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RESEARCH MEMORANDUM 

EXPERIMENTAL INVESTIGATION OF A PRELOADED 

SPRING-TAB FLUTTER MODEL 

By N. H. Smith, S . A. Clevenson, and J. G. Barmby 

SlJ1-1MARY 

An experimental investigaMon "Tas made of . a preloaded spring-
tab flutter model · t o determine the effects on flutter speed of 
aspect ratto, tab frequency, and pr eloaded Gpring constant. The 
rudder was mass -balanced, and t he 'f lutter mode studi.ed was essentially 
one of three degrees of freedom (fin bending coupled with rudder and. 
tab oscillations). I nasmuch as t.he spring was preloaded, the tab­
spring system was a nonlinear one. Frequ.ency of the tab was the 
most significant parameter' in this study, and an increase in flutter 
speed with increasing frequency is indlcated. . At a given frequency, 
the tab of high aspect ratio 1s shovm. to have a slightly lower 
flutter speed than the one of low aspect ratio . Because the frequency 
of the preloaded spring tab Wa.s found to vary radically with 
am.-pH tud.e, t he flutt.er speed ' decreased with increase in initial 
displacement of the tab . 

INTRODUCTION 
.'< ••• 

Fin- rudder-tab flutter has been found to be a significant 
problem in airplane design . An inve stigatton of tab flutter has 
consequently been made at the Langley Memorlal Aeronautical Laboratory 
of the National Advisory Committee for Aeronautics . The results of 
flutter tests of a vertical tail assembly for a medium bomber are 
re'Ported in reference 1. I nterest in the effects to be obtained 
,·,i th a preloaded spring in the rud?er-tab-contr ol circuit led to the 
present investigation, in which tests were made of a fabricated tab­
flutter model of rectangular plan form . 

The idea of the preloaded spring tab is many years old . A 
description of this mechanism is found in reference 2 . Before an 
attem'Pt is made to analyze the preload.ed spring tab, a brief 
statement concerning the functions of a nonpreloaded spring -tab 
type of control is considered deslrable. One of the features of the 
nonpreloaded spring-tab control, which is equipped with a ,,,ealt spring, 
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is that it enables a pilot t o attain lishtnes8 of control at high 
speeds without close aerod~la~c balance and the attendant risk of 
overbalance, This type of control is similar to a free ser votab 
control . However, at low speeds, a stiff spring (irrev~rsible 
control) 1s desirable to retain positive action with appropriate 
pilot "feel" as ' obtained in the geared-tab control. The use of a 
stiff spring is also advantageous because it reduces the danger of 
flutter to which a weak spring~tab control is subject . The preloaded 
spring-tab control (very stiff at small a.mplitudes ) has been 
suggested as a means of combining the desirable features of the non­
preloaded spring tab at both low and high speeds . The increase in 
stiffness can make the system suffid,ently irreversible at small 
runpli tudes to eliminate t.he necessity of mass balance. The resultant 
saving in weight may be ap~reciable. Such a pre loaded mechanism 
presents a noill.inear problem dependent on the amplitude of the tab . 

Except for t1is nonlineari ty of t he spring constant, the 
flutter para:!C.eters for a praloadeo, spring- tab system are the same 
as those for a nonpreloar~ed s'Pring-tab system . SOllie of these 
parameters are fin, rudder, and tab natural frequencies and. stiffnesses, 
moments of inertia, mass and, aerodynamic balanCing, tab product of 
inertj,a, gear rati.o of tab movement compared to ruddbr movement, 
rUd.d.er and tab a8p,:o~ t ro,tios, and. damping . Only a few of thqse 
parameters were investigated for the present study Hith the main 
emphasis on the e1fect of the preloaded spring type of control. A 
theor etical t ab- f lutter analysis was not undertaken at this time . 

