RESEARCH MEMORANDUM

WIND-TUNNEL INVESTIGATION OF HORIZONTAL TAILS.
I - UNSWEPT AND 35° SWEPT-BACK PLAN FORMS
OF ASPECT RATIO 3

By Jules B. Dods, Jr.

Ames Aeronautical Laboratory
Moffett Field, Calif.

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS
WASHINGTON
April 22, 1948
SUMMARY

The results are presented of a wind-tunnel investigation of the low-speed characteristics of horizontal tails of aspect ratio 3 with unswept and swept-back plan forms. Two models were tested which had identical areas, aspect ratio, taper ratio, and airfoil section, differing only in the angle of sweepback and elevator area ratios. Data are presented for Reynolds numbers of 3.0×10^6 and 4.0×10^6 with the elevator sealed and for a Reynolds number of 3.0×10^6 with the seal removed and with standard roughness applied to the leading edge.

The major effect of sweepback, as measured from the tests of the two models, was to increase the rate of change of hinge-moment coefficient with angle of attack, to reduce the rate of change with elevator deflection, and to reduce the elevator effectiveness.

INTRODUCTION

An investigation of the theoretical prediction of control-surface hinge moments by lifting-surface theory has been undertaken by the NACA. The lifting-surface theory is a further refinement to the lifting-line theory to obtain more accurate predictions. This report presents the experimental results obtained on the first two of a series of models to determine the validity of the theoretical computations and the extent of aspect ratios over which they are valid. The comparisons with the theoretical calculations are not presented herein but will await the results of tests of models of aspect ratios 4.5 and 6.
Another equally important purpose of the investigation was to evaluate the effects of sweepback by a comparison of the results of tests of two models with the same area, aspect ratio, taper ratio, and airfoil section, differing mainly in the angle of sweepback.

The present investigation included the measurement of the lift, hinge-moment, and pitching-moment coefficients, and the pressure coefficients across the elevator nose seal of the semispan horizontal tails of unswept and swept-back plan forms and an aspect ratio of 3. The effects of Reynolds number, standard roughness on the leading edge, and removal of the elevator seal were also determined.

The NACA 64A010 airfoil section was chosen for the models. The aft 30 percent of this section is straight sided, thus simplifying control construction and balance.

MODELS

The two models tested in this investigation were of aspect ratio 3, taper ratio 0.5, and the 0.25 chord lines were swept back 11.3° for the unswept model, and 39° for the swept-back model, as shown in figure 1.

The airfoil section was the NACA 64A010 perpendicular to the 0.70-chord line for the unswept plan form and perpendicular to the 0.25-chord line for the swept-back plan form. The airfoil coordinates are presented in table I. The values listed as model coordinates were used for the models, since the true coordinates were not available at the time of model construction. Slight discrepancies between the model and the true coordinates are apparent, but they are not large enough to produce an appreciable effect upon the data.

Both models were equipped with sealed radius-nose elevators. For the unswept tail the elevator chord was 0.30 of the total chord measured perpendicular to the 0.70-chord line. The elevator chord of the swept-back tail was also 0.30 of the total chord; however, the chord was measured perpendicular to the 0.25-chord line as indicated in figure 1(b). In maintaining the same elevator chord ratio along the airfoil section line, the area ratios were of necessity different — 30 percent for the unswept model and 25.6 percent for the swept-back model.
The tip shape for both models was formed by rotating the tip airfoil section parallel to the undisturbed air stream about a line inboard of the tip a distance equal to the maximum tip ordinate, necessitating a short fairing of the tip nose into the leading edge.

Photographs showing the models mounted in the wind tunnel are given in figures 2 and 3. The location of the balance-chamber tubes is given in table II.

