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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 


RESEARCH MEMORANDUM 

INVESTIGATIONS AT SUPERSONIC SPEEDS OF 22 TRIANGULAR 


WINGS REPRESENTING TWO AIRFOIL SECTIONS FOR 


EACH OF II APEX ANGLES 
By Eugene S. Love 

SUMMARY 

Investigations of two series of 11 triangular wings were conducted 
at Mach numbers of 1.62, 1.92, and 2.40 to determine the effect of 
leading- edge shape and to compare actual test values with the nonviscous 
linear theory. The two series of wings had identical plan forms, a 
constant thickness ratio of 8 percent, a constant location ofmaximum-
thickness point of 18 percent, and a range of apex half-angles from 100 
to 450. The first series had an elliptical leading edge and the second 
series, a wedge leading edge. Measurements were made of lift, drag, 
pitching moment, and. pressure distribution, the latter being confined 
to three wings at one Mach number. 

The results indicated that the ratio of the lift-curve slope to the 
theoretical two-dimensional lift-curve slope was, for any given ratio of 
the tangent of the wing vertex half-angle to the tangent of the Mach 
angle (tan €/tan m), relatively independent of Mach number for each 
series; and in the case of the wedge-leading-edge wings for which the 
leading edge lies well-ahead of the Mach cone, this ratio approached 
very nearly one. For the range of vertex angles in the vicinity of the 
Mach cone, the theoretical drag was in poor agreement with the test 
values, the test values being much lower. Except for cases with the 
Mach cone well behind the leading edge, the elliptical-leading-edge 
configuration gave lower minimum drag. Any leading-edge suction achieved 
by the elliptical-leading-edge wings was evidently of such magnitude as 
to be overshadowed by other effects. The largest value of maximum lift-
drag ratio was obtained by the elIptical-leading-edge configuration. 
Both series of wings showed a forward travel Of the center of pressure 
with increase in aspect ratio. Sch].ieren photographs, liquid-film tests, 
and pressure distributions indicated that the shocks arising on the wing 
surfaces, the boundary-layer transition lines, and the steep adverse 
pressure gradients were practically coincident. 

It was concluded that, for triangular wings of this thickness ratio, 
the aerodynamic gains experienced by the elliptical-leading-edge wings 
as compared with the wedge-leading-edge wings were not a result of any 
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appreciable realization of leading-edge suction but the favorable 
effect of the gentle or easy curvature of the ridge line common to 
the elliptical-leading-edge shape. 

INTRODUCTION 

The wing of triangular plan form has received much attention lately 
as a possible efficient wing for supersonic flight. Reference 1 pointed 
out that L/D ratios of configurations employing sweepback as outlined in 
reference 2 could be improved upon provided the wing lay well within the 
Mach cone. Later, the theory of small disturbances was applied to the 
case of finite aspect ratios (references 3 and 4) and a theory was developed 
for computing the L/D ratios for practical configurations. Recently, 
several different authors have developed methods independently for calcu-
lating the lift and drag of triangular and sweptback wings (references 5 
to 9). 

An experimental investig&tion of triangular wings was undertaken in 
1945 in the Langley model supersonic tunnel, forerunner of the present 
Langley 9-inch supersonic tunnel (reference 10). These tests were pri-

marily a preliminary investigation of flat-plate triangular wings (thick-

ness ratio ) approx. il Percent) to determine the limits of Jones slender- 

wing theory and to ascertain the highest values of maximum L/D. In the 
range of low aspect ratios the results confirmed Jones original theory 
but exhibited some unusual breaks when the leading edge lay near the Mach 
cone. In addition, the tests showed that the center of area of the wing 
and the center of pressure were coincident. Although the absolute values 
of the drag were in doubt, as stated by the authors, a maximum L/D o 
about 7 was obtained. 