SYMBOLS 

dcg d.istance from center of gravity of tab to tab hinge line, inches 

f tab experimental frequency with rudder s tationary for 3.250 tab 
deflection, cycles per second. 

a'Pproximate expori::r'.ental tab frequency for ' 8.250 tab deflection, 
cycles pcr socond. 

tab calculated natural frequency for 8.250 t ab deflection, 
cycles per second. 

I rudder moment of' inertia about hinge lIne;· inch-pound- second2 
r 

It tab moment of inertia about hinge line, inch-pound.-second2 
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K produ~t of i nerti€)" inch-pound- Mdond2 (J xy cUn, where x :Le 
, .. 

distanc e f r om tab-hinge line to element mas s dm in t ab, 
:tma~~1S distance from r udder hinge line to s rune element 

k spring con stant of spring in ,preloaded spring mechanism, 
pounrls per inch 

kl piano-vnre spr ing cons tant, pound s per inch 

3 

k2 appro~imate combined', .spring constant for 8 .250 t ab d~fle<:) tion, 
pounds pe r i nch 

n gear rat io, t ap deflection divided by Y'udo.er deflection 
. . ~ . 

z 

, , , 
flut t er speed at sea level, mile s per hour 

static t!npa l ance of ~ab, . ·inCh-pound.S (!s (1x, where S i s 
\:lnba~anc e of tab per ) uriit of tab ' spanwi se . distanceand. 
i s spani,rise distanc e " : 

. ' 

half maximum amplitude of preloaded spr ing system, inche s 

Fo preload f orce in preloaded sprlng sy s t em, pounrIs 

m :mass of preloaded spri ng system, -pounds- second2 -per inch 

M Mach number 

AP ARATUB 'AND TESTS 

De scr iption of Mod.el 

x 

A t e "t model v!i th a rectan'gular plan f orm ,-laS constructed for 
thi s experiment al investigation,. The mod.el con sisted. of a horizontal 
and vertIcal t~il a ssemb"ly with the hori7,ont a l surface servine 
pr ime.:1"ily a s a support f or the vs'rtical ·fin ·,r udder··tab c.omb.lnatlon 
( f i g . 1) . The total we i ght . wa s 325 pounds with the r udder and t ab 
wei f!.,hing approximately eo' pO\:lnQS when mas s -balanced . The moment of 
inertia of the r udder was 20 .35 i nch-pomd- second2 . A diagram 
showing ·the t ab linka ge i s given in f i gure 2 . Cross - , ecti onal views 
of the te s t conf i gurations use'a in t he pr esent .1mTsstigation are 
shown in fi gure 3. 
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In one group of tests, a tab with aspect ratio of 2 .78 was 
used with the model arr~gecl as follows (fig . 3): 

Configuration 1 - Geared - tab~ - n =-0.5, ~There - n i s the ratio of 
tab deflection (relative to the rUdder) to 
rudder deflection 

Configuration 2 - Preloaded spring tab, control link in place, 
varying t ab moment of inertia 

Configuration 3 -- Preloaded spring tab, no rudder control (control 
link removed), varying preloaded spring 

Configuration 4 - Preloaded spring tab, piano-wire spring in 
rudder control (piano-wire spring system 
replacing control link), varying piano-wire 
sprtng constant 

In a second group of tests a tab with aspect r atio of 6.25 and ­
wi th the same area as the other tab ioTas used wi th t he model arranged 
as follows (fig . 3): 

Configuration 5 - Preloaden. spring tab, no rudcler control _, varying 
preloaded spring constants and t ab mo~nts of 
inertia. 

Configuration 6 - Preloaded s~ring tab, piano-wir e -spring in rudder 
control, varying both piano-wir e and preloaded 
spring constants. 

In addition, t he model was provided ivi th a cable -and spring weight 
system which c01J~d simulate the restraint in the control B,ystem of 
a full-scale airplane . 

