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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

VELOCITY DISTRIBUTIONS ON ARBITRARY AIRFOILS
IN CLOSED TUNNELS BY CONFORMAL MAPPING

By H. E. Moses

SUMMARY

Conformal mapping methods are applied to the calculation of
the effect of channel (two-dimensional tunnel) wells on the ideal
flow past arbitrary airfoils situated anywhere within the channel.
The walls of the channel need not be plane but may have any shape.
The results are compared in specific cases with those obtained by
two approximate methods, of which the first is a first-order treat-
ment using image vortices and doublets and the second is a higher-
order correction developed by Goldstein.

INTRODUCTION

In reference 1 a conformal mapping method was developed whereby
the zero-lift velocity distribution could be found for a symmetrical
airfoil symmetrically located in a plane-walled channel. The purpose
of the present paper is to extend the previous investigation to the
cage of an arbitrary airfoil situated anywhere within an arbitrarily
shaped channel (two-dimensional tunnel).

The Cartesian mapping function (CMF), introduced in reference 2
and used in the method of reference 1, is also used for the problem
of the present paper. The velocity at any point on the airfoil in
the channel is found in terms of the CMF and the known conformal
transformetion of a flat plate in a channel. The difference between
this velocity and the velocity at the same point on the isolated
airfoil at the same angle of attack represents the effect of the
channel walls. In order to obtain the velocity distribution on the
airfoil within the channel, the CMF is applied to doubly connected
regions analogously to the manner in which Theodorsen's mapping
function is applied in reference 3.

The method is given, illustrated numerically by examples, and
compared with corresponding results by the first-order image theory
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and by the second-order image theory of Goldstein {reference 4).
In addition to the velocity on the airfoil, the velocity on the
channel walls is obtained by the conformal mapping method.

SYMBOLS

The more important symbols used in this paper are listed as
follows:

c chord of airroil

cy section 1ift coefficient for isolated alrfoil

cy' | gection lift coefficient for airfoil in channel

h distance between channel walls

t thickness of airfoil

v undisturbed velocity at great distance from airfoil

Vol velocity on surface of airfoil in channel

Vo2 velocity on channel walls

V3 velocity on isolated airfoil

Av. velocity correction; Vel - Vi

e angle of attack of ajrfoil

o angle of attack of flat plate

ay effective angle of attack of airfoil with respecﬁ ©o
curved stream

¢ plane of straight lines

zZ physical plané

D circle plane
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METHOD OF CONFORMAI, MAPPING
The CMF for One Contour

In previous applications of the conformal napping methed used
in the present paper (for example, references 1 and 2), a single
contour such as an airfoil in the physical plane (z-plane) was
transformed into a single straignt line contour (airfoil chord) in
another plane (¢ -plane). The line in the {-plane is related to a
circle in a third plane, the p-plane, by a known transformation
That maps the unit circle with its center at the origin into the
straight line such that the region outside the circle is mapped
into the region outside the gtraight line. Decausse the contour in
the z-plane also transforms into the same circle in the p-plane in
such a manner that the regions exterior to the contours correspond,
the function 2z - { 1is regular everywhere on and outside the circle
in the p-plane. This vector difference gz - { Dbetween conformally
related points is called the Cartesian mapping function (CMF).

The real and imaginary parts of the CMF are denoted by Ax
and Ay, respectively. Because of tre regularity of the CMF outside
the circle, '

. o
z - ¢ = 8x (p,@) + idy (p,%) = 21; C_p™2 (1)
' ’ ' 0
where
p = o0et?
Cop = a_p + ib_p,
On the circle p = eicig the following relations hold:
[an .
1 N (' -9) . |
oy (1,9) = o ;’ Ax. (1,9') cot — Ay
| Vo (2)
~2n
bl YLy \
bx (1,9) = - == |y (1,9') cot £ =2) 4.
5t IO : 2

Equations (2) are the fundamental equations whereby the transforma-
tion between the z- and {-planes can be calculated. '
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The CMF for Two Contours

In general, two contours in the physical plane can be trans-
formed into two straight-line contours in the {-plane. The lines
in the ﬁ-plane can, in turn, be transformed into two concentric
circles in the p-plane, whose centers are at the origin and whose
radii are equal to 1 and q (g <1). The transformation is such
that the region between the two circles is transformed into the
region between the contours.

In the case discussed in the present paper one of the contours
in the z-plane is the airfoil itself; the other contour consists of
the channel walls, both walls together being considered as one con-
tour extending to infinity in two directions. The contours in the
{-plane consist of a finite straight line into which the airfoil
is transformed and a transformed channel whose walls are plane and
parallel tc the real axis. In the p-plane, the finite straight
line, and hence the airfoil, are mapped into the outer circle whose
radius is unity, end the channels of both the ¢ - and the z-planes
are mapped Into the inner circle whose radius is q. Thus, as the
outer circle is traced in a counterclockwise direction, the airfoil
and the finite straight line are traced in a clockwise direction.
In the same manner, as the inner circle is traced counterclockwise,
the channel is traced clockwise.

As in the case of the sgingle contour, the regions at infinity
in the z- and {-planes correspond, but the vector difference =z -
is regular on the boundary of both circles and within the annulus

formed by them. As before, z - { 1s the CMF and Ax and Ay are

its real and imaginary parts. Because of the regularity of 1z - ¢
in the annulus, the CMF may be expanded as follows (cf. equation (1)):

(=]
z -{ = Ax (o) + 187 (p,9) = E Cnpn (3)
._w V
where )
i
P = pe CP
Ch = &, + iv,

Inasmuch as the full Laurent series is used in eguation (3), the
relations between Ax and Ay on the two circles differ from the
simple relations given by equations (2).

Appendix C of reference 2 provides relations between the com-
ponents of the CMF on the two circles, but the expressions are not
easily used for the purpose of calculation. More convenient rela-
tions have been derived in reference 3. Although the correct result
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is obtained, the method of derivation is not fully given. The rela-
tions are derived in more detail in appendix A of the present paper.
These relations between the components of the CMF are the following.

The subscripts 1 and 2 indicate the valunes of the CMF on the
circle of unit radius and the circle of radius q, respectively.
That is:

Axy (@) = ax(1,0p) W
by (@) = ay(1,0p).
, s (4)

8%, (@) = ax(q,®)

Ayg(CP) = AY(Q:CP) '
Then, as shown in appendix A: N

2x 1
i _

Axl(®)=ao+%f() by, @) |3 v 20 CP) E S sin n@' CP)JdCP’

— sin n(p-¢g dot

2n n

1 2q
- = by ') E

T 0 2 - 1- 2

Axo(®) = a ~£ o Ay (cp! ) cot M+\ —Z-EEI—I— sin n(p!-p) | dop'
2 07" x o 2 / 1q2n

1
+% Ayl(cp Z 5 8in n(p'-¢) do' :
1 7 (5)
by1(®) =bo-%f 2%, (' >[ cot {2229 ;2‘1 — oin n(cp:_cpﬂw

l1-g~ J
2n n |
+ i f Ax, (1) ; 29 _ gig n(o' - ap’
B¢ 2n
0 e

-21 "g?_' 2
Ay2 () =bo+,l? fo ax, (i )[‘ cot @——@ +Z__11 qn sin n(p'-o) | dp'
L _

2x
SL T axg (e )Yg_%_ sin n(p'-9) dp'
n 0 L_Il q_ /
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(
!