COEFFICIENTS AND SYMBOLS

The coefficients and symbols as used throughout the report are defined as follows:

- C_L: lift coefficient (L/qS)
- C_{he}: elevator hinge-moment coefficient ($H/qS_0\delta_e$) (See appendix)
- C_m: pitching-moment coefficient ($M/qS(M.A.C.)$)
- $\Delta p/q$: pressure coefficient across elevator nose seal (pressure below seal minus pressure above seal divided by the dynamic pressure)
- A: aspect ratio ($2b^2/S$)
- α: corrected angle of attack, degrees
- b: span of the semispan models measured perpendicular to plane of symmetry
- b': span of the elevator measured along the hinge line, feet
- $\overline{c_e}$: root-mean-square elevator chord aft of hinge line parallel to the plane of symmetry, feet
- $\overline{c_e'}$: root-mean-square elevator chord aft of hinge line perpendicular to the hinge line, feet
- δ_e: elevator deflection (positive when trailing edge of elevator is down, measured in a plane normal to the hinge line), degrees
- H: hinge moment, foot-pounds
L lift, pounds
M pitching moment about the 0.25 M.A.C., foot-pounds
MA first moment of the elevator area aft of the hinge line
 about the hinge line, cubic feet
M.A.C. mean aerodynamic chord, feet
q free-stream dynamic pressure \(\left(\frac{1}{2} \rho V^2 \right) \), pounds per square foot
R Reynolds number \(\left[\frac{\rho V(M.A.C.)}{\mu} \right] \)
\(\rho \) density of air, slugs per cubic foot
\(\mu \) absolute viscosity in poises
V velocity of air, feet per second
S area of semispan horizontal tail, square feet
Se area of elevator aft of hinge line, square feet

In addition, the following symbols are used:

\[CL_\alpha = (\partial CL/\partial \alpha)_{\delta e} = 0 \] (measured through \(\alpha = 0 \))
\[CL_\delta = (\partial CL/\partial \delta e)_{\alpha} = 0 \] (measured through \(\delta e = 0 \))
\[Ch_\alpha = (\partial Ch/\partial \alpha)_{\delta e} = 0 \] (measured through \(\alpha = 0 \))
\[Ch_\delta = (\partial Ch/\partial \delta e)_{\alpha} = 0 \] (measured through \(\delta e = 0 \))
\[\alpha \delta = -(CL_\delta/CL_\alpha) \] (elevator effectiveness parameter)

TESTS

The models were mounted on a turntable flush with the floor of an Ames Aeronautical Laboratory 7- by 10-foot wind tunnel. (See figs. 2 and 3.) Tests were conducted at dynamic pressures of 40 and 80 pounds per square foot, corresponding to Reynolds numbers of \(3.0 \times 10^6 \) and \(4.0 \times 10^6 \), respectively. Standard leading-edge roughness was applied in the manner described in reference 1. Elevator hinge moments were measured by a resistance-type torsional strain gage.
All coefficients and the angle of attack have been corrected for the effects of the tunnel walls. No additional tunnel-wall corrections due to sweepback have been applied.

RESULTS AND DISCUSSION

The data for the unswept tail are presented in figures 4 to 9 and those for the swept-back tail are presented in figures 10 to 15. The variation of lift, hinge-moment, and pitching-moment coefficients with angle of attack are given in figures 4 and 10. Hinge-moment coefficients are also shown as a function of the elevator angle for various angles of attack in figures 5 and 11. In addition, the variation of the pressure coefficient across the elevator nose seal as a function of the angle of attack is presented in figures 6 and 12.

Scale Effect

Data for both the unswept and the swept-back models were obtained at a Reynolds number of 4.0×10^6. The complete results are not presented because the aerodynamic coefficients did not vary significantly from those obtained at a Reynolds number of 3.0×10^6, as illustrated in the comparisons presented in figures 7 and 13. Because of the rather sudden stall of the unswept model it was deemed inadvisable (from structural considerations) to stall the model at the higher Reynolds number. A slight decrease of the maximum lift coefficient was noted for the swept-back plan form with increasing Reynolds number at zero elevator deflection. The lift-curve slope $C_{L\alpha}$ remained unchanged for both values of the Reynolds number for both tails.