Instrumentation 

Six midget accelerometer pickups and one rud_der and one tab 
induc tance position indicator "Tere installed in the flutter model 
(fig . 4). A pickup was in each corner of the rudder, one in the 
front upper fin, end one in the middle of the right side of the -
horizontal stabilizer . One position indicator was at the lower front 
corner of the -rudder , and the other a t the middle of the tab. 
These position indicators and pickups were used in conjunction with 
bridges, amplifiers J aTld a recording oscillograph . The recording 
eqUipment, which includes that used in shaking the mo e1, is shOim 
in figure 5. -

-------- ---~. 
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Installation 

The model was mo~ted in the rear part of the test se0tion of 
the Langley 11igh- speed 7" P.Y" . lO-foot tun.l1.el . TYTO mount8 constructed 
of s teel strea.mline tub ing w~re securely bol teo. to the floor of the 
tunnel, one on either side of the model. ,The. model vTaS supported 
on four cantilever steel leaf springs rigidly bolted to the mOlmts ani 
a.nd hinged. on ball-bearings t o the model at the emls of the horizontal 
s tabilizer (fig . 6). Cabl es connected t o the t op rear of the rudder 
provided a means t o s tart and. stop flutter. These cabl es were 
brought t ogether by a pulley system over the tmnel sec t ion. Another 
cable connected to a spring-tr ip mechanism ",as used to give the tab 
an initial d isplacement and SUdden release, 

Leads to the electronic eqUipment were brought out through the 
tU-DLel-f.loor turntable . A steel ' safety net "TaS insta lled approxi. ­
mately three feet behind the model to minimize damage of the tunnel 
i n case the model failed . 

Preliminary Vibr ation Tests 

Natural frequencies and mod'es of the tab -flutter mod.el w'ere 
first determined in preliminary vibration tests with the model on 
rigid mounts on a bedplate in the laboratory . For thi!:? stmly .. a 
movin g coil shaker was used. The results are given , i n table I . 

Prior to t he f~rst wind-tunnel tests the frequencies were 
checked and confirmed. vTi th the model mounted. in. t he tunnel. (See 
fi g . 6.) The frequ811cy ' of. the model mOlmte.d on vertical leaf 
springs, which s imulated fusel age side bend~ng , . was determined to 
be 600 cycles per minute . . The rudder was mass-ba lffilced for all tests. 
After ·a 'rel'ati vely weak pi ano-wire' spring system was substituted 
f or the control link, the rudder frequencY yras lov compared ,.,i th 
the tab frequency .• 

Curves showin decrements in amplitude f or the various spring 
combinations were obta ined by deflecting and. rel easing the tab. A 
typical record is sho,ID in f i gure 7 giving the shape of the decrement 
curve and the change in f requency "Ti th amp11.tu<J.e for a preload.ed 
spring tab . 

Because the tab oscillated at different ampli t udes in t~1e 
various configurations, it 1-I'as convenient f or purposes of correl a ­
tion to reduce aLl the t ab natural-fr equency data to frequenc ies 
at the t1mnel tripping .displacement of 8 .25 0 • This procedure led. 
to the frequency analysis of t he p~eloaded spring system given 
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in the appendix in which three approximations to the experimental 
condi tions were considered.. These approximations were obtained 
by three methods: Method A' is baseo. on the maximum displacement 
intercept of the spring system; method B, oD! the differential 
equation for one-quarter cycle of the motion'; and. method C, on 
equal strain energy. Results of these an8~Y8es are given in 

figure .8; in which frequency ratio 2~f I~ is plotted as a function 
. . lac 

of preloaded-spring-force ratio --.9.. . 
Fo . -' 

Method 0, based on equal strain energy , gave frequencies t oo 
high . Method B ,.as the most rigorous mathematically, but even 
this rrie"thdd neglects the friction which is present in the actual 
model. ' The approximation based on the maximum displacement 
intercept (method A) gave tab natural frequenci es closest to the 
experimental values and this method was therefore used in all 
calcluations of the tab natural frequencies . Figure 9 shows the 
comparison of the results obtained. by method A with e}.-:perimental 
frequency dA-ta. 

