 

a
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Airfoil Position and Adjustments in Terms of the CMF 

The z-plane and the -plane are shown superimposed in figure 2 
in which the geometric meaning of the C}I ' is also indicated. If 
the abscissas and ordinates of the airfoil are denoted by x1, yi 
and the abscissas and ordinates of the channel walls by 12, Y2, 
the definition of the 0v shows that 

x1 (cp) = 1 (cp) + 

=

(25)

 =	 + &(2(P) 

y2e:p) = '2 + ,T24) 

In order to determine the constants q and p2 that appear 

explicitly in the expressions for and i and also the angles 

and T that correspond to the leading and trailing edges of the 
airfoil, the airfoil is placed in a normal position with respect to 
the y axis. If c is the chord of the airfoil and a s the angle 
of attack, the normal position is given by 

= -	 cos	 I
(26)

 xl (CPT) =	 cos c 

From equations (25) and (26), the following formula is obtained: 

-	 = c cos a. - &1(Cp T) + xlPN)	 (27) 

The angles N and 
'T corresponding to leading and trailing edges 

are obtained from -the condition of a maximum for the abscissa x1(p), 

_______	 dxl(tpT) 
0	 =0	 (28) 

dcp	 -	 dc 

or, by equations (20) and (24), 

dAx1 (cp) = 4T q' sin ncp2	 (29) 
dcp

1 
for cp=	 or
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The value of cp 2 , or what is equivalent the value of d, is 
found from

12 
j	 (p) dcp = I	 ty2 (cp) dq	 (6) 

	

S0	 JO 

as follows: Let r(p) denote the value of the ordinate of the air-
foil measured from the center line of the channel in the -p1ane. 
'om the definition

rcp) =	 + a	 (30)

Hence, using equation (6), 

(2t	 (2t 
d =	 r(p) dp - - i	 y2(p) dP	 (31) t O	 JtO 

and L2 is obtained from equation (19). 

The constant I is obtained 'by adding the equations of (26). 
The resulting formula is 

T 
=	 n sinn	 n(1+)	 -	 iN + x19T) 

	

____ n(i-q fl)	 2	 2 
1	 (32)' 

These equations completely determine the constants q, T, 

N' 9T' and cp 2 in terms of the CMF. The value of 	 is calcu-



lated from equations (31) and (19); the use of this value in 
equations (27) and (29) permit these equations to be solved simul-

	

taneously for q, N'	 and finally T can be determined from 
equation (32).

Velocity Distribution on the Airfoil 

and on the Channel Walls 

The complex velocity potential W, derived from the results 
of reference 7, is
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(iloeP+9\	 !+P 

	

Vii	 4\	 23t 

	

W = 7-°e ( i p P2\	 (tp1_	 e P	 (33) 

	

2t	 / 
&4\ 

2ir ) 

where V is the velocity at infinity arid P is the circulation. 

The velocity distribution on the airfoil and on the channel 
walls is obtained from the velocity potential given by equation (33). 
The formula f or the velocity in the z-plane is 

dp 

	

=	 (34) 

On the airfoil, from equations (a) and (33) 

= ie	 ____ cos n) - P	 (35) 

The circulation P in equation (35) is adjusted to satisfy the 

Kutta condition at the trailing edge of the airfoil () 	 = o. 

The result is

\\ 'qfl sinnp2 

	

P = 8V ,.	 -	 cos n',1 L. lq2ri 

Also	 1 

( -•'\

	

	 =	 -	
dAx1 0_p	 diy1('P) _p 

\dP=ei(	 \dP=ei(p	

-r	 e 

_____	 sinfl2	 idx1() 

	

=	 cosn(p-	 e 
It	 1-q2 

+ diy1(CP) e'P 

dp

(36)

(37)
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Hence, the velocity distribution on the airfoil is 

qfl sin nc2

12n
(cos np - 005 pT 

Vci 4 
V

(38) 

/-	 - 

	

/ / 4\	
n sin np 2	 dtx1(cp)	 I dAy1('P) 

cosncp-	 - +	 I 
1 2n	 dr.p	 I	 dp	 ] 

	

1	 J 

where v 1 has been written for v. 

The velocity distribution on the channel walls is found Ly 

replacing p by qe1 in equation (33). The substitution results 
in 

()	 = iq1ev'!	 n2	 Nq2n sinn 2 cosnp\. 

COS	 COS P2	 2n	 2tVi 
pje	 1-q.

(39) 

where F has the value given by equation (36).
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Lift on the Airfoil in the Channel 

The lift on the airfoil in the channel can be found by evalu-
ating a modified form of Blasius' inteal in the p-plane. The 
expression for the lift involves the C' and the radius of the inner 
circle; that is, the liftdepends on the shape and the position of 
the airfoil and on the shape of the channel walls as well as on the 
circulation. This dependence is in contrast to the case of the 
isolated airfoil, in which the lift on any body is the sane for a 
fixed circulation, The dependence of lift upon the airfoil shape 
for the case of the airfoil in a plane-walled channel has also been 
shown by Havelock (reference 5) who finds the potential function 
directly without the use of conformal mapping. 