It is noted in figure 4(a) that a different type of stall was measured for the unswept model at positive and negative angles of attack, an unexpected result because the airfoil section was symmetrical. The reason for this difference was investigated, and the only apparent explanation was that the tests were conducted in a critical Reynolds number range for this airfoil section. This contention is partially substantiated by the effect of roughness on the stall in the positive direction as shown in figure 8.
Effect of Standard Roughness

The effect of standard leading-edge roughness upon the lift and hinge-moment coefficients is shown in figure 8 for the unswept tail and in figure 14 for the swept-back tail. In general, little effect was found. The maximum lift of the unswept tail was reduced, but the maximum lift of the swept-back tail remained the same. The effect on the hinge-moment coefficients of the swept-back tail was more pronounced than the effect measured on the unswept tail. No significant change in $C_{h\alpha}$ was found for either tail.

Effect of Removing Elevator Seal

As would be expected for a nose-radius elevator, the change in the lift and hinge-moment coefficients caused by removal of the elevator seal was small for low elevator deflections and increased for the higher deflections. This is shown in figures 9 and 15.

Pitching Moments

The pitching moments measured about the one-quarter M.A.C. indicate a stabilizing effect of sweepback. The unswept model was slightly unstable statically while the swept-back model was neutrally stable. As the elevator was deflected upward (as in landings or pull-ups) the stability of both tails was increased. (See figs. 4(c) and 10(c)). At the stall, the static longitudinal stability of both models increased markedly, as would be predicted by the results of reference 2.

Effectiveness and Hinge-Moment Parameters

The lift-effectiveness and hinge-moment parameters $C_{L\alpha}$, $C_{L\delta}$, α_8, $C_{h\alpha}$, and $C_{h\delta}$ are listed in table III for the two tails at a Reynolds number of 3.0×10^5. The incremental changes due to Reynolds number, standard roughness, and removal of the elevator seal as discussed in the previous sections are presented for easy reference. As shown in this table, the change in $C_{h\alpha}$ between the unswept and the swept-back models was from -0.0010 to -0.0013, the change in $C_{h\delta}$ was from -0.0087 to -0.0069, and the tail-effectiveness parameter α_8 was changed from -0.71 to -0.53. The value of $C_{L\delta}$ was reduced by 0.0094, but the slope of the lift curve remained unchanged. As pointed out in a previous section the elevator area
ratios differed between the two models. Although the major part of the changes in the parameters can be attributed to sweepback, the possibility of area ratio effects should be noted.

CONCLUSIONS

The results of tests conducted to determine the low-speed aerodynamic characteristics of horizontal tails of aspect ratio 3.0, of unswept and swept-back plan forms, indicate that:

1. No appreciable scale effect was encountered with or without sweepback for Reynolds numbers from 3.0×10^5 to 4.0×10^5.

2. The effect of standard leading-edge roughness was small with or without sweepback.

3. Removal of the elevator seal did not affect C_{α} for either the unswept or the swept-back model.

4. The tail-effectiveness parameter α_θ was changed from -0.71 for the unswept model to -0.53 for the swept-back model.

5. The change in C_{θ_α} between the unswept and the swept-back models was from -0.0010 to -0.0013, and C_{θ_δ} was changed from -0.0087 to -0.0069.

APPENDIX

Conversion Factors For Hinge-Moment Coefficients

Because several methods are in use for the reduction of hinge moments to coefficient form, particularly for swept-back lifting surfaces, conversion factors for the various methods are presented. To obtain the hinge-moment coefficients for one of the listed methods, multiply the value of the hinge-moment coefficient of this report by the corresponding conversion factor in the following table:
References

TABLE I
COORDINATES FOR THE NACA 64A010 AIRFOIL
[All Dimensions in Percent of Wing Chord]