In some tests the control link was replaced ,nth a piano-wire 
spring system (figs . 2 and 3) . By use of a f orce-displacement 
analysis of the complete tab-rudder linkage system, the effective 
constant of the preloaded spl'ing system ka was combined 'vi th t he 
piano-wire spring constant kl to give the tor sional stHfness 
des i gnatecl a s the combined spring constant k2 . \Vi th the knmTledge 
of k2 ' and the t ab moment of ine·r tia It, the tab natural frequency 
f 2 of one configuration for an :a.lllplitude of 8 .. 250 

.. Tas calculated . 
These calculated values of the'tao' natural frequency agree r~asonaoly 

. well with the experimentally dete~n~d ~requencies, f ]-, . as given in 
table II. The few cases of l ar ge 'Qevlatlon are probabIy caused by 
variations in damping . 

Flutt er Tests 

O'scillograph records were made to record the natural f r equencies 
of t he model at zer o airspeed for every run in the tlmnel . Other 
oscillograph records were taken at various intervals of speed up to 
and beyond the initlal flutter speeo_ . For each record the tab was 
tripped to develop possible flutter at low speeds . In the neighbor ­
hood bf flutter the tab was tripped at airspeed increments of . 
10 miles.per hour . The average tri pping displacement was 8 .25 0

• 

AI though an attempt "las ma e to extrapolate to the flutter ­
speed point by plotting aerodynamic damping against speed for various 

-- _ .. -- -,-- ---

- I 
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speeds of one configuration, no particular success ~a8 attained ' , because of scatter in the data. The ,flutter point was determined by visible means ' at the initial tripping displ~cement and is believed to be accur,ate wi thin ±~ ,miles 'per h,our. 

. ' A sunrrnary ' of the results, is foUnd , in :t,able II, .. ' . 

.. 
In the tests of cohfigurat ion 'l (geared-tab case) flutter did not occur, nor ~~s !lutter eX),Jected sinc,e, the s1,Jring sy'Stem "Tas comparatively stiff. Tunnel speeds 'up to : 300 mile,s per hou.r were attained with no tendency f.or th'e model to flutter. Tunnel speeds for subsequent tests were limited to les? than 200' miles per hour in order to ' save the model. 

7 

In the tests of configuration 2, -the moments ,of inertia of the tab were changed successively from 0 .0613, inch-pound~second2 to 0.0776, 0.1370, and 0 . 285J.~ inch-pound-second2 by adding distributed weight along th~ tra~ling edge of the tab. (For comparison, the moment of inertia of the tab stu~,iec1. in reference 1 was 0.1020 in.­Ib-sec2 .) In tn-is ' set or'tests there '-las' no, fI,utter. The probable reason for the lack of flutter ,.a s again the relatively high spring stiffness of t4e system. 

In order to obtain flutter in the desired speed range, the control link ,.as removed, and the spring stiffness of the tab system was then materially reduced ', With the ,'removal ' of this 11nk (configuration 3), ' flutter occurred dt~ing the tests. This flutter was essentially a t hree -d.egree-of-freedom flutter involving fin bencUng coupled with rudder and t ab oscillations about their respec.tive hinge lines (tab lagging by 30°).. A typical oscillo­graph flutter record is shown in figure 10. This ,record shows the relative positions of the various 'components of the model and the acceleration (g ' tmits) of each of these components during the first 0.45' second of flutter. ,During the flutter, the tab ampli tude '-Tas sufficiently large to bend the tab connecting link. This link, a duralumin ' tubo, was r eplaced with one of steel. 