The expression for the lift is too couplicated for numerical 
calculation. A more convenient way of obtaining the lift is to 
integrate the pressuro distribution on the airfoil or the pressure 
distribution on the walls. 

Method of Successive Approxiations for Obtaining CMF 

The OMF can now be calculated for a given configuration by a 
method of successive approximation analogous to that of reference 2. 

1. The airfoil and the channel walls are drawn such that the 
airfoil is in the normal position, as shorn in figure 2. The center 
line of the channel in the -plane is located on the figure in order 
that the alrfoilordinates r(p) may be read. The scale is so 
chosen that the distance between the channel walls in the c-plane 
is unity.

2. om a previous approximation, approximate values of q, 
r, P2, N' and	 are known, as well as approximate values of the 

abscissas x1 () and x2 (cp) at a convenient set of values of cp 

from 0 to 2it radians. Tlu'ough the use of the known values of 
r(p) is measured. A set of values of y 9 ( p ) are also measured 

through the use of the known values of x2(9). A value of d and 
a new value of	 are obtained from equations (31) and (19). 

If no better values are available, the initial approximation 
for x1 () and x2 (cp) may be that obtained for the flat plate 

situated along the center line of a plane-walled channel. In this 
case x1 and x2 are given by equations (2l).and (23) for
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and	 The value of q. is obtained from equation (20), where L

is replaced by c co g a Both p2 and p1 equal ir/2 and 

equals 3t/2. The constant T equals zero. 

3. The functions	 i and x2 are calculated by means of 

the first and second equations of (5). The value of q used is 
the approxinate value of step 2. The nuerica1 details of the 
calculation are given in appendix B. 

4. New values of 1P T' and q are obtained by solving 

equations (27) and (29) simultaneously for these quantities. 

An alternative method of determining 'R N' T' and q. is a 

purely graphical one. The approximate function x1 (p), which is 

also a function of q, is plotted against ( in the regions of 
the extreme values of x 1 . From this graph P and T are 

determined. These values are substituted in oquation (27), from 
which a new value of q is obtained that is used to re-evaluate x1. 
The procedure is continued until sufficient accuracy is obtained. 
Finally T is calculated from equatIon (32). 

5. A flew set of values for x1(p) and x2 (9) are calculated 

using the new values of the constants and the values of x 1 and 

calculated in step 3. 

Steps 2 through 5 are repeated until a plot o± y(cp) against 
x(cp) for both the airfoil and the channel walls yield shapes that 
are as close as desired to the shapes plotted in step 1. 

If the walls of the channel in the z- plane are flat, y2(P) 

is set equal to zero, and a considerable simplification in the 
numerical procedure results. This case is the most coon and the 
method is not at all difficult to apply. The discussion of numerical 
results will provide an idea of the actual work involved. 

After the components of the 	 and the various constants have 
been evaluated by the method of iteration just described, the veloc-
ity distribution may be found fron equations (38) and (41) for the 
airfoil and for the channel walls, respectively. The derivatives 
of the 0' in. the formulas for the velocity distribution were 
measured in the cases calculated; although an expression exists 
that gives the values of the derivative in terms of the C' as in 
reference 1, it is too cumbersome to use.
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ILLUSTRATIVE EX4IvPIS USING CONFORMAL MAPPING 

The method of conformal mapning outlined has been applied to 
the 12-percent eynmietrical airfoil treated in reference 1. The 
ordinates of this airfoil are given in table 1 and the airfoil shape 
is shown in the figures in which the velocity distributions are 
plotted. For the calculations of the present paper the. airfoil was 
assumed to be placed at the center of a plane-walled channel. The 
chord to height (c/h) ratio was taken to be 0.5. Ve:Locity correc-
tions were calculated for angles of attack of 00 and 40• 

For the case of a = 00 the range of p from 0 to 2t radians 
was divided into 24 equal intervals. 	 o approximations, starting 
from the x(rp) of the fiat plate, were necessary for the derived 
airfoil contour to coincide with the given contour for a scale of 
chord length of 20 inches and ordinate scale five times that of the 
abscissa scale. In no case wore more than six terms used in any of 
the infinite series in the preceding formulas, for the series con-
verge rapidly. The velocity distribution for the case of a = 0° 
is shown in figure 3. The velocity distribution on the walls of the 
channel is included in the figure and is drawn to a scale five times 
as large as the scale for the velocity distribution on the airfoil. 
The CMF together with the velocity distribution is given in table 2. 
The velocity distribution on the airfoil for this case had been 
previously calculated by the method of finite chord in reference 1• 
The results are compared in figure 4 and are in close agreement, 
which indicates that the numerical methods used in both processes 
were sufficiently accurate. 