2n Z2n
sxy{@) = bxp(9) do
Jo c

Lo

P

f (6)

2n [ 2n i

- Ayy(9) dp = / Ayo (o) 4o ¢
0

IS, ‘

-’ - <

The introduction of elliptic functions simplifies equations (5).
| The elliptic functions iatroduced at this point and used at other
places in this paper are treated in various texts with varying
notations. The notation used throughout this paper is that of
Tannery and Molk (reference 5). From reference 5 (t. IV, p. 100),
the following series for the §-functions are obtained:

. e
2 7L 7 oL oty +\\; 292 gip 2mnp (7)
2 { , l_ q?.n
1

sin 2nav (8)

o
A
<&
N
<
Ht\,
‘_J
Q2
nd
pa
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Hence, from equation (5):

[ -\
2n vy |
1 (” 19]. V2R /3t
axy (@) = ag + — ! oy, (') - dp
2 Q1=
ot L0 5 (529
;.11...?\
. fem CoN (%—Tf_j)/l
== by (9 : a !
4\ oq 1’
r2x Y
Bp(P) = ag - 2= | apy(on BB/ 4
23.(2 0 /‘Q'-:f\i
. S\
~ . lP!_(p\
1 !Zn . ( 2n } o
+ = Ay (97 — 49
272 Jo 5, |22
4\ 2x )
1o\
(%) L fznA (f@)sl! (pg“p;d@'
A — b - — X 1 A I¥
71(#) = bo - = | 1 2 -9)
) 19— (\ an |/
- A
1 gfmt ! %' \ Tz ) 1
+ == | A%, (") ——- 49
2ne o g [2=P
=\ 2n }
[ L
p (e 4y ‘\92::9} .
Ayz("ﬁ) =Dy + =5 | AXZ(’P’) — a9
2% - I {9 -9 .
1\ zn
: /w'-@)
i 9" \"Zx

w
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In the same way that the relations expressed by equations (2)
are a linmiting form of Poisson's integral, the integrals in
equations (5) or (9) are limiting forms of Villat's analog to
Poisson's integral. Villat's integral (reference 6) gives the value
of a function within an annulus when the real part of the function
is known on the bounding circles.

The relations expressed -by equations (5) reduce to those
expresgsed by equations (2) when the radius of the inner circle
approaches zero; that is, when the channel walls move to infinity.
The signs differ, however, because the CMF that is defined within
the annulus in equations (5) is defined within the outer circle as
the radius of the inner circle goes to zero, whereas, in the case
of equations (2), the CiMF is defined cutside that circle.

The {-Plane and Its Transformation into the p-Plane

As already described, the {-plane contains a plane-walled
channel within which there is a fliat plate. The transformation
mapping these contours into two concentric circles has been obtained
by Tomotika (reference 7), who has also cbtained the velocity poten-
tial for this case. Tomotika's results will be briefly presented
and the form in which they are most useful in applying the CMF method
will be given in more detail., ‘

Let & be the angle of attack of the flat plate. The trans-
formation between the {-plane and the p-plane is shown in figure 1
and given mathematically as

o
-"'Tf \ N n 3 N
1 =48} : qQ" sin n{}
C: - z—ﬂﬂi ;el('\Z / S 2
n(l + 2q2n cos 28 + q4n)
1
% [pn(eia 4 qPNe1B) , pon(emi8 4 200181 o (10)
or in another form
. | _
1C_P2 2n -
g_E_h_J_ o 2802 N\ a®" sin mp,
T 21 € -39, 2n _ 4n
L p-ge ,n(1-2¢" cos 23 + q )
1
PV -2i8 2n\  (P\T , 21T z:f"\
x [(2) (e7**® - )-(-) e )l + T 11
\q \e q \a (e q I (11)
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. . . n bt —
where h 1s the distance between the channel walls, & = é - a,

and T 1is a constant. The substitution of p = e*? in equa-
tion (10) yields the equation of the flat plate; the substitution
of p = qeim in equation (11) yields the equation of the channel
walls, which are parallel to the real axis. The use cf the two
forms of the transformation simplifies the resulting equations

in @ for the fiat plate and channel walls.

Four values of the central angle @ (Py, 9o, =, ard 9 4) are
imporvant in the mapping. From reference 7 the points D ='e1@l,
elkzn-¢l), denoted by B and B' map into the stagnation points
on the flgt plate for zero circulation; the points p = qelwe,

1(2n=q
qe ( @Zj denoted by H and H' map into g, respectively; the
ip 19 '
points p = e 3, e 4, denoted by A' and A, map into the
extremities of the plate. The points are shown in figure 1.
Y

The values of q and 95 in equations (9) and (10) are
determined by the length of the plate, its position, and the various
relations between the four special values of @ . From equation (10)
or equation (11)

(91792 <<£>1'<P2
194';'\ 2113 / - 194 2“ / = O (13)
5 (21792 o [91-P2
\ox 4\ "2
or
=
N N
8n :» 1-q2n cos n@y sinnpp = 0
1
P3-92% | P42\ 0302\ a2\
{ i = H hd 14
Y4\ 5n /19‘4\ 2n /- "N\ 2n /594(\ 2x ) (24)
___-\Oc \
' n@z-94)
q® sinn®, sin —5— -
L._8 5 2 24 [cos(n-1) & _q2n cos(n+l) « ]
h = , n(1-2q%% cos 2a + =)
1

(15)
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A n(pz=p4)
g sin nw, cos ;——%-—é—

dl(n(
==={z- P += £ sing /
n =w\2 . v
\ / zi:_Jn(l-Zqzn cos 2@ + ¢iP)
- ,
X Lsin(n-l) g - gl sin(n+l)é] : (16)

where L 1is the length of the plate and d 1is the vertical distance
of the midpoint from the center line of the chamnel.

In order to find the valnes of a Py Pos ¥ 3, and Py for
a given length and position of the plate, equations (12) o (16)
should be solved simultaneously.

In pllnClDLe, it is possibls to transform the flat plate at
any value of @ intc the airfoil at angle of attack set at «.
The value of @ is fixed at the value that accomplishes the trans-
formation with the least labor. In the case to be calculated,
T is set equal to zero. For this value of a, Tomotika's formulas
(reference 7) aro considerably simplified. If the distance between
the channel walls is taken as unity, the equations simplify as
follows:

2
g™ gin ng,

¢ =&k
1 zfim; n(l—qzn)

(P%-p™) + T ()

or equivalently

- (oS3 .
| P L gen 0. o -n |
g=§£';_;£_1ogep-q63 2 N q smnpa”2> _(g\} %1\+ : (18)
7 Pl - : 1y a
and @2- can be found by using the equation
1 P2
d=5-= (19)

The quantities 4q, ¢y, 93, and @4 may be found by solving
simultaneously equations (12), (13), (14), and (15), which also
become simpler than the equations for the general case. The
constant T may be restricted to real values, because it merely
determines the position of the channel and the flat piate with
respect to the axes in the {-plane. :
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A special case useful for numerical work is that for which
d = 0, For this position of the flat Plate @y = 9, = 93 = “Qg = 1/
and

o]

— Zn-l R
L = .Q.X g_ _ (20)
“AZ;;’(Zn-l)Ll-qz(zn'llj

Hence, ¢ can be found from equation (20) alone when the length
of the plate is nrescribed.