The effect of changing the preloaded spring was investigated. Springs of 8.3 pounds per inch with 2 ,25 pounds preload, of 33.3 pounds per inch with 11.3 po~ds prel oad, and of 83 pounds per inch with 21.6 pound~ pre19ad were used. Flutter speed vf of the model increased with an increase in preloaded spring constant (fig . llJ. , The ' s1.gnif~cance of this figure is quali tati ve. 
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It was also ' observed that 'increasing' the 'initial tab dispLacement 
caused the model to ' flutter at a iower speed~ 'With an S.3"~pound­
per-inch spring; flutter 'was encountered' at 102 miles :per hour 
for a large tab deflection; whereas at i50 miles per hour the 
slightest disturbance initiated flutter with rapidly increasing 
amplitude. This dependence of initial flutter speed on amplitude 
has many practical implications "1:lecause the roughness of the air, 
the presence of gusts, and the type of maneuver have a definite 
effect on the initial deflections of the tab. Table II shows the 
change in flutter 'speed ' vi with the variation of the parameters 
and indicates particularly the importance of tab natural frequency. 

. " . 

In the tests 'of configuration '4 a piano-wire spring was 
installed in the control system (fig . 2) and thereby increased the 
effective combined spring constant of the tab-rudder combination 
as compared with the spring constant for the configuration with 
no rudder control. Flutter similar to toot obtained in the tests " 
of confi~ration 3 occurred at higher spe~ds. At these hi~er 
speeds this flutter was more 'difficult to control and emergency 
shutdowns of the tunnel 'were necessary in order t o save the model. 

For configurati on '5, ,the tab was replaced with one of higher 
aspect ratio and the moment of inertia of the tab was varted from 
0.0246 inch-pound-second2 to' O.1017, 0.0885, and ,0.0780 inch-pound­
second2 • The ratios of products of 'inertia to tab moments of 
inertia K/It were determined. How'ever, the changes in K/1t 
were too small to indicate the variation of , vf ' with K/It. 

, ":W- ', . 
, ' 

In conjunction with changes in It, the effect of three 
different ,springs in the preloaAed spring mechanism was investigated. 
For ,the ,springs With the low constant no ;variation of vf with , 
It was obs,erved. For the spring with the higher constant, vf 
increased with a ~ec:rease;in It as indicated in table II '. This 
result ma;r be explained by the following considerations. ' Lowering 
the tab moment of inertia caused the tab frequency to increase, 
other things 'being equal; thus, vf tended to :increase. ~O'tvever, 
the variation ' of vf with changes in ,It ' is greater and con­
saquently more easily 'observed 'at high frequencies than at low 
frequencies. .~ I 

The 'tests of configuration '6 were made to permit a s~udy of 
tab flutter ,wIth thecombined , sprfng constants varied by changing 
both the piano-'VTire and preloaded springs. This V'ariation 'in 
turn changed ' the 'tab frequency and consequently vf. N~a~ the end 
of this set tof tests, play in the linkage system bad become , 

,appreoiable and a ' 'flutter of low amplitude at 'S cycles per second , 
was noticed at 150 miles per hour. The amplitude was approximately 
which was the amplitude allowed by the play in the system. 
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It was not possible in all cases to measure the tab natural 
frequency at the: amplitude corresponding to the average tab tripping 
displacement of 8 .250 • For purposes of correlating and presenting 
the data the natural frequencies of the tab were calculated by ~sing 
a combined spring constant k2. The d,ata plotted in figure' 12 
show wide scatter, probably because of the variation in damping as 
well as the variation in the initial tripping amplitude. 

The effect of aspect r atio is small. Wlth 'all the flutter 
points on one graph, (fig . 12) there is an indicat1.on that, for 
the same frequency, the tab with the' low aspect ratio has a higher 
flutter speed than the one of high aspect ratio. This effect is 
in agreement with the results of an analysis made by W. R. G;riffin 
of Curtiss-Wright, Corporation, in wnich strip theory was used. 
HOI.,ever, the possibHity exists that the aspect··ratio ~ffect is 
due, at least in part, to spanwise coupling. . 