The velocity distribution for the case of angle of attack of 4° 
is plotted in figure 5. Figure 6 shows for the purpose of comparison 
the velocity distribution for the airfoil in the free stream at 

= 40• In this case four approximations, starting from the flat 
'plate, were necessary to obtain coincidence between the derived air-
foil and the given airfoil to the same ordinate and abscissa scale 
as in the case of c = 00. In the first three approximations the 
p range was divided into 24 equal intervals, but in the fourth 
approximation the length of the intervals was halved so that the 
aVIF was evaluated at 48 points. The mapping data and velocity dis-
tribution are given in table 3; the. nature of the G' is shown by 
figure 7 where the component functions are plotted. The velocity 
distribution for the airfoil in the free stream was obtained by the 
method of reference 2. 

The velocity correction for the airfoil at an angle of attack 
of 0 was discussed in reference 1. The velocity corrections for 
the airfoil at the angle of attack of 4° are plotted in figure 8.
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The irregularities of the correction are due to local curvature 
fluctuations of the airfoil surface and correspond to the irregu-
larities found in the corrections for the same airfoil at 	 = 00 

(See reference 1.) 

The velocity corrections are positive on the upper surface of 
the airfoil 'but are for the most cart very nearly zero on the lower 
surface. This behavior of the correction indicates that the lift 
on the airfoil in the channel is greater than that on the airfoil 
in the free stream. The increase in lift has 'been shown by other 
authors through th use of approximate methods (see references 4, 
7, 8, and 9) and will be further discussed. 

The influence of the airfoil on the velocity distribution on 
thechannel walls is shown in figures 3 and 5. The velocity dis-
tribution on the walls is very sensitive to the angle of attack. 
When.the angle of attack is 00 (fig. 3) the nondimensional velocity 
on both the walls is greater than unity. The velocity rapidly 
approaches unity 'both upstream and downstream of the airfoil until 
at 1.75 chord lengths upstream and downstream of the origin the 
velocity has decreased from its maximum value 1.03 to substantially 
the value 1.0. 

In contrast, when the angle of attack is 40 (fig. 5), the 
velocity is less than unity on the lower wall, and on the upper wall 
the velocity markedly increases over the velocity for the case of 

= 00 . The maximum velocity on the upper wall moves foward toward 
the position at which the airfoil approaches closest to the wall; at 
the same time the minimum value on the lower wall is located at the 
position near the leading edge where the zei-o streamline rises to 
meet the airfoil at the stagnation point. On 'both the upper and 
lower walls the velocity approaches unity less rapidly than in the 
case of a 0. On the upper wall the maximum velocity is 1.095; the 
velocity 1.75 chord lengths upstream of the origin is 1.013; the 
velocity 1.75 chord lengths downstream is 1.010. On the lower wall 
the minimum velocity is 0.965; the velocity 1.75 chord lengths both 
upstream and downstream is 0.990. 

PPPROXfl4ATE VELOCITY CORRECTIONS FOR AN AIRFO]1 PLACED 

P,LONG C'1TER LINE OF A PAPE-WLLD cHANNEL 

If an airfoil is placed midway betwee the walls of a plane-
walled channel, simple approximate velocity corrections may be 
derived under the conditions that the angle of attack is small and 
that the thickness, chord, and camber are small in comparison with
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the dimensions of the channel. Two such corrections will be 
explained. Both corrections depend upon the successive reflection 
of the airfoil in the channel walls by which a cascade of airfoils 
alternately upright and inverted is obtained. As is well imom 
(see reference 9), the flow through such a cascade is equivalent 
to the flow about the airfoil in the plane-walled channel. In the 
first-order approximate theory, the image airfoils are replaced by 
doublets and by vortices; in the more elaborate treatment developed 
by Goldstein (reference 4), higher-order singularities are included. 
Inasmuch as the method of conformal mapping developed in the present 
paper is applied numerically to a smetrical airfoil at the center 
of the channel, the approximate theories will be quantitatively 
discussed only for such airfoils. A more general treatment would 
follow along similar lines. 

First-Order Theory 

In the development of the first-order theory the vortex and 
the doublet are assumed to contribute independently to the velocity 
correction. The effect of the image vortices is to curve the stream. 
and to increase the effective angle of attack and lift on the airfoil 
in the channel. The image doublets increase the velocity at the 
center of the channel and thus take into account the constricting 
effect of the channel walls0 Glauert (reference 9, p. 49) obtained 
a formula for the ratio of the lift in the free streath to the lift 
in the channel. If it is assumed that the vortices merely change 
the angle of attack, the Kutta condition combined with GlauertTs 
formula yields the following result: 

SiflCL -l-—(\ 
sin a-1	 24 hJ 

where a is, as before, the angle of attack with respect to the 
direction of the flow at infinity and a1 is the effective angle 

of attack due to the curved stream. 

The increase of velocity at the contor of the channel induced 
by the image doublets is assumed to be that due to the airfoil at 
its angle of zero lift, If this increase is denoted by u and, 
ac before, V is the velocity at infinity in the channel, the 
following relation is true:

(43)
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where for symmetrical airfoils 

4	 (V	 (44) 
c) 

as in reference 9 (p. 55).	 ere v	 is the velocity on the air-
foil when the airfoil is in the channel at an angle of attack of 00 
and y is the distance to the upper surface of the airfoil etred 
normally from the chord line. The integral in equation (44) Is 
taken with respect to the surface distance a along th upper sur-
face of the airfoil from leading to trailing, edge. 