<table>
<thead>
<tr>
<th>Station</th>
<th>NACA 64A010 ordinate</th>
<th>Model ordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.50</td>
<td>0.804</td>
<td>0.819</td>
</tr>
<tr>
<td>.75</td>
<td>.969</td>
<td>.987</td>
</tr>
<tr>
<td>1.25</td>
<td>1.225</td>
<td>1.247</td>
</tr>
<tr>
<td>2.50</td>
<td>1.688</td>
<td>1.696</td>
</tr>
<tr>
<td>5.00</td>
<td>2.327</td>
<td>2.333</td>
</tr>
<tr>
<td>7.50</td>
<td>2.805</td>
<td>2.780</td>
</tr>
<tr>
<td>10.00</td>
<td>3.199</td>
<td>3.202</td>
</tr>
<tr>
<td>15.00</td>
<td>3.813</td>
<td>3.816</td>
</tr>
<tr>
<td>20.00</td>
<td>4.272</td>
<td>4.280</td>
</tr>
<tr>
<td>25.00</td>
<td>4.606</td>
<td>4.610</td>
</tr>
<tr>
<td>30.00</td>
<td>4.837</td>
<td>4.842</td>
</tr>
<tr>
<td>35.00</td>
<td>4.968</td>
<td>4.950</td>
</tr>
<tr>
<td>40.00</td>
<td>4.995</td>
<td>4.975</td>
</tr>
<tr>
<td>45.00</td>
<td>4.894</td>
<td>4.889</td>
</tr>
<tr>
<td>50.00</td>
<td>4.684</td>
<td>4.672</td>
</tr>
<tr>
<td>55.00</td>
<td>4.388</td>
<td>4.373</td>
</tr>
<tr>
<td>60.00</td>
<td>4.021</td>
<td>4.011</td>
</tr>
<tr>
<td>65.00</td>
<td>3.597</td>
<td>3.594</td>
</tr>
<tr>
<td>70.00</td>
<td>3.127</td>
<td>3.131</td>
</tr>
<tr>
<td>75.00</td>
<td>2.623</td>
<td>2.637</td>
</tr>
<tr>
<td>80.00</td>
<td>2.103</td>
<td>2.120</td>
</tr>
<tr>
<td>85.00</td>
<td>1.582</td>
<td>1.595</td>
</tr>
<tr>
<td>90.00</td>
<td>1.062</td>
<td>1.071</td>
</tr>
<tr>
<td>95.00</td>
<td>.541</td>
<td>.553</td>
</tr>
<tr>
<td>100.00</td>
<td>.021</td>
<td>0</td>
</tr>
</tbody>
</table>

L.E. Radius 0.6871: T.E. Radius 0.0231

1Same for model ordinates.
TABLE II

LOCATION OF THE PRESSURE TUBES IN THE BALANCE CHAMBER IN PERCENT OF THE SEMISPAN

<table>
<thead>
<tr>
<th>Station</th>
<th>Unswept plan form</th>
<th>Swept-back plan form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.2</td>
<td>15.3</td>
</tr>
<tr>
<td>2</td>
<td>42.4</td>
<td>45.0</td>
</tr>
<tr>
<td>3</td>
<td>63.7</td>
<td>77.1</td>
</tr>
<tr>
<td>4</td>
<td>91.2</td>
<td>92.1</td>
</tr>
</tbody>
</table>

TABLE III

EFFECT OF SCALE, STANDARD LEADING-EDGE ROUGHNESS, AND ELEVATOR NOSE SEAL ON THE EFFECTIVENESS AND HINGE-MOMENT PARAMETERS OF THE UNSWEPT AND SWEPT-BACK PLAN FORMS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(R = 3.0 \times 10^6)</th>
<th>Increment due to increasing (R) to (4.0 \times 10^6)</th>
<th>Increment due to roughness on leading edge</th>
<th>Increment due to removing elevator nose seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unswept plan form</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{h_{\alpha}})</td>
<td>-0.0010</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0</td>
</tr>
<tr>
<td>(C_{h_{8}})</td>
<td>-0.0087</td>
<td>0.001</td>
<td>0</td>
<td>-0.0003</td>
</tr>
<tr>
<td>(C_{L_{8}})</td>
<td>0.0370</td>
<td>0.0018</td>
<td>-0.0005</td>
<td>-0.0039</td>
</tr>
<tr>
<td>(\alpha_{8})</td>
<td>-0.71</td>
<td>0.02</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>(C_{L_{\alpha}})</td>
<td>0.053</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Swept-back plan form</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{h_{\alpha}})</td>
<td>-0.0013</td>
<td>0.001</td>
<td>0</td>
<td>0.0001</td>
</tr>
<tr>
<td>(C_{h_{8}})</td>
<td>-0.0069</td>
<td>0.003</td>
<td>0.0007</td>
<td>0</td>
</tr>
<tr>
<td>(C_{L_{8}})</td>
<td>0.0276</td>
<td>0.004</td>
<td>-0.0011</td>
<td>-0.0026</td>
</tr>
<tr>
<td>(\alpha_{8})</td>
<td>-0.53</td>
<td>0</td>
<td>0.02</td>
<td>-0.01</td>
</tr>
<tr>
<td>(C_{L_{\alpha}})</td>
<td>0.053</td>
<td>0</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
</tbody>
</table>
Figure 1.- Plan forms of the horizontal tail models of aspect ratio 3.
(a) Three-quarter front view.