CONCLUDING :REMARKS , 

:Results presented of test's of a preloaded spring-tab flutter 
model indicated that, with a rudd.er mass-balanced and at a low 
frequency compared vT1th the tab frequency, the tab frequency 
appears to be the most significant parameter. Because the frequency 
of a preloaded spring-tab system vTas found to vary inversely with 
amplitude, the flutter speed decreased with an increase in initial 
displacement of the tab. Although the effect of aspect ratio was 
small, it was indicated that the tab with the low aspect ratio showed 
a tendency to flutter at a higher speed than the tab With a higher 
aspect ratio hav:i.ng the ,same area and frequency. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va. 
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APPENDIX 

METHODS OF CALCULATING THE NATURAL FREQUENCIES 

OF A PRELOADED SYSTEM 

The calculations of the natural frequencies 'of' a preloaded 
spring-tab system might be approached in several ways. For example, 
in ffgure' 13, the forces, displacements, and other parameters 
involved in such calculations are repr0sentea, to illustrate 
three methods of approach. ' Method A is based on the maximum 
displacement lntercept ,of the system; ' method B is based on the 
differential equation for 'on0-quartoIl cyc1e of the motion; and 
method C Is based on the concept of' 'equal strain energy. 

Method A ,,- The approximation by me'thad A proceeds as follows: 
Consider f irst the force-di'splaceinent diagram of a preloaded spring 
system. (Se E) :rig . l3( a) )". In -placo of t he 'act"ual sys t em AB C D, 
choose the path A 0 D along 'Thich the slope ka is alvrays finite 
and constant. The use of the effective spring constant ka 
mathematically reduces" the 'di scontinuous pro loaded spring system 
to a linear one in which f orce equals ka times displacement. 
The ~eometry of the fi gure shows that 

or 

k = k + Fo 
, a ' Xci 

The fre quency of the s inusoidal motiop is then given by 

which may be written nondimensionally as 
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Metho~ B.- For the analysis according to method B, the system 
and symbols are given in fi gure 13(b). The differ ential equation of 
motion may be expressed as 

mf + kx = -Fo (x < 0) 

mX + 10:: ::: Fo (x > 0) 

The solution of the eQuations is 

By proper choice of the original time, the phase angle 
eliminated. 

( 1) 

CJ, may be 

Although the motion 1s discontinuous, it is symmetrical abo,ut 
x = 0 so that it can be completely specified by an analysis of 
the motion betvTeen the point x = xo , vThere it starts from rest 
(t c: 0) ,and the point x = 0 it = _.L). Substituting these 

\ 4fb 
limits into eQuation (1) gives 

or 

and ,- -

o = - :0 + ~o + :0) coe I."~ib) 
or 
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In nondimensional form this equation may be' wri 'Gten 

1 Jk (2\ (1 ) -- , - = -) arc cos ---
2rrfb m rr kx 

1 +~ 
F o 

For zero preload, the nondimensional form reduces to the usual 
relation 

.' "' 

Metbod~.- In method C, the actual system ABC D (fig, 13(c) 
is repla88d b~ the straight line path HK, constructed so that the 
area (N , ~ Iii) eClualB 'area (N ' + p). The strain energy is oq,ual to 
the araa under the force - disp~acement curve; therefore, 

Energy. 

or 

kc = k + 2
F

O 
Xo 

The freCluency may be written 

or , nondimensionally, 

= lk x2 "2 c ~ 

" .' 