In the calculation of the strength of a doublet that is to 
replace an isolated airfoil, v rather than v 	 should be used. 
owever, inasmuch as the strength"of the doublet must be increased 

when it is used to replace the same airfoil in cascade, the use of 
which is greater than v , will change the value of	 in the 

right direction. 

The velocity correction is defined as

v - (vj'\ 

v v) v) CL1 CL

(45) 

where	 is the velocity on the airfoil in the channel expressed 
CL1 

as a fraction of the ultimate upstream velocity when the airfoil is 
(v'\ 

at an effective angle of attack a and where —i is the isolated 1	 VJ
CL 

airfoil velocity for the angle of attack a. Since the airfoil is 
small compared with the breadth of the channel, the flow about the 
airfoil in the channel is equivalent to the flow about an airfoil at 
an angle of attack a1 iii a free stream whose velocity at a great 
distance away is V + u. Therefore the following relation is true 

=	 )CLl	

(46) 
\.V+U,ia 

or

() = () (1 +
	

(47) 
al " al 

The result is that

Av (vj\	 7V	 (V1\ u 

'l	 ''l	

(46) 
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The formula for the velocity correction shows the importance of the 
changed angl.e of attack, for one part of the correction is the 
difference in the isolated airfoil velocity distribuions at angles 
of attack	 and	 the other term of the correction is propor-
tional to the isolated velocity distribution at the increased angle 
of attack. 

The correction obtained by the use of vortices and doublets 

is valid to the first order in () and to/h 2 . When the angle 

of attack is 00, the parameter () does not appear (reference 1). 

Goldstein's Scond-0rder Velocity Correction 

Goldstein (reference 4) first replaces the image airfoils by 
the doublet, the vortex, and the higher-order singularities given by 
the potential function of the airfoil in a uniform free stream. The 
nonuniform disturbance velocity produced by these singularities in 
the physical region, in particular at the location of the physical 
airfoil, is calculated, taking into account the change in direction 
of the stream. This first approximation nonuniform disturbance 
velocity (a) changes the velocity distribution on the airfoil from 
its isolated free-stream value and (b) changes the value of the 
singularities that are to be imaged. Change (b) is evaluated and 
a second approximation nonuniform distribution of the airfoil in the 
final nonuniform. stream is calculated. 

In principle, Goldstein's method is capable of yielding to any 
degree of accuracy the effect of a plane-walled channel on the two-
dimensional velocity distribution of an arbitrary airfoil, arbitrarily 
situated. The successive approximations become increasingly labo-
rious, however, and only the second-approximation formulas are given 
in reference 4. 

The second-approximation formula for the constriction correc-
tion for the symmetrical airfoil situated in the center of the 
channel at a small angle of attack is obtained as: 

V	
!u\[P(e) - P(7t) + sin (e + a1) + Sn jJ 

v	 V1	
[sin (9 + a) + sin a] 

so that
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!!! (• .2_]\	 (50) 
V	 Vv1	 ,) 

where U here represents the sun. of the ultimate upstream velocity 
and the velocity at the center of the channel induped by the singu-

larities so that	 - 1 corresponds to u/V of the first-order 

theory; c is, as in the previous approximate theory, an effective 
angle of attack with respect to the direction of the stream; the 
function P(e) is a measure of the distortion of the stream caused 
by the singularities. 

The Goldstein second-order image correction IS accurate to the 

c 2 tc	 t 2 tc 4 c3t c t2 ct3 
orders ( , -, (H 	

)'	 ' h4 —
i--, and -). When the angle 

fc\ 2 t	 jc4	 nd	 do not of attack is zero, the tends	
, ) ,	 , appear.

-I-Discussion of Numerical Resuls

of Approximate Theories 

The first-order and second-order corrections were calculated 
for the l2- percent-thich symmetrical airfoil. The corrections for 
the airfoil at zero lift have been discussed in ref eronco 1. The 
results for the angle of attack of 4° are plotted in figuro 6. The 
constants used in the first-order correction are 

u/'V	 a2 

3.93J 0.0116! 4.459° 

Those for the second-order correction are 

C	 I	 Cl

	

04	 a1 j	 l 

0.08722 0.05534 -0.02401 I 0.00455 I 0,00475 14.200° j 0.0108
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The first-order theory yields good results for the upper 
surface of the airfoil in that the correction so derived shows the 
same over-all trend as the correction obtained by conformal mapping. 
The approximate correction appears to be a mean curve to which are 
added components due to the curvature of the airfoil. For the 
lower surface, the appro±imate correction is not quite so good a 
mean line as it is for the upper surface, For both upper and lower 
surfaces, the contribution to the velocity correction due to the 
doublets and that due to the change in angle of attack are equally 
effective in forming the total correction. 