In order to further the study of triangular-wing characteristics at 
supersonic speeds, a series of tests was conducted on three triangular-
wing models at a Mach number of 1.53 in the Ames 1- by 3-foot supersonic 
tunnel (reference 11). The models had a thickness ratio of 5 percent, 
an aspect ratio of 2, and were designed to study the effects of variation 
in thickness distribution and camber with the wing apex both leading and 
trailing. These, tests indicated that, for the apex-forward condition, 
the highest value of maximum L/D is obtained with the maximum- thickness 
point well forward and a slightly rounded leading edge. With the maximum-
thickness point at 20 percent, maximum L/D was increased from 6.4 for 
the sharp leading edge to 6.8 for the rounded leading edge, indicating 
the possible existence , of leading-edge suction predicted by theory. The 
drag relief from rounding the leading edge fell short of that predicted 
from theoretical considerations. 
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The present tests were made to determine the effects of giving a 
generous curvature to the leading edge of a series of triangular wings 
with the object of realizing a greater proportion of theoretical leading-
edge suction and thereby increasing the wing efficiency. These tests 
extend the investigations initiated in reference 10 to wings of higher 
thickness ratio believed practical for full-scale aircraft. Two series 
of 11 triangular wings each were tested in the Langley 9-inch supersonic 
tunnel at Mach numbers of 1.62, 192, and 2.40. Except for leading-edge 
shape, the first and second series were identical. The thickness ratio 
of 8 percent was constant for all these wings as was the 18-percent 
location of maximum-thickness point. The apex half-angles ranged from 100 
to 450 , covering the range of conditions for the leading edge ahead of 
and behind the Mach cone for all test Mach numbers. A third series of 
eight thin flat-plate wings was tested at a Mach number of 1.92. 

SNBOIS 

1b2\ A	 aspect ratio 

G	 free-stream angle of attack 

b	 wing span 

p = \jM2 __1 

cr	 wing root chord 

mean aerodynamic chord., two-thirds root chord 

Lift CL	 lift coefficient	
) 

Drag /\ 
CD	 drag coefficient nra ) 

rise in drag coefficient above minimum ( CD - C) 

Cm	 pitching-moment coefficient Moment about center of area 
qSC	 ) 

E	 elliptic integral of second kind for \/1 - 

wing vertex half-angle 

L/D	 ratio of lift to drag 

rn	 Madh angle(sin1 ) 

M	 Mach number
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dynamic pressure (.v2) 

P	 stream density 

B	 Reynolds number based on ë 

S	 wing area 

t	 maximum wing thickness 

V	 free-stream velocity 

tan  
tan m

APPARATUS AND TESTS 

Wind tunnel and model support.- The Langley 9-inch supersonic tunnel 
is a closed-return, direct-drive type in which the pressure and humidity 
of the enclosed air may be controlled. Throughout the tests the quantity 
of water vapor in the tunnel air was kept at sufficiently low values to 
insure negligible effects of condensation In the supersonic nozzle. The 
test Mach number Is varied by means of interchangeable nozzle blocks 
forming test sections approximately 9 inches square. A schlieren optical 
system provides qualitative visual-flow observations. Eleven fine-mesh, 
turbulence-damping screens are installed in the settling chamber ahead 
of the nozzles.' 

As shown in figure 1 the models were mounted from the rear on very 
slender, tapered sting supports that passed through the sting windshield 
with small clearance and were attached to the scales by insertion in the 
model sting support. It should be noted that the forward edges of the 
sting windshield lay behind the sting shoulders, thus tending to avoid 
any impact pressures. The scales are self-balancing beam scales and 
measure three components, in a horizontal plane, of the total forces on 
the model and support system. 