", 
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TABLE I.- FREQUENCIES AND MODES 

Mode 

1 

2 

3 

4 

OF TAB-FLUl'TER MODEL 

Frequency 
(cpe) 

7.5 

36.0 

64.0 

86.5 

. , 

. . 
Nodes 

Bottom of fin 

Bottom of fin and 
diagonal from bottom 
front rudder to top 
of tab 

Bottom of fin and 
through rudder and 
fin at 75 percent 
Bpan measured from 
baee 

Bottom of fin and 
diagonals from top 
and bottom of 
rudder to top and 
bottom rear of tab, 
respectively, and 
from bottom front 
to top rear of fin 

NATIONAL ADVISORY 
COMMI'ITEE FOR AERONAUTICS 
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Con1'1gu- Aepect 
ration ratio 

1 2.78 

2 2.78 
2 2.78 
2 2.78 
2 2.78 
2 2.78 

Con1'1gu- Aspect 
ration rat10 

3 2.78 
3 2.78 
3 2.78 

4 2.78 
4 2.78 
4 2,78 
4 2.78 

5 6.25 
5 6.25 
5 6.25 
5 6.25 
5 6.25 
5 6.25 
5 6.25 
5 6.25 
5 6·25 
5 6.25 
5 6.25 
5 6.25 
5 6.25 

6 6·25 
6 6·25 
6 6.25 
6 6.25 
6 6·25 
6 6·25 
6 6·25 
6 6·25 
6 6.25 
6 6·25 
6 6 .25 
6 6·25 
6 6.25 
6 6·25 
6 6.25 
6 6.25 
6 6.25 
6 6.25 

TABLE II.- TESTS OF A PRELOADED SPRING-TAB FLtJrl'ER MODEL 

Wi th Rudder Control Link 

It ~ dcS %dx It K/It 
f 

(~) (lb/in.) (lb/in.) (in.) ( in.-1b) (in.-1b-sec2) (cps) 

-------- -------- 1.81 6.32 0.0613 5.18 110.0 >300 

33·3 1.81 6.32 .0613 5.18 39·1 >200 
8.3 Very 1.81 6.32 .0613 5.18 20.0 >200 
8.3 high 1.98 7.26 .0776 4.78 16.5 >200 
8.3 2.50 11.04 .1370 4.23 14.2 >200 
8.3 3.28 19.08 .2854 3.70 9·0 >200 -

Without Rudder Control Link 

It 1t1 1t2 dcS Z 
1b/1n.) (lb/in.) (lb/in.) (in.) ( in.-1b) 

8.3 -------- 23.4 2·502 11.04 
33·3 -------- 109·0 2·502 11.04 
83.0 -------- 233·0 2.502 11.04 

33.3 3.6 171.0 2.502 11.04 
33.3 6.5 198.0 2.502 11.04 
33·3 10.8 216.0 2.502 11.04 
33·3 8.5 169.0 2.502 11.04 

8.3 -------- 28.2 1.28 3.38 
8.3 -------- 28.2 2·593 14.52 
8.3 -------- 28.2 2.437 10.a> 
8.3 -------- 28.2 2·375 8.a> 

33·3 -------- 92.5 2.593 14.52 
33·3 -------- 92·5 2.437 10.a> 
33·3 -------- 92·5 2·315 8.a> 
83.0 -------- 204.0 2.593 14.52 
83.0 -------- 204.0 2.437 10.a> 
83.0 -------- 204.0 2.315 8.a> 
8.3 3.6 63.0 2.593 14.52 
8.3 3.6 63.0 2.437 10.a> 
8.3 3.6 63.0 2.315 8.a> 

8.3 25·3 274.0 2·375 8.80 
8.3 8.5 108.6 2·315 8.a> 
8.3 16.2 181.0 2·315 8.a> 
8.3 36.0 332.0 2·315 8.a> 
8.3 18.4 202.0 2·315 8.a> 
8.3 55 ·0 548.0 2.375 8.a> 

33·3 3.6 114 .4 2·375 8.a> 
33·3 6.5 140.8 2·375 8.a> 
33·3 10.8 182.0 2·315 8.a> 
33.3 8.5 160.9 2·315 8.a> 
33 ·3 16.2 233.4 2·315 8.80 
33·3 18.4 263.0 2.3~ 8.80 
83.0 3.6 238.0 2·315 8.a> 
83.0 6.5 264.0 2·315 8.a> 
83.0 10.8 306.0 2·375 8.80 
83.0 8.5 284.0 2.315 8.a> 
83.0 16.2 357.0 2.315 8.a> 
83 .0 36.0 543.0 2.375 8.a> 