For the upper surface of the airfoil, the Gcldstein second-order 
image correction follows the same trend as the first-order image 
correction, but the values are more nearly constant. The second-
order correction for the lower surface follows more closely the trend 
of the mapping correction than the first-order correction. From this 
example, the second-order correction appears to be more accurate than 
the first-order correction. 

The incremental velocities u/V and	 - 1 of the first- and 

second-order corrections, respectively, are in good agreement but 
the values of the effective angles of attack a 1 differ markedly. 
This difference accounts for the difference in the nature of the 
correction curve of figure 8 near the leading edge of the airfoil. 

CPLCTJLATI0N OF LIFT AIW MONT 

For the case of angle of attack of 40 the lift coefficient c1 
f or the airfoil in the channel was calculated by integrating the 
pressure distribution about the airfoil. The calculation for c27 
was also carried out by means of the two approximate theories. 

The isolated airfoil lift coefficient c 2 was 0.478. The 
value of c 1 7 obtained by the integration of the pressure distri-
bution is 0.537; that value obtained from the second-order theory, 
0,522 'by the foiulas of reference 4; and that value obtained from 
reference 9 (p. 49), 0.532. All the values of cZ1 obtained indi-
cate the expected increase in lift for the airfoil in the channel, 
and also show good agreement among themselves in that they do not 
vary more than 3 percent. Tho lift-coefficient correction, C 2, t - c, 
varies, however, about 30 percent among the different theories. 

The lift coefficient c 2 ' was also calculated by integrating 
the pressure distribution on the walls of the channel. Theoretically, 
the integration should be carried out to infinity on either side of
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the airfoil. The practical calculation is, of course, impossible. 
The integration is therefore carried out only over a finite range 
to yield the lift coefficient c, and a correction factor used 
to take into account the effect of the rest of the channel. 

The correction factor T, which is equal to c"/c 7, ', has 

been derived in an approximate form in the appendix of reference 10. 
The airfoil is replaced by a row of vortices, which are imaged in 
the walls of the channel. The- i factor for an individual vortex is 
calculated. The final TI factor s obtained by averaging TI for 
each vortex with a loading derived from thin airfoil theory as a 
weighting factor. 

In figure 9 tho lift coefficient c 1 1 is plotted as a function 
of the limits of integration, which were taken symmetrically about 
the origin. The .-alue of °i" obtained by integrating the pressure 
distribution 1.75 chord lengths upstream and domstreani of the origin, 
is 0.493. When this value is divided by the value of c 1 t , derived 

by integrating the pressure distribution on tho airfoil, a value TI 

of 09l8 is obtained. The valuo of rj obtained by the method of 
reference 10 is 0.900. The value of c2, obtained from the approx-
in1ate value of r, is 0,548. The correction factor obtained by the 
approximate method is satisfactory to the order of the approximate 
theories previously discussed. 

It is also possible to obtain the moment on the airfoil about 
any point by integrating the moment of the pressure (accurately 
calculated) on each element of area on the channel walls. A factor 
analogous to the i factor can be so determined that the integration 
for the moment over a finite range may be extended to take into 
account the regions on the channel walls a great distance away. 

C OECLUS IONS 

The analysis and numerical calculations of the present paper 
lead to the following conclusions: 

1. The method of conformal transformation by means of the 
Cartesian mapping function provides a satisfactory numerical solu-
tion to the problem of obtaining the local velocity corrections for 
an arbitrary airfoil In a channel for the case of two-dimensional 
frictionless incompressible flow. 

2. If closeness to the vel)city corrections obtained by con-
formal mapping is used as a criterion, the second-order Goldstein
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correction is more accurate than the first-order image vortex and 
doublet correction for thin airfoils at small angles of attack in 
giving velocity corrections in the examples calculated. 

3. if it is necessary to obtain a higher-order correction than 
the second, the method of the Cartesian mapping function is probably 
more convenient to use than the Goldstein type correction. 

4. The channel lift coefficients obtained by the two approxi-
mate theories are in good agreement with the lift obtained from the 
mapping velocity distrilmtion; the lift corrections obtained by the 
two approximate theories are not in gooi agreement with the correc-
tion obtained by mapping results. 

5. The existing method of finding the lift coefficients from 
the velocity distribution on the channel walls has been satisfac-
torily checked. 

Aircraft Engine Researoh Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, December 4, 1945.
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APPENDIX A 

fl&RIVATION OF TEE PELATIONS BETWEEN TEE REAL 

AND EvIAGINARY PARTS OF TEE CNF 

Inasmuch as the 0'' z - is regular within the annulus and 
also on the bounding circles in the p-plane, it nay be expande0. in 
a Laurent series, which is valid in the annulus and on the circles 
bounding the annulus. Thus 

z -	 = x(p,) + iy(p,) = 

From equation (Al) the following expressions are obtained: 

003	 sin n 

Ay1 (9) =	 -:'(an-a_n) sin r+'(bn+b_n) cos 

x2 (9) = a0	 .aqn+ a_q) cos n _'	 (b qn_ b_qfl) sinnp1 

	

= b0 +Jaqn - a_q	 Sin 9 +>(bh1 + b .na) COB fl 

The values of an and bn can be found by means of Fourier's rule 

in terns of the C. 