If { is separated into its real and imeginary varts,
(=€ + in, £ and N can be found as functions of P. The
equation of the flat plate is found by setting p = ei‘ﬁp ,in equa-
tion (17). Then, when the subscripts 1 and 2 dencte the values of
the function on the plate and on the channel, respectively,

(o]
4<;—_“qnsin nP,
£, = - £ sin n® + T (21)
1 L 2n
< n(1-g°%)
N, =0 | (22)

Thus the flat plate lies on the real axis of the {-plane. The

equation of the channel walls is found by setting p = qeiw in
equation (18)., Then

[ in 1 (pq)] <o 2n., 1
i Sln:' = ., ) n,:
(o = L iog, L e L
b1 ] iSin 5 GP+@2) égig n(l_an) !
P, :
U5 =?;=%-d (23‘(-\"@2 >9 > 5492) !
b (24)
P2 1A i
le—?r"'lz—(-z-er/ @z > 9 >=%) J
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Airfoil Position and Ad justments in Terms of the CMF

The z-plane and the {-plane are shown superimposed in figure 2
in which the geometric meaning of the CMF is also indicated. If
the abscissas and ordinates of the airfoil are denoted by X3, ¥
and the abscissas and ordinates of the channel walls by X5, J¥g,
the definition of the CMF shows that :

1 (p) = §1(9) + Axl(W)
7, (@) = 8y, (%)
(25)
x:(p) = Ep(9) + axp()
To(@) =g + byp(®)

In order to determine the constants q and 7P, that appear
explicitly in the expressions for ¢ and 71 and also the angles ey
and @mp ‘that correspond to the leading and trailing edges of the
airfoil, the airfoil is placed in a normal positicn with respect to
the y axis. If ¢ is the chord of the airfoil and = Is the angle
of attack, the normal position is given by

xl(@N) = - -;— cos a
> (26)
c i
xl(CPT) =7 cos a !
From equations (25) and (26), the following formula is obtained:
£.(Pp) -E,@y) = c cos o - Ax; @) + 4% @) (27)

The angles CPN and (;OT corresponding to leading and trailing edges
are obtained from the condition of a maximum for the abscisse x,(),

ax; (@) dxy (@)
1\ =0 LW =0 (28)
ap do
or, by equations (20) and (24), '
=
dax .. a? sin ng
______..1(CP) =4 1S P Y2 cos n¥ (29)
aP 1. o
' 1

Tor <P=§0N or Pm.
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The value of @2, or what is equivalent the value of 4, is
found from :

on . (2xn
| byy(@) dp = | by,(p) dg (6)
Jo

I

s

as follows: Let r(®) denote the value of the ordinate of the air-
foil measurcd from the center line of the channel in the {-piane.
From the definition

rlp) = dy;(p) + 4 (30)
Hence, using equation (8),

r2n . {2

' A ra =i Axr fr ¢ 3\
=57 ] r(p) 49 - = i 8y, () 2 (31)

ot ~°

and @5 is obtained from equation (19).

The constant T 1is obtained by adding the cquations of (28).
The resulting formula is

oo

— . N 0 - \
L L4 \\\‘ 9" sin ng ain n(Qtap) sos n(® o) AAlG@N) + 5%y ()
== > -
ﬂ»//‘ , n(l_QZn) 2 2 z
1 (32)

These equations completely determine the congtants a, T,
Cy» Pp, and Po  in terms of the CMF. The value of Yo 1s calcu-
lated from equations (31) and (19); the use of this value in
equations (27) and (29) permit these equations to be solved simul-
taneously for q, Py, Pp;  and finally T can be determined from
equaticn (32).

Velocity Distribution on the Airfoiil

and on the Channel Walls

The complex velocity potontial W, derived from the results
of refercnce 7, is
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o (11080 2402) /P42
4\ 2n 4v2n / 4D
loge - 2= loge D (33)
/411p Y F O~ =P ot
CANI / Y4\ 2

where V 1is the velocity at infinity and I' is the circulation.

The velocity distribution on the airfoil and on the channel
walls is obtained from the velocity potential given by equation (33).
The formula for the velocity in the z-plane is

On the airfoil, from equations (8) and (33)

\,

\
cos n@) - I (35)

41‘/ 17" / _l

©
<\ q" sinngy

EVAN Ut
dp/ . 2x
\ é:el cp '

The circulation [ in equation (35) is adjusted to satisfy the

{8V
\1
\

Kutta condition at the trailing edge of the airfoil {%/‘ = 0,
The result is ' ' . 5‘0=F‘DT
e n )
. a sinn o
I' =8v ———---—-g- cos napI, (36)
L 1-gon /
Also 1 _
(& =@g LA ap (9 g
P/ P/ .. dy deo
A {)=elf9 p_el@
o<}
. N . .
416-19 N\ ¢" sinngp 13001 (9) 4 5
= ya cos ny - —— € i (37)
2n ayp

oL 1-g

L

dAyl(qﬁ
[P S
a9

~-1Q
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Hence, the velocity distribution on the airfoil is
]

& :

K el gy =

\/ o (cos ny - cos ncpT)!
|

£ 1%
v P01
cl _4 : (38)
7
' = TN -2
{la\_ ¢" sinno, daxy (@) | aayy (9) |

il % —————= cos ng - —i 4| ————
PRI 1 _gln dep | 4P
|4 e |-
! P01

where v has been written for v,.

cl
The velocity distribution on the channel walls is found by

in —

replacing p by q_ele in equation {33). The substitution resulis

/,’. - .1. m . ) "\\
/AW L =1 -1 ( 1 sin 9, 4 O\ q2n sinn@, cosnP T \"_
fag = 19" "e V:\E . —tr - ey
4P, i \ 7' cog P-cos Py Vs 1-q2ﬂ v
p_—_qs \ . o l J p
(39)

where ' has the value given by equation (36).
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Lift on the Airfoil in the Channel

The 1ift on the airfoil in the chaunel can be found by evalu-
ating a modified form of Blasius' integral in the p-plane. The
expression for the 1lift involves 'the CMF and the radius of the inner
circle; that is, the lift depends on the shape and the position of
the airfoil and on the shape of the channel walls as well as on the
circulation. This dependence is in contrast to the case of the
igolated airfoil, in which the 1ift on any body is the same for a
fixed circulation., The dependence of 1ift upon the airfoil shape
for the casc of the airfoil in a plane-walled channel has also been
shovm by Havelock (reference 8) who finds the potential function
directly without the use of conformal mapping.

The expression for the 1ift is too complicated for numerical
calculation, A mecre convenient way of obtaining the 1ift is to
integrate the pressurc distribution on the airfoil or the pressure
distribution on the walls.

Method cf Succcssive Approximations for Obtaining CMF

The CMF can now be calculated for a given configuration by a
method of successive approximation analogous tc that of refercence 2.
1. The airfoil and the channel walls are drawn such that the
airfoil is in the normal position, as shown in figure 2. The center
line of the channel in the f{-plane is located on the figure in order
that the airfoil -ordinates r(¢p) may be read. The scale is so
chosen that the distance between the channel walls in the {-plane
is unity.

2. From a previous approximation, approximate values of q,
T, @2,<$N, and Pp are known, as well as approximate values of the

abscissas x;(9) and x5(9) at a convenient set of values of
from O to 2x radians. Through the use of the known values of x(¢),
r(9) 1is measured. A set of values of Ay,{P) are also measured

through the use of the known valuesg of X2($). A value of d and
a new value of §, are obtained from equations (31) and (19).

If no better values are available, the initial arproximation
for xl(w) and XZ(@) may be that obtained for the flat plate
situated along the center line of a plane-walled channel. In this
case X; and X, are given by equations (21) and (23) for El
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and §,. The velue of ¢ is obtained from equation (20), where L
ig replaced by c¢ cos a. Both @, and @y equal n/2 and Qq
equals 3n/2. The constant T equals zero.