(b) Three-quarter rear view.

Figure 2.- The unswept tail mounted in the 7- by 10-foot wind tunnel.
(a) Three-quarter front view.
(b) Three-quarter rear view.

Figure 3.—The 35° swept-back tail mounted in the 7- by 10-foot wind tunnel.
Figure 4.- Lift, hinge-moment, and pitching-moment coefficients of the unswept tail. Aspect ratio 3.0; R, 3.0 x 10^6.
Fig. 4b

(b) Hinge-moment coefficient.

Figure 4—continued.
(c) Pitching moment coefficient.

Figure 4—concluded.
Figure 5.- Variation of hinge-moment coefficient with elevator deflection for various angles of attack of the unswept tail. Aspect ratio, 3; $R, 3.0 \times 10^6$.

[Graph showing variation of hinge-moment coefficient with elevator deflection for various angles of attack]
Figure 6- Variation of pressure coefficient across elevator nose seal with angle of attack of the unswept tail. Aspect ratio 3; \(R, 3.0 \times 10^6 \).
Figure 6b -concluded.

(b) $\delta_e = -9, -15, -20.$

Figure 6. -concluded.
Figure 7.- Comparison of the lift and hinge-moment coefficients at $R = 3.0 \times 10^6$ and 4.0×10^6 for the unswept tail. Aspect ratio 3.0.
Fig. 7b

(b) Hinge-moment coefficient.

Figure 7. —concluded.
(a) Lift coefficient.

Figure 8a - Comparison of the lift and hinge-moment coefficients of the smooth and rough unswept tail. Aspect ratio 3.0.
(b) Hinge-moment coefficient.

Figure 8b — concluded.
(a) Lift coefficient.

Figure 9.- Comparison of the lift and hinge-moment coefficients with and without elevator seal on the unswept tail. Aspect ratio 3; $R, 3.0 \times 10^6$.

Fig. 9b

\[\delta e = -15 \]

\[\delta e = 4 \]

Sealed

Unsealed

(b) Hinge-moment coefficient.

Figure 9. -concluded.
Figure 10 - Lift, hinge-moment, and pitching-moment coefficients of the 35° swept-back tail. Aspect ratio 3; R, 3.0 x 10^6.
Figure 10b - continued.

(b) Hinge-moment coefficient.
Pitching-moment coefficient, C_m

Angle of attack, α, deg

Figure 10. Concluded.
Figure 11.- Variation of hinge-moment coefficients with elevator deflection for various angles of attack of the 35° swept-back tail. Aspect ratio 3; $R, 3.0 \times 10^6$.
Figure 12: Variation of pressure coefficient across elevator nose seal with angle of attack of the 35° swept-back tail. Aspect ratio 3; R, 3.0 × 10^6.
Figure 12 -concluded.

(b) $\delta_e = -9, -15, -20$.

Figure 12 -concluded.
Figure 13. Comparison of the lift and hinge-moment coefficients at $R = 3.0 \times 10^6$ and 4.0×10^6 for the 35° swept-back tail. Aspect ratio 3.
(b) Hinge-moment coefficient.

Figure 13. —concluded.
Figure 14a: Comparison of the lift and hinge-moment coefficients of the smooth and rough 35° swept-back tail. Aspect ratio 3; $R, 3.0 \times 10^6$.

(a) Lift coefficient.
Figure 14. —concluded.

(b) Hinge-moment coefficient.
Figure 15.- Comparison of the lift and hinge-moment coefficients with and without elevator seal on the 35° swept-back tail. Aspect ratio 3; $R, 3.0 \times 10^6$.

(a) Lift coefficient.
(b) Hinge-moment coefficient.

Figure 15. —concluded.