When a0 and b0 are evaluated, the conditions of consistency 
that are necessary conditions for the regularity of the C' in the 
annulus appear as

	

(2it	 (2t	 I 
=	 x1 (cp) d =	 jx2 ( p) dp 

/0
(A3) 

r2 
23th0 = j	 y1(zp) dcp = J	 Av2(Cp) &p JO

(Al) 

(A2)
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Four relations are desired: Ax1 and Ax2 expressed in terrs 
of Ay1 and Ay2 and, conversely,	 and Ay3 expressed in 
ternis of Ax1 and Ax2 . The derivation of the expression for Ay 
in terms of Ax1 and Ax2 will no be carried out. The other 
relations will follow analogously. 

Through the use of the first and third equations of (A2) and 
through the use of Fourier's rule, the coefficients a and b are 
evaluated. As a result of the calculation, the following equations 
are obtained:

+ D2 
a = n	 qn..qn 

K1q - K2 

= qfl - qfl

- D2 
a_n=qnq_n 

- K2 

= qn qfl

(A4) 

where

r2	 r2 
D-1 =	

(	
Ax1p) eQs ncp dcp	 K1 = . 

Jo 

(2Tt	 r2 
D2 =
	

Ax2(Cp) cos nçOdcp	 K2 =

Ax1() sin nd1

(A5) 

Ax2() sin n9d 

The values of the coefficients a and b are substituted in the 

infinite series expression for Ay1 given by equations (A2). The 

values for K1 , K2 , D1 , and D2 as given by equations (A5) are also 
used. Thus 

Ay1()	 '	 qflq	
[ Ax1 ()(sinn' cos n- cosn' sin n)d' 

qfl_ qfl1 o 

1 

cx;

2it 
+	

n 
2 
-n I Ax2 (p')(cosn' sinnr_ sinn' cosn) d' 

,q — q	 j 

1
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1	 + qfl	

Ax1(') sin n('-) d Ay1(cp) = b0 + ir 
/ 

q•fl - 

1 

l\
---S.	

r2 2 
ii: 7, n - 1-n J0	

Ax2 (cp v)	 n(cp' _cp) dCpT	 (A6) 

1 

Nov let f(cp) be a function that can be developed in a Fourier 
series for 0 < CO< 2it. Then

\ 
P2r 

1 cot	 dCp =	 / f() sin n(-) d'	 0 /	
f(cp')

2)	 /,uo 

ni=1	 (A7)
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Inasmuch as the series of equation (A8) are uniformly convergent as 
are the series of equations (5), the summation and. integration may 
be interchanged, in equation (A8) to yield equation (5).
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APPENDIX B 

TEE NUMERICAL EVALUATION OF TEE CARTESIAN NAPPING FUNCTION 

The determination of the functions Ax 1 and Ax2 from the 
given functions Ay1 and Ay2 was based in this paper on numerical 
integration of the first two equations (5). The equations for Ax1 
and Ax2 , when the constant a0 has been set equal to zero, are 

	

r2	 ,,	 22n 
Ax (cp) =	 I	 Ay1(9')	 cot	 + 2	

q	
sin n(p'-) a' 

1	 tJ0	 2	 /	 l-q2' 

	

L.	 1	 -	 I 

-	 ( 2 Ay2()\	 2q	 n(p-) dt 
-	 Jo

1 

Ax2 (p) - -	 I	 ______	 ____ 

	

Ay2 ()	 cot	
2q2	

sin n(p-) 
2	 ,'	

I -	 jO
1	 -J 

+	 f	 2qn	
n(-) dt 

z____•.
1 

If the range of cp is divided into 2n equal intervals whose length 
is , if the values of Ay are given at the end points of the 
intervals, and if Ax is desired at the same points, approximate 
integration will yield expressions of the following form: 

	

2n-1	 2n-1 

Ax1() =	 ( c1r + dk) Ay1 ( ± k6) +	 e Ay2 ( + k) 

	

k0	 k=O

•' (B2)

	

2n-1	 2n-1	 I 
Ax2() =	 (c1 +dk) Ay2 (+ k) - >e Ay1 (+ k) 

	

k=O	 k=O

(Bl)
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The values of ck have been calculated in reference 1 by means of 
Simnpson t s rule and other simplifications for use with the C' of 
simply connected regions. The values of d and e, may be 
similarly obtained. The value of ck as calculated in reference 1 
IS

c0=O 

6 6 6+sin6 
1 Gir 

c	 =—cot–+ 
2 2itsin6 

=
-6

co
6	 6+sin6 

C2n1 2it sin 6 

c:cot (kodd) 

dc =
26 k6 

cot --
, 
(: even)

(B3) 

In the present paper, because the number of intervals was an inteal 
multiple of 6, Weddle's rule was used for the evaluation of 
and e1. 