3. The functicns Axl and 0x, are calculated by means of
the first and second equaticns of (5). The value of q used is
the approximate value of step 2. The numerical details of the
calculation are given in appendix B.

4. New values of @y, P, and q are obtained by solving
equations (27) and (29) simultaneously for these quantities.

An alternative method of determining Py, 9p, and q 1s a
purely graphical one. The approximate Ifunction xl(@), which is
also a function of gq, 1is plotted egainst @ in the regions of
the extreme values of Xqo From this graph 9Py ani Pp are
determined. These values are substituted in cquation (27), from
which a new value of q is obtained that is used to re-esvaluate Xj.
The procedure is continued until sufficient accuracy is obtained.

Finally 7 is calculated fron equation (32).

5. A new set of values for =x1(9) and xp(9) are calculated
using the new values of the constants and the values of Ax; and 8xp
calculated in step 3.

Steps 2 through 5 are repeated until a plot of y(®) eagainst
x(g) for both the airfoil and the chennel walls yield shapes that
are as close as desired to the shapes plotted in step 1.

If the walls of the channel in the z-plane are flat, Ayz(@)
is sct oqual %o zero, and a conglderable gimplification in the
numerical procedure results. This case is the most common and the
method is not at all difficult to apply. The discussion of numerical
results will provide an idea of the actual work involved.

After the components of the CMF and the various constants have

- been eveluated by the method of iteration just described, the veloc-

ity distribution may be found from equations (38) and (41) for the
airfoil and for the channel walls, respectively. The derivatives
of the CMF in.the formulas for the velocity distribution were
measured in the cases calculated; although an expression exists
that gives the values of the derivative in terms of the CMF as in
reference 1, it is too cumbersome to use.
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IILUSTRATIVE EXAMPLES USING CONFORMAL MAPPING

The method of conformal mapping outlined has been applied to
the 1lZ2-percent symmetrical airfoil treated in reference 1. The
ordinates of this airfoil are given in table 1 and the airfoil shape
is shown in the figures in which ths velocity distributions are’
plotted. For the calculations of the present paner the airfoil was
agsumed to be placed at the center of 'a plane-walled channel. The
chord to height (c/h) ratio was taken to be 0.5. Velocity correc-
tions were calculated for angles of attack of 0° and 40,

For the case of a = 0° the range of  from C to 2n radians
was divided into 24 egqual intervals., Two approximations, starting
from the x(9) of the fiat plate, weore necessary for the derived
airfoil contour to coincide with the given contour for a scale of
chord length of 20 inches and ordinate scale five times that of the
abscigsa scale. In no cage were more than six terms used in any of
the infinite series in the preceding formulas, for the series con-
‘verge vrapidly. Thke velocity distribution for the case of o = 0°
ig shown in figure 3. The velocity distribution on the walls of the
‘channel is included in the figure and is drawn to a scale five times
as large as the scale for the velocity distribution on the airfoil.
The CMF together with the velocity distribution is given in table 2.
The velocity distribution on the airfoil for this case had been
previously calculaved by the method of finite chord in refcrence 1.
The results are compared in figure 4 and are in close agreement,
which indicates that the numerical methods used in both processes
were sufficlently accurate. :

The velocity distribution for the case of angle of attack of 4°
is plotted in figure 5. Figure 6 shows for the purpose of comparison
the velccity distribution for the airfoil in the free stream at
o = 4°. In this case four approximations, starting from the flat

* plate, were necessary to obtain coincidence between the derived air-
foil and the given airfoil to the same ordinate and abscissa scale
as in the case of a = 0°. 1In the first three approximations the
¢ range was divided into 24 equal intervals, but in the fourth
approximation the length of the intervals was halved so that the
CMF was evaluated at 48 points. The mapping data and velocity dis-
tribution are given in table 3; the nature of the CMF is shown by
figure 7 where the component functions are plotted. The velocity
distribution for the airfoil in the free stream was obtained by the
method of refersnce 2.

The velocity correction for the airfoil at an angle of attack
of 0° was discussed in reference 1. The velocity corrections for -
the airfoil at the angle of attack of 4° are plotted in figure 8.
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The irregularities of the correction are due to local curvature
fluctuations of the airfoil surface and correspond to the irregu-
larities found in the corrections for the same airfoil at o = 0°.
(See reference 1.) ‘

The velocity corrections are positive on the upper surface of
the airfoil but are for the most part wvery nearly zeroc on the lower
surface. This behavior of the correction indicates that the 1lift
on the airfoil in the channel is greater than that on the airfoil
in the free stream. The increase in lift has been shown by other
authors through the use of approximate methods (sece references 4,
7, 8, and ¢) and will be further discussed.

The influence of the airfoil on the velocity distribution on
the .channel walls is shown in figures 3 and 5. The velocity dis-
tribution on the walls is very sensitive to the angle of attack.
When the angle of attack is 0° (fig. 3) the nondimensional velocity
on both the walls is greater than unity. The velocity rapidly
approaches unity both upstream and downstream of the airfoil until
at 1.75 chord lengths upstream and downstream of the origin the
velocity has decreased from its maximum value 1.03 to substantially

the value 1.0.

In contrast, when the angle of attack is 4° (fig. 5), the
velocity is less than unity on the lower wall, and on the upper wall
the velocity markedly increases over the velocity for the case of
a = 0°, The maximum velocity on the upper wall moves forward toward
the position at which the airfoil approaches closest to the wall; at
the same time the minimum value on the lower wall is located at the
position near the leading edge where the zerc streamline rises to
meet the airfoil at the stagnation point. On both the upper and
lower walls the velocity approaches unity less rapidly than in the
case of o = 0°, On the upper wall the maximum velocity is 1.095; the
velocity 1.75 chord lengths upstream of the origin is 1.013; the
velocity 1.75 chord lengtins downstream is 1.010. On the lower wall
the minimum velocity is 0.965; the velocity 1.75 chord lengths both
upstream and downstream is 0.290,

APPROXIMATE VELOCITY CORRECTIONS FOR AN AIRFOIL PLACED
ALONG CENTER LINE OF A PLANE-WALLED CHAKNEL
If an airfoil is placed midway between the walls of a plane-
walled channel, simple approximate velocity corrections may be

derived under the conditions that the angle of attack iz small and
that the thickness, chord, and camber are small in comparison with
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the dimensions of the channel. Two such corrections will be
explained. Both corrections depend upon the successive reflection
of the airfoil in the channel walls by which a cascade of airfoils
alternately upright and inverted is obtained. As is well known
(see reference 9), the flow through such a cascade is equivalent

to the flow about the airfoil in the plane-walled channel. In the
first-order approximate theory, the image airfoils are replaced by
doublets and by vortices; in the more elaborate treatment developed
by Goldstein (reference 4), higher-order singularities are included.
Inasmuch as the method of conformal mapping developed in the present
paper is applied numerically to a symmetrical airfoil at the center
of the channel, the approximate theories will be quantitatively
discussed only for such airfoils. A more general treatment would
follow along similar lines.

First-Order Theory

In the development of the first-order theory the vortex and
the doublet are assumed to contribute indeperdently to the velocity
correction. The effect of the image vortices is to curve the stream
and to increase the effective angle of attack and lift on the airfoil
in the chamnel. The image doublets increase the velocity at the
center of the channel and thus take into account the constricting
effect of the channel walls. Glauert (reference g, P 49) obtained
a formula for the ratio of the 1ift in the free stream to the 1lift
in the channel. If it is assumed that the vortices merely change
the angle of attack, the Kutta condition combined with Glauert's
formula yields the following result:

sina _, _z2/of (42)
- sin ay 24 ‘n/

where a 1s, as befcre, the angle of attack with respect to the
direction of the flow at infinity and ay 1s the effective angle

7

of attack due to the curved stream.