It f1 f2 
(in ,-lb-ssc2 KIIt (cpe) (cps) 

0.1370 4.23 1.10 2.03 
.1370 4.23 3·20 4.37 
.1370 4.23 5.60 6.44 

.1370 4.23 4.20 5.5 

.1370 4.23 6.17 5·9 

.1370 4.23 7.50 6.16 

.1370 4.23 6.10 5.45 

.0245 7.33 5.40 5.38 

.1017 6.42 2.20 2.61 

.0885 6.55 2.40 2.78 

.07a> 6.69 2·50 3·02 

.1017 6.42 4.90 4.74 

.0885 6.55 5.40 5.09 

.07a> 6.69 5.70 5.46 

.1017 6.42 5·15 7.17 

.0885 6.55 6.38 7.63 

.07a> 6.69 6.77 8.10 

.1017 6.42 4.36 3·90 

.0885 6.55 4.79 4.19 

.0780 6.69 4.05 4.45 

.0780 6.69 8.54 9.40 

.07a> 6.69 6.48 5.94 

.07a> 6.69 7.45 7.75 

.07a> 6.69 9.26 0.40 

.0780 6.69 9·36 8.10 

.0780 6.69 5.81 3.30 

.07a> 6.69 7.83 6.09 

.07a> 6.69 6.51 6.76 

.07a> 6.69 7.42 7·70 

.07a> 6.69 8.45 7·22 
,07a> 6.69 9·13 8.10 
.07a> 6.69 6.10 9·25 
.07a> 6.69 7.86 8.81 
.07a> 6.69 8.64 9·26 
.07a> 6.69 0.46 9.98 
.07a> 6.69 9·76 9.68 
.07a> 6.69 9.84 0·77 
.07a> 6 .69 2·92 3·30 
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vf 
(mph) 

104 
108 
130 

133 
170 
~a> 
~90 

1>150 
78 
85 
85 
85 
85 
85 
90 

100 
120 

70 
70 
70 

149 
114 
139 
149 

>150 
>150 
128 
149 

>150 
138 
176 

>190 
143 
157 
183 
167 
188 

>200 
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Figure 1. - Preloaded spring -tab flutter model. 
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Figure 2. - Tab flutter model shOWing linkage. 

---------------------------------

19 



20 

Configuration 1 

Configuration 2 

Configuration 3 
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Configuration 4 

Configuration S 

Configuration 6 

Figure 3. - Test configurations. 
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Figure 4. - Tab flutter model showing position of accelerometers and 
position indicators. (Dimensions are in inches.) 





Figure 5. - Electronic instrumentation of the preloaded spring-tab flutter model. 
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Figure 6. - Preloaded spring-tab flutter model mounted in the Langley 
high - speed 7 - by 10 -foot tunnel. 
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Figure 7. - Oscillograph record showing decrement curve at zero airspeed. Tab aspect ratio, 
2. 78; ~ = 0.137; 83 pound spring with 21.6 pounds preload. 
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Figure 10.- Typical flutter record. Aspect ratio, 2.78; speed, 150 miles per hour; 
M = 0.21; tab frequency, 6.40 cycles per second for a tab deflection of 8.25°. 
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Figure 11. - Flutter speed as a function of the square root of pre­
loaded spring constant. No rudder control; aspect ratio, 2.78; 

It = 0.137 inch-pound-seconds2. 
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Figure 12. - Flutter speed as a function of calcul-ated natural frequency 
for a tab deflection of 8.250 . Aspect ratio, 2.78 and 6.25. 
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Figure 13. - Methods of calculating the approximate natural frequency 
of a preloaded spring system. 