The values of ck are given in table 4 for the cases of 
2n = 24 and 2n = 48. The values of dk and e1 contain the 
parameter q. Hence, these coefficieite must be evaluated anew f or 
each approximation.
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TABLE 1. - OPDII'IPT1S OF 12-PERCENT THICK AIRFOIL 

[From table 1 of reference 1] 

Station 
(percent 
chord 
from 
nose)

Ordinate 

________

Station 
(percent 
chord 
from 
nose)

Ordinate 

0 0 50 5.880 
1,25 1.425 55 5.540 
2.5 1.900 60 5.025 
5 2.585 65 4.415 

10 3.540 70 3.750 
15 4,250 75 3.060 
20 4.820 80 2.350 
25 5.295 85 1.685 
30 5.655 90 1.060 
35 5.900 95 .510 
40 6.000 97.5 ,260 

6.010
100 0

National Advisory Coriiittee 
for Aeronautics 
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TABLE 3.- VELOCITY DISTRIBUTION AND CARTESIAN MAPPING

FUNC?ION FOR AIRFOIL AT ANGLE OF ATTACK OF 40 

rq = 0.2041; 9N = 4°	 'r	 2740; 2	 89.91°; t	 -0.0063J 

Airfoil _____ _____ _____ Channol	 a11s 

(deg) 14411
c1 
7. 1

1 
--

_____ 

1 
--

______ 

2

-

"c2 
y- 6 72 Lx 2 2 -- 6Y2 .-

0x7.5 0.0152 .O735 -O,0291O 0.01005 1.0376 ).0033 0.0236 1.9730 0 0.00591 0.01114 0 
1 -.1010 L.0709 -.028140 .01512. .0372 .0110 -.1917 .9719 0 .O073 ,O3.09 0 
2 ..2168 .0617 -.02645 .01983 .0355 .0185 ....3850 .9703 0 .00875 .0101 0 
3 -.3308 L.0419 -.02380 .02)415 .0316 .0244 .5838 .9686 0 .0100< .0090 0 
14 -.4417 L.0233 -.02028 .02795 .0260 .0291 -.7920 .9670 0 .01107 .0070 0 
5 -.51486 .9822 -.01622 .03095 .0203 .0330 .1.01314 .9659 0 .01198 .0062 0 
6 -.61493 .914614 -.01182 .03317 .01145 .0356 .1.25149 .9657 0 .01267 .0045 0 
7 -.7415 .9036 -.00720 .031465 .0088 .0369 -1.5261 .9668 0 .01316 .0027 0 
8 -.8234 .8217 -.002142 .03528 -.0013 .0355 .1.81436 .9697 0 .01340 .0010 0 
9 -.8928 .7729 .00212 .03502 -.0020 .0313 .2.2367 .97(43 0 .013i2 -.0O9 0 

10 -.9448 .6579 .00598 .0314614 -.0030 .0303 -2.7752 .9810 0 .01319 -.0027 0 
12. -.9776 .3130 .01035 .03418 .0082 .03L7 -3.6780 .9896 0 .01272 -.0OL5 0 
12 -.9950 .SL&85 .01525 .032tl -.01914 .0338 -9.2779 1.0001 0 .01202 -.0082 0 
33 -.9963 1.7756 .01925 .02947 . .0229 .0299 -3.65514 1.0121 0 .01109 -.0079 0 
14 -.9777 1.69314 .02312 .02631& -.0252 .02 50 -2.7736 1.02149 0 .00997 -.00914 0 
15 -.9407 1.5167 .02600 .022914 -.0275 .0210 .2.21462 1.0379 0 .00864 -.0108 0 
16 -.8875 1.14150 .02862 .01915 -.0295 .0183 .1.8613 1.0506 0 .00718 -.013.8 0 
17 -.8188 1.3589 .03075 .01518 ..0335 .0155 .1.5513 1.062(4 0 .00555 -.0127 0 
18 -.7375 1.32149 .03252 .01096 -.0333 .0121 .1.2563 1.0731 0 .00381s -.03.35 0 
29 -.61456 1.30142 .03390 .00652 -.0350 .0085 .1.0503 1.0817 0 .00203 -.011iO 0 
20 -.5(455 1.2910 .031475 .0018)4 -.0365 .0018 -.5330 1.0883 0 .00021 -.01142 0 
21 -.4391 1.28143 .03522 -.00305 -.0380 .0005 -.6283 1.0926 0 -.00164 -.0141 0 
22 -.3287 1.2803 .03502 -.008214 -.0392 -.00147 -.14326 1.09(48 0 -.003143 -.0138 0 
23 -.2152 1.2790 .031402 -.013149 -.01402 -.0101 -.2)4114 1.0944 0 -.00518 -.0131 0 
24 -.1004 1.2772 .03235 -.01883 •.01406 -.0162 -.0272 1.0918 0 -.00680 -.0120 0 
25 .01143 1.2652 .02970 -.021423 -.0390 -.0250 .1375 1.08714 0 -.00831 -.0107 0 
26 .1287 1.2392 .02558 -.02926 -.0350 -.0361 .3303 1.08114 0 -.00963 -.0092 0 
27 .21439 1.1935 .02038 -.03325 -.0263 -.0428 .5290 1.07145 0 -.01079 -.0077 0 
28 .3592 1.11455 .011438 -.03590 -.0160 -.01456 .7370 1.0667 0 -.01171 -.0061 0 
29 .14732 1.0927 .00628 -.03712 -.00141 -.01462 .9585 1.0576 0 -.012143 -.00142 0 
30 .58314 1.01475 .00215 -.03695 .0065 -.014141 1.2000 1.01491 0 -.01290 -.0027 0 
31 .6871 1.0093 -.00325 -.03558 .0153 -.0395 1.14711 1.0400 0 -.013114 -.0010 0 
32 .7812 .9805 -.00815 -.03317 .0216 -.0314 1.7876 1.0306 0 -.01315 .0008 0 
33 .8621 .95614 -.01178 -.03007 .0253 -.02140 2.1793 1.0221 0 -.012914 .0023 0 
34 .9260 .9328 -.011450 -.026714 .0269 -.0175 2.7132 1.0139 0 -.01252 .0039 0 