The increase of velocity at the center of the channel induced
by the image doublets is assumed to be that due to the airfoil at
its angle of zero 1lift. If this increase is denoted by u and,
as before, V 1is the velocity at infinity in the channel, the
following relation is true:
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where for symmetrical airfoils

4dcfVe y ./s ,
>‘=3?tjv tdc> (44)
as in reference 9 (p. 55). Here v_ ' 1is the velocity om the air-

foil when the airfoil is in the channel at an angle of atback of 0°
and y 1is the distance to the upper surface of the airfoil messured
normally from the chord line. The integral in edquation (44) is
taken with respect to the surface distance s along the upper sur-
face of the airfoil from leading to trailing edge.

In the calculation of the strength of a doublet that is to
replace an igolated airfoil, v; rather than v,' should be used.
However, inasmuch as the strengtin of the doublet must be increased
when it is used to replace the same airfoil in cascade, the use of
ve', which is greater than vy, will change the value of ) in the
right direction.

The velocity correction is defined as

A v Vi
V- ﬂl -3, (49

v
where ig) is the velocity on the airfoil in the channel expressed
a
1

as a fraction of the ultimate upstream velocity when the airfoil is
Vs
at an effective angle of attack a, and where \i%‘ ig the isclated
a

alrfoil velocity for the angle of attack «. Since the airfoil is
small compared with the breadth of the chennel, the flow about the
airfoil in the channel is equivalent to the flow about an airfoil at
an angle of attack o ide free stream whose velocity at a great

distance away is V + u. Therefore the following relation is true

(\%>“1 ) Gf%“l | e
(9, -, ¢
EORORON

or

The result is that

(48)

<ls
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The formula for the velocity correction shows the importance of the
changed angle of attack, for cne part of the correction is the
difference in the isolated airfoil velocity distribuions at angles
of avtack o and aj; the other term of the correction is propor-
tional to the isolated velocity distribution at the increased angle
of attack. ’

The correcticn cobtained by the use of vortices and doublets

A2
is valid to the first order in <E> and tc/h®. When the angle

of attack is OO, the paraﬁetez {%51 does not appear (reference 1).

Goldstein's Second-Order Velocity Correction

Goldstein (reference 4) first replaces the image airfoils by
the doublet, the vortex, and the higher-order singularities given by
the potential function of the airfoil in a uniform free stream. The
nonmuniform disturbance velocity produced by these singularities in
the physical region, in particular at the location of the physical
airfoil, is calculated, taking into account the change in direction
of the stream. This first approximation nonuniform disturbance
velocity (a) changes the velocity distribution on the airfoil from
its isolated free-stream value and (b) changes the value of the
singularities that are to be imaged. Change (b) is evaluated and
a second approximation nonuniform distribution of the airfoil in the
final nonuniform stream is calculated.

In principle, Goldstein's method 1s capable of yielding to any
degree of accuracy the effect of a plane-walled channel on the two-
dimensional velocity distribution of an arbitrary airfoil, arbitrarily
situated. The successive approximations become increagingly labo-
rious, however, and only the second-approximation formulas are given
in reference 4. ‘

The second-approximation formula -for the constriction correc-
tion for the symmetrical airfoil situated in the center of the
channel at a small angle of attack is obtained as:

Ve _!g\[P(G) - P(n) + sin (0 + ay) + sin o] (1)
v, ~\V/ . )
+ [sin (9 + @) + sin o]

so that



24 NACA RM No. E7AZ8

av Vi [ Ve . . -
v 2 /Ti - 1> | (50)

where U here represents the sum of the ultimate upstrean velocity
and the velocity at the center of the channel induced by the singu-

larities so that % - 1 corresponds %o u/V of the first-order
theory; a, 1is, as in the previous approximate theory, an effective
angle of attack with respect to the direction of the stream; the

function P(@) 1is a measure cof the distortion of the stream caused
by the singularities.

The Goldstein second-order image correction is accurate to the

2 .. ..\2,.4% 3 2,2 .3 I
orde AN fS) gt cs ot {5V, Wne 1
orders (h)’ hz; \m/ R TR A and \h)' When the angle

of attack is zero, the terus '?), {%) B (%) , and (E) do not
appear. AR :

Discusgion of Numerical Results
of Approximate Theories

The first-order and second-order corrections were calculated
for the l2-percent-thick symmetrical airfoil. The corrections for
the airfoil at zero 1lift have been discussed in refercnce 1. The
results for the angle of attack of 4% are plotted in figure €. The
constants used in the first-order correcticn are

N ay
3,931 0,01161 4,459°

Those for the second-order correction are

pe

U hnl
CO Cy Co Cx Ca : o v -4

0.08722 | 0.05534 | =0.02401 | 0.00455 | 0,00475 {4,200°] 0.0108
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The first-order theory yields good results for the upper
surface of the airfoil in that the correction so derived shows the
same over-all trend as the correction obtained by conformal mapping.
The approximate correction appears to be a mean curve to which are
added components due to the curvature of the airfoil. For the
lower surface, the approximate correction is not quite so good a
mean line as it is for the upper surface. For both upper and lower
surfaces, the contribution to the velocity correction due to the
doublets and that due to the change in angle of attack are equally
effective in forming the total correction.

For the upper surface of the airfoil, the Goldstein second-order
image correction follows the same trend as the first-order image
correction, but the values are more nearly constant., The second-
order correction for the lower surface follows more closely the trend
of the mapping correction than the first-order correction. From this
example,- the second-order correction appears to be more accurate than
the first-order correction.

The incremental velocities u/V and % - 1 of the firgt- and

second-order corrections, respectively, are in good agreement but
the values of the effective angles of attack @y differ markedly.

This difference accounts for the difference in the nature of the
correction curve of figure 8 near the leading edge of the airfoil.

CALCULATION OF LIFT AND MOMENT

For the case of angle of attack of 40, the 1ift coefficient c;'
for the airfoil in the channel was calculated by integrating the
pressure distribution about the airfoil. The calculation for ¢y’
was also carried out by means of the two approximate theories.

The isolated airfoil 1lift coefficient c; was 0.478, The
value of cz' obtained by the integration of the pressure distri-
bution is 0.537; that vaelue obtained from the second-order theory,
0.522 by the formulas of reference 4; and that value obtained from
reference 9 (p. 49), 0.532. All the values of c;' obtained indi-
cate the expected increase in 1lift for the airfoil in the channel,
and also show good agreement among themselves in that they do not
vary more than 3 percent. The lift-coefficient correction, cy' - Cys
varies, however, about 30 percent among the different theories.

The 1ift coefficient cy;' was also calculated by integrating
the pressure distribution on the walls of the channel. Theoretically,
the integration should be carried out to infinity on either side of
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the airfoil. The practieal calculation is, of course, impossible.
The integration is therefore carried out only over a finite range
to yield the 1ift coefficient cz", and a correction factor used

+o take into account the effect of the rest of the channei.

‘The correction factor n, which is equal %o cz"/cl', has
been derived in an approximate form in the appendix of reference 10,
The airfoil is replaced oy a row of vortices, which are imaged in
the walls of the channel. The 7 factor for an individual vortex is
calculated., The final n factor is obtained by averaging n for
gach vortex with a loading derived from thin airfoill theory as a
weighting factor.

In figurc 9 the lift coefficicent CZ“ ig plottea as a function
of the limits of integration, which were taken symmetrically about
the origin. The value of CZ”’ obtained by integrating the pressure
distribution 1.75 chord lengths upstream and downstream of the origin,
is 0.493. When this value 1s divided by the valuve of c¢y', derived
by integrating the pressure distribution on the airfoil, a velue ¢
of 0,918 is obtained., The valuc of 17 obtained by the method of
reference 10 is 0.900. The valuc of c¢;', obtained from the approx-
imate valuc of 1, 1is 0.548. The correction factor obtained by the
approximate method is satisfactory to the order of the approximate
theories previcusly discussed.

It is also possible to obtain the moment on the airfoil about
any point by integrating the moment of the pressure (accurately
calculated) cn each element of area on the channel walls, A factor
analogous to the n factor can be so determined that the integration
for the moment over a finite range may be extended to take into
account the regions on the channel walls a great distance away.

COiCLUSIONS

The analysis and numerical calculations of the present paper
lead to the following conclusions: ”

1. The method of conformal transformation by means of the
Cartesian mapping function provides & satisfactory numerical solu-
tion to the problem of obtaining the local velocity corrections for
an arbitrary airfoil in a channel for the case of two-dimensional
frictionless incompressible flow, -

2. If closeness to the velocity correcticns cbtained by con-
. formal mepping is used as a criterion, the second-order Goldstein’
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correction is more accurate than the first-order image vortex and
doublet correction for thin airfoils at small angles of attack in
giving velocity corrections in the examples calculated.

3, If it is necessary to obtain a higher-order correction than
the second, the method of the Cartesian mapping function 1s probably
more convenient to use than the Goldstein type correction.

4. The channel 1lift coefficients obtained by the two approxi-
mate theodries are in good agreement with the 1ift obtained from the
mapping velocity distribution; the lift corrections obtained by the
two approximate theories are not in gool agreement with the correc-
tion obtained by mapping results.

S. The existing method of finding the lift coefficients from
the velocity distribution on the channel walls has been satisfac-
torily checked.

Aircraft Engine Research Laboratory,
Netional Advisory Committee for Aeronautics,
Cleveland, Ohio, December 4, 1948,
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APPENDIX A
DERIVATION OF THE RELATIONS BETWEEN THE REAL,
AND IMAGINARY PARTS OF TEE CMF

Inasmuch as the CMF 2z - ¢ 1is regular within the annulus and
also on the bounding circles in the p-plane, it may be expanded in
a Laurent series, which is valid in the annulus and on the circles
bounding the annulus. Thus

o .
z - = ax(p,0) + iby(p,9) = > Cp° (A1)
£
From equation (Al) the following expressions are obtained:
. = . B
axy (%) = ag +Z((an+a_n) cos nyP- ,;i,.(bn -b.n) sin nY
T - 1
= o
by1(9) =by + > (ap-a_py) sin np+ Z:.(an’b-n) cos ng
1 1
> (A2)
i ®
\ N/ - -n\ .
AXZ(Q)zzaO +:> xanqn-ka_nq n) co8 nyY il> \bnqn-b_nq n; sinnyp
1
el \ 2
\ RN 0Y s LN o0 -n) )
Ly (Q) =bn + > -a sinng+ > (b +b_pd T co8 X
UZ(Q) 0 : \\anq -n¢ ; 1 A\ n4 n / \pi
1l 1 _

The values of a, &and by, can be found by means of Fourier's rule
in terms of the CMF.
When agn and by are evaluated, the conditions of consistency

that are necessary conditions for the regularity of the CMF in the
annules appear as

{' 21 r2n A
2nag = bx, (9) dp = } b3,(9) a9
Jo Jo
S (A3)
o 2
21tbn = by, (9) do = Oyo () ap
0 0 * Jo 2
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Four relations are desired: Ax; and Ax; expressed in terms
of A4y; and A4y, and, conversely, Ay; and 4y, expressed in
terms of Ax; and AXp. The derivation of the expression for Ay,
in terms of Ax; and Axp will now be carried out. The other
relations will follow analogously.

Through the use of the first and third equations of (A2) and

through the use of Fourier's rule, the coefficients a, and b, are

evaluated, As a result of the calculation, the following equations
are obtained:

L e+ I
= -n = = E
T gR.gm Q% - ¢
> (42)
-n n
. K™t - K § _I_{lq-cZ!
n -~ - -n = - !
gt - ¢~ gt - g B |
where
1 [ 2% N {'27{ )
D == !o A%y () cos ng 4y K == ! A%, () sin n@dg
—4.‘ ’ J
> (AS)
1 (" 2x 1 ierr
\ - 2 . / - -
Dy == ‘,o 0%, (@) cos n®P aY Ky = = !O sz(p) 3in nQ 4y

The values of the coefficients a, and b, are substituted in the
infinite series expression for Ay; given by equations (A2). The
values for K, Ko, Dp, and Dy as given by equations (A5) are also
used. Thus

<

l.\\ n+ -1 2%
by, (@) =bg+= > e 8%y (@") (sinn@' cos np-cosn@' sin ne)de’

HL_‘.q.n- q-n_a 0
1

[¢ 9

~ 2n
+ }.\\ __2____5 [ Ax5(9') (cos n@' sinnP ~sinn®' cosng ) dQ’
ﬂ/ an__q_ .JO
1
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Ayl(@, = by + % :> i——ill—-Jf Ax1($ ) sin n(p!-¢p) 4o’

pZn

: J, %@ sinaE-0) @ (16)

gt - gD

HL\/){S

Now let f(®) be a function that can be developed in a Fourier
geries for O g ©< 2n.  Then

[ee]

/ N
ﬁz"f(cp') = cotKg-p—%"-) 2P => l;znf(ca) sin n(@ -®) dg' = 0

m=1 (A7)
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Inasmuch as the series of equation (A8) are uniformly convergent as
are the series of equations (5), the summation and integration may
be interchanged in equation (A8) to yield equation (5).
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THE NUMERICAL EVALUATION OF THE CARTESIAN MAPPING FUNCTION

The determination of the functions Axy; and A4xp from the

given functions Ay; and Ay, was based in this paper on numerical
integration of the first two equations (5). The equations for

Axl

and Axp, when the constant a; has been set equal to zero, are

—

1

ag!

(o]
,.27[ T zn
L 2 .
px, (9) = -‘;J by (99 | & oot (229 ST 8 g
0 “ él 1-g2n
. : . |
- (o]
2 ¢ -
-3 { by, (90N 2L sin n(p'-¢) 49"
n JO 4_—, l_ozn
2 <, 2
n o) . N 2 n '
JO /l . 1-q&% !

55 sin n{Q'-@) do!

+ E ( 8y, (o") :
L / ,l~q

.

-t

If the range of @ is divided into 2n equal intervals whose length
ig ©, 1if the values of Ay are given at the end points of the
intervals, and if Ax 1is desired at the same points, approximate

integration will yield expressiong of the following form:

2n-1 2n—1‘.