35 .9708 .9223 -.01642 -.02332 .0254 -.0110 3.6019 1.0066 0 -.01190 .0053 0 
36 .99148 .9246 -.017142 -.01996 .0225 -.03 9.283) L.0001 0 -.01112 .0066 0 
37 .9953 .67141 -.01750 -.01723 .0185 0 3.6385 .9946 0. -.01016 .0078 0 
38 .9723 .8882 -.01760 -.01526 .01140 -.0012 2.71416 .9900 0 -.00907 .0088 0 
39 .9280 .905< -.01792 -.01370 .0115 -.0030 2.2091 .9864 0 -.00785 .0096 0 
40 .8653 .9190 -.02.850 -.03229 •0102 -.0051 1.8206 .9836 0 -.00654 .01014 0 
lii .7861 .9307 -.01932 -.Q1099 .0099 -.0080 1.50814 .96114 0 -.00511 .0110 0 
142 .6932 .91427 -.02050 -.00968 .0107 -.0116 l..2Lêll .9830 0 -.00362 .0116 0 
43 .5898 .9608 -.02218 -.00813 .0136 -.01141 1.0030 .9789 0 -.00206 .0120 0 

44 .4796 .9876 -.021425 -.0059)4 .0190 -.01148 .78142 .9780 0 -.000148 .0123 0 
45 .3653 1.0142 -.02620 -.00300 .02)48 -.01146 .57814 .9772 0 .00116 .0124 0 
LiL .2)485 1.014114 -.02788 .00061 .0308 -.0127 .3809 .9762 0 .00276 .0123 0 
47 .13114 1.0669 -.0292C .00501 .0362 -.0064 .1.887 .97148 0 .00437 .0120 0

NATIONAL ADVISORY
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NACA RM No. E7A28 

TABLE 4. - COEBI0IENTS FOR CALCULATION OF CARTESIAN 

I.'IAPPING FUNCTION FOR SINGLE COI'TOUR 

(a) 24-point scheme 

C[ç ck 

00 l2O 
1 .42564 13 -.00366 
2 .20734 14 - .01489 
3 
4

.06706t 

.09623
15 -.01151 

-O3208 16 
17 -.02131 5 

6
.03620 
.05556 16 -.05556 

7 .02131 19 -.03620 
8 O3203 2O_.O9623 
9 .01151 21 - .06706 

10 .01469 22 -.20734 
11 .0.0366. 23f-.42564 

(b) 48-point scheme

k Ck

240 
1 .42470 25 - .00091 
2 .21099 26 - .00366 
3 .06082 27 - .00276 
4 .10367 28 - .00744 
5 .04092 29 - .00472 
6 .06706 30 - .01151 
7 .02616 31 -.00685 

.04811 32 -.01604 
9 .02079 33 - .00928 

10 .03620 34 -.02132 
11 .01564 35 -.01218 
12 .02773 36 -.02778 
13 .01218 37 - .01584 
14 .02132 38 -.03620 
15 .00928 39 -.02079 
16 .01604 40 - .04811 
17 .00685 41-.02816 
18 .01151 42-.C6706 
19 .00472 43-.04092 
20 .00744 44-.10367 
21 .00276 451-.06982 
22 .00366 46-.2iO99 
23 •°°°91L47 - .42470

39 
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Figure 1,- Transrorrnation of flat plate and 
channel into two concentric circles,
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Figure 4 — Comparison of velocity distributions in channel 
obtained by two methods, 
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Figure 6. — Comparison of velocities on airfoil in • free 
stream and on airfoil in channel for a = 40• 
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Figure 7.- Cartesian mapping function for airfoil in a 
channel at a 40
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Figure 8.- Velocity corrections for 12-percent-thick airfoil. 
a	 40, c/h = 0.5. 
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