2%, (@) = ey + dy) Ay (9 + K8) + \: ey Ayp(@+ k3)
k=0 =0
2n- Z\n-l_‘

b3, (9) = - / oy +.dx) byp( @+ kD) - U ey 6y (@ + kB)

}x—- k=o

YA

(B2)

> (B1)
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The values of c¢j have been calculated in reference 1 by means of
Simpson's rule and other simplifications for use with the CMF of
simoly connected regions. The values of d,, and e, may be
similarly obtained. The value of ¢, asg calculated in referasnce 1
is

-

Co=o
o B B Brsind
17 6x 2 21 sin &
o _ =5 cob 8 8% +8in?d
2n-1 T Bx 7V 2 2n sin d 7 (B3)
8 '
O = == cot = (k oda)
M c :
C = %% cot E? (x even) i

. |
In the present paper, because the number of intervals waz an integral

multiple of 6, Weddle's rule was used for the evaluation of 4y

and ey.
The values of Cx ere glven in table 4 for the cases of

2n = 24 and 2n = 48, The values of dy and ey contain the

parameter q. Hence, these coefficients rust be evaluated anew for

each approximation.
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TABLE 1. - ORDINATES OF 12-PERCENT THICK ATRFOIL
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[ From table 1 of reference 1]

tation |Ordinate |} Station {Ordinate
(percent (percent
chord chord
fron from
nose) nose)
0 O 50 5.880
1.25 1.425 55 5.540
2.5 1.900 60 5.025
5 2.585 65 4,415
10 3.540 70 3.750
15 4,250 75 3.060
20 4,820 80 2.350
25 5.295 85 1.685
30 5.655 90 1,080
35 5.900 95 .510
40 6.000 97.5 .260
45 6.010 100 0]

National Advisory Cormittee
for Aeronautics




37

E7 A28

NACA RM No.

SO ANVKOYIV ¥OJ IILLINKOD
AYOSIAQGY TVNOI AVN

0 |v010° Joceoo°- | o loszo’t|p¥se |99z0°- | s200° |LS¥T0°- |8SSZ0°- | cBCT T |PSBT" X
0 |4800° 128500°~ | O |p120°T|B6SL° [0620°~ | €¥10° |.9020°~ |co8TO°~ | 65S0°1|vETH* 23
.0 [6900° [28200°- | O |2rT0°T|p0232°1T J6920°- | LT00° [19220°~ |820T0°- | ¥666° |S659° 12
0 |4¥00° [S€600°- | O [T400°1{s¥08°T [8910°- | £L00°-|06130°~ |ge¥00°~ | TLv6° |6¥28* 02
0 |5200° [S2010°~ | © |0200°T[LL2L*2 {0800°- | T0TO"-|68610°~ |£OTOO°- |LT88° |STS6° 61
0 o [rsoto*- | 0 |oooo°1| oo 0 o|cost0°~ 0 0|t000°T 81
0 16200°~|520T0°~ | O |0300°T|4L3L*2 0800~ | T10TO° |68610°~ |cot00°* |L188° |STS6° L1
0 |4v00°~|5£600°= | O |1.00°T[cvos T [89t0°- | €L00° |06120°~ |ScrO0°® |Tive® |evas: 91
0 [6900°-|.8L00°- | 0 |2¥10°1|%033°T |6920°~ | L100°~|19220°~ |820T0° |¥666° |S69° ST
0 |4800°-[¢8S00°~ | O (¥T30°T[66SL° [0620°~ | €¥10°-|29020°- |co8TO® |6950°1|PETP" "
0 |#010°~ J0££00°~ | O |0820°T[¥¥Se® |9920°- | S3c0°~|LSKTO°~ [B83S20° | ¢BCT 1 |PSBTC 1
0 [£110°=|39000°~ | 0 |21£0°1[9820°~ [6900°- | 26€0°~|0Lr00°~ |8L620° |¥9s1°1|9svo°~ 31
0 |T110°~-[1$300° | O 16630°T|2T1¥°~ f9.00° |<£9¢0°-|$SS00° [sse20° | 4s91°1 [tSL2 - A
0 [vOT10°-l9cs00° | O [9520°T|aST8°- j9910° |S1c0°-[6¥PT10° |[0B920° |TTST°1|B96H *~ ot
0 [9800°~198L00° | O |6LT0°I[OPLE°T~[0220° |L220°-|8¥120° |STT20° |002T*T[9.69°~ 6
0 [2900°- |08600° | O |¥600°1|6ss8°1-|9s20° |8910°-|0S920° |s6¥TO* |SB0T*T |T098°- 8
0 [ce00°- [rOTT0° | O [4200°T|LLiL®2-{£820° [L600°-|66620° |[61800° |1310°T |L¥96°~ L
0 olsv1t0° | 0 |0000°T| e -{s620° 0|2r1£0° 0 0 [2000° 1~ 9
0 [ecoo* [pOTT0* | O |L300°T|sLLL°2-|£820° |1600° |66620° |81800°- | 13T0°T|Lbo6 "~ g
0 |2900° [08600° | O |¥600°1[6SS8°T-J9s20° |[8910° |oS920° [sevt0°- |ss8OT°1[T098°~ v
0 [9800° [98400° | O |64T10°1[0¥23°T~0220° |L330° |8¥120° |ST130°~ | 002T°T |9L69°- £
0 [¥0TO* [9¢500° | O |9920°1|2518°~ [99T0° " |s1g0’ |6¥¥10° |o¥920°- |TTST°1 8960 - 3
0 [tito: [Jtsz00° | o |6620°T|atir*~ l9L00° |c9c0® |SSS00° |S$620°- | LS9T°T [TSLa - 1
0 [e110°0 |5¥000°0c-| 0 |2T£0°1[9820°0~ |6900°0~| 26£0°0|0LF00*0~|8L630°0~| ¥921°T [9S¥0*0~| ST X0
AR_| _op A S| _ep. 4
2hop | 2xvp xv |%4v) Fox | 2ty Toop | Txvp Txv e 18 (33p)
®
STTea Touwey) 130343V

[L900°0- = 1 €506 = 36 £50.2 = L6 1506 = No  €1302°0 = b]

00 40 MOVLLY 40 FTONV IV TIOJUIV dHOd NOILONNA ONIJd VM "NVISALHVD ANV NOILNAIHISIA ALIDOTHA =°Z ITAVI




NACA RM No. E7

A28

TABLE 3.~ VELOCITY DISTRIBUTION AND CARTESIAN MAFPING

FUNCTION FOR AIRFOIL AT ANGLE OF ATTACK OF 4°

[a = 0.2041; oy = 94°; @ = 274%; 0z = 89.91°; T = -0.0063]

Airfoil Channol walls
\ v dix, | day v

cl 1 1 Lx 2 Ax, | d&xp Wiy
0x7.5]0.0152 N.0735 |-0,0294010,01005 10,0376 }0.0033 | 0.0236 |0.9730 0 [0.00591]0.011s| ©
1 =+1010 1,0709 | «=.02840] 01511} .0372} 0110 ~.1917} .9719 0 L0073 L0109 O
2 -.2168 1.0617 '00261‘5 001983 -.0355 00185 -03850 09703 (o] .00875 aGlOl O
3 -03308 R.OL19| =.02380] 02415 ] .0316] .02l | =.5838] .9686 0 01000, .0090] ©
L -osk17 B.0133 | =.02028| .02795 | .0260] .0291] 47920} .9670| © .01107] .o070{ ©
] ~e54B6 | .9822] -,01622] .03095 | 0203 | 40330 f=1.013L| 9659 0 01198 .0062{ ©
6 o693 | 9L6L| ~.01182] 03317 OLL5 | 0356 f=1e25L9| 9657 0 .C1267] OO4S{ ©
7 ~o7415 | .9036] -.00720] .03L6S | L0088 | 0369 |=1.5261| 9668 0 +01316] .0027{ O
8 '0623'.] '82,-17 -.m?h? 003528 -.CX)IB 00355 "’1081136 09697 o] 0013‘*0 .0010 0
9 -.8928 | ,7729| .00212| .03502 |-.0020{ ,0313 }=2+2367{ 97L3 0 «01342]-.0009] O
11 -.9776| .3130| .01035| .03418 |=.0082| ,03L7 j=3.,6780| .9896 o] .01272] -.0045] o©
12 -+9950 | .5L85| .01525| .032L1 f=.019L | .0338 |-9.277911.,C001f O 01202} -.0082] o0
13 -.9963 [1.7756] .01925| .029L7 |~.0229 | .0299 §=3.655L [1.0121] © «01109{-.0079| ©
1h ~e977T [1.693L] .02312| 0263k [=.0252] .0250§=2.7736(1.02L9| © .00997}- .0094{ ©
15 «.9407 [1.5167] .02600( ,0229L [.027S| 0210 J=2.2L62 11,0379 0 0088)-.0106] ©
16 -.8875 1.L4150} .02862| .01915 }-.0295{ .0183 p=1.8613(1.0506] O .00718}-.0118] ©
17 -.81881.3589] .03075| .01518 |-.0315 | .0155 {=1.5513 [1.062L 0 .00555} -.0127| ©
18 -.1375 {1.3249] .03252| ,01096 }.C333| 0121 j»142863 [1.0731 ] .0038L4]=.0135| ©
19 -.6456 [1.3042] .03390| 400652 |.0350| 0085 j=1.0503 {1,0817 0 .00203}-.0140| ©
2 391 [1.28L3] .03522}-.,00305 }-.0380| 0005 =.6268 {1.0926 0 |-.0016L]|-.0141] ©
22 -.3287 [1.2803| .03502|-.0082L }.0392 }=,0047} =.L326 |1.09L8 0 |-.00343]-.0138| ©
23 =¢2152 |1.2790] .03L02]=,013L9 f.0402 |=.0301 | ~o2LLL 1,09LL 0 |=.00518]-.0131] ©
2L -.1004 |1.2772] .03235]-.01883 |=.0L06 |=.0162 | ~.0272 |2.0918 0 |-.006801-.0120| ©
25 L0143 {1.2652| .02970}-.02423 -.0390]=.0250] .1375]1.087L 0 |-.00831]|-.0107| ©
26 .1287[1.2392] .02558|=.02926 |-.0350}=,0364 | 3303 [1.081L 0 |-.00963]|-.0092| ©
27 «243911.1935| .02038|~.03325 |».0263 {=.0L28 | +529011.07L5| O |=-.01079]|-.0077| O
28 03592 1.11355 oouije ‘-03590 'o°160 -od-l56 ¢737° 1#0&7 0 '001171 --0%1 O
29 02‘732 100927 .0@28 "003712 "voddl '0%62 09585 100‘)‘76 o -.012&3 "000)‘2 0
30 5834 [1.0L75] +00215]=403695 | (0065 |=.0LLL | 2.2000 1.0L91 0 [=.01290]-.0027] ©
31 .6871[1.0093] -.00325}=.,03558 | +0153 j~.0395| 1.4721 1.0400| O [=.0131L}|-.0010| O
32 .7812| .9805| -.00815{=,03317 | +0216 |~.031L | 1.7876 [1.0308 0 |-.01315] .0008] O
33 .8621| .956L]| ~.01178]~.03007 | .0253 |~.02L0} 2.1793 {1.0221| O |-.0129L| .0023| o
3L «9260] 9328 -.01450|-.0267L | 40269 {-.0175] 2.7132 P.OL39| O |=-.01252] ,0039| ©
35 .9708} .9223] -.01642]-.02332 | .025L |-.0110] 3.6019 [1.0066 0 |-.01190| .0053| O
36 99481 .92u6] -.017L2]=.,01996 | +0225 |-.00u3 | 942633 N.0001| O [=.01112] .0066] ©
37 «9953] «8741| -.01750|=.01723 | 0185 |0 3,6385 1 9946 0. |-.01006| ,0078| ©
38 09723 8682] ~.01760(=.01526 { +01LO [=40012] 2.7L16] .9900| O |=-.00907| .0088] O
39 o928° 09(50 "'.01792 -‘01,3-70 00115 "00030 202091 098& ° "000785 ow% 0
Lo .8653| .9190] -,01850]-.01229 | .0202}-.0051} 1.8208 | .9836 0 1-.,00654] .010L] ©
Ll .78611 .9307| -.01932|-.01099 | »0099 |-.0080| 1.508L | «981L 0 |[-.00511} .0110| ©
L2 .6932] 5L27] =.02050] «,00968 | .0107 [-.0116] 1.2411{ .9800] O |-.00362| .0N6| ©
hj 05898 .9608 -.02218 -.00813 00136 -.011&1 1.0030 09789 o -000206 00120 0
L L796] .9876] ~.02L25|-.0059L | L0190 [-.0148] .78L2] .9780] O |-.0c0QLB| .O0123| O
LS .3653|1.0142] -.02620] -.00300 | 028 |=,00L6] 5784 ] 9772] © 00116 L0124 ©
LS .2u85)1,0L1l] -.02788] 00061 | .0308|-.0127] .3809| 9762} O «00276| 0123 ©
“7 o]’lh 10%69 ‘00292 Ooxol 00362 -.006)4 .1881 097h8 o OOGJ}-, 00120 O
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TABLE 4,

~ COEFFICIENTS FOR CALCULATION OF CARTESIAN

MAPPING FUNCTION FOR SINGLE CONTOUR

(a) 24-point

scheme

b

Cx

k

Ck

s
HOWOWDNOOWNMIPUNEFO

,42564
20734
.06706
.09623
.03620
.05556
.02131
. 03203
.01151
.01489

12
13
14
15
16
17
18
1S
20
21
22

.00366 | 23

0

-,00366
.01489
01151
.03208
.02131
.05556
.03620
.09623
.06706
~,20734

-.42564 !

(b) 48-point

scheme

5

¥
v

Ck

X

Ck

R~ el v
D~ O U DS

[
w0

20
21
22
23

*,.J
OO NOUII LN KO

0

42470
.21099
.06882
.10367
.04092
.06706
.02816
.04811
.02C79
.03620
.015e4
.02778
.01218
.02132
.00528
.01604
.00685
.01151
.00472
.00744
.00276
.00366

.000S1 |

24
25
258
27
28
29
30
31
32
33
34
35
386
37
38
39
40
41
4z
43
44
45
48

.00091
.00366
.00276
.00744
.00472
01151
. 00685
.01604
00928
.02132
.01218
.02778
.01584
.03620
02079
04811
.02816
.CB8706
.04092
,10367
.06982
-.21099

)

471-,42470

National Advisory Cormittee

for Aeronautics



NACA. RM No. E7A28 . Fig.

Channel wall H'—
A~
<A Y
a N
T e e e A
d .
Y e e e
h Center line of channel
Y -—H , Channel wall
d —
-plane

NAT IONAL ADVISORY
COMMITTEE FOR AERONAUT ICS

A' B

p-plane N

Figure 1.~ Tfansformation of flat plate and
"channel 1nto two- concentrie circles,
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Fig.

Velocity distribution, Vcl/V

NACA RM
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Figure 4,- Coﬁparison of velocity distributions in channel

obtained by two methods,
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Figure 6.- Comparison of velocities on airfoil ln free
stream and on airfoil in channel for a = 49,



(b) CMP on outer circle.
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Figure 7.- Cartesian mapping function for airfoil in a

channel at-a = 40,
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Local velocity correction, Av/v

Fig. 8 NACA RM No. E7A28
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Figure 8.~ Velocity corrections for 12-percent-thick airfoil,
a=4°, ¢/h = 0,5,
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