Description of models.- The geometric characteristics of the model 
wings are given in figures 2 and 3 and in table 1. Photographs of the 
elliptical- and wedge-leading-edge wings are shown In figure 4, These 
wings were constructed of highly polished, hard steel and with elliptical 
leading edges. The wedge-leading-edge wings were obtained from the 
elliptical-leading-edge wings by grinding to a wedge the region in front 
of the line of maximum thickness. This grinding caused no appreciable 
change in thickness ratio, location of maximum thickness, or vertex 
angle. Mirrors approximately 1/16 inch square were flush mounted In 
the stings just ahead of the shoulder as a part of the optical angle-
of-attack system. (See fig. i.) 
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Test methods. -: Measurements of lift, drag, and pitching moment were 
made through an angle-Of-attack range of approximately ±60. With the 
optical system for indicating, angle of attack, the, indicated, angle may 
be taken as the true value since the load deflection of the wings ahead 
of the mirror was found to be negligible. Corrections due to the support 
deflection have been applied to the moment results in calculation of the 
moment due to drag.  

In an effort to obtain the order of magnitude of the tare forces on 
the sting, force measurements were made of the sting alone at the three 
Mach numbers. The wedge-shaped gap normally occupied by the wing was 
filled with metal flush with the sting surfaces. Lift and moment of the 
sting alone were very small, and any effects of the sting on test results 
are assumed negligible. The drag of the sting alone showed only a very 
small variation with angle of attack. For the elliptical- or wedge-
leading-edge wing having least minimum drag, the drag of the sting alone 
is approximately 10 percent of the minimum drag. In the wing tests, 
part of the sting as tested alone is no longer exposed, to the air stream, 
and the remainder of the sting is partially immersed in the boundary 
layer of the wing. For this reason, the contribution of the sting to 
the total minimum drag is somewhat less than the 10-percent figure. For 
the wings having much larger minimum drag, the contribution of the sting 
may approach values less than 1 percent. With this in mind., the drag 
results may be compared quantitatively with theory, although no correction 
for sting drag ha"s been applied. 

There was some doubt as to whether the pressures on either side of 
the sting within the sting windshield, would, remain the same if the ups 
of the wlnd.shield were not exactly centered with respect to the sting 
shoulders. Pressure measurements showed that, provided the lips of 
the windshield' lay behind the sting shoulders, any off-center condition 
produced no differential in pressure between the sides of the sting and 
therefore contributed no error to lift-scale measurements, A correction 
to the drag was applied to account for the difference in pressure 
between free stream and sting-shield-and-balance enclosing box. 

In the course of the present tests, a liquid-film method for obser-
vation of boundary-layer 'transition, similar to that developed in refer-
ence 12 and at the Ames Laboratory (reference 11) was used to supplement 
the schlieren photographs and pressure distributions. Briefly, the 
liquid-film method depends upon the greater shear intensity of turbulent 
boundary layers to vaporize a film of liquid much more rapidly than the• 
comparatively low 'shear intensity of' laminar regions. The ratio of time 
for drying of the laminar areas to the turbulent areas is approximately 5 
to 1 at low Reynolds numbers and greater at high Reynolds numbers; how-
ever, it is quite possible for laminar regions very near the leading edge 
of an airfoil, where the boundary layer is very thin, to show the same 
drying rates as turbulent areas due to the initial intensity of the 
shear at the surface. In any case, the shear intensity and the resulting 
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rate of energy dissipation in the particular region will determine 
whether the region remains wet or dry and conclusions reached from 
liquid-film methods are made on this basis. The models were given a 
matte black finish before applying the liquid-film solution. Upon 
completion of a run, the models were dusted with powder. Accordingly, 
the wet regions appear white in the photographs and the dry regions 
remain black. 

All sclilleren phbtoaphs were taken with the knife-edge horizontal. 
At the time the tests of the elliptical leading-edge series were conducted, 
the spark system normally used. for the schlieren apparatus was inoperative 
and a manual shutter was substituted. This explains the poor resolution 
of unsteady flows evident on the schlieren photographs of these wings for 
which the exposure time of 1/100 second was quite large in comparison 
with the several microseconds for the spark exposures. 

Precision of data. - The estimated probable errors in the aerodynamic 
quantities are included in the following table: The value of ±0.08° 
given for angle of attack is a result of error in the initial referencing 
of each wing with respect to stream direction. The value of ±0.010 is 
the error that might be incurred, in relative-angle-of-attack readings 
for a. given test. 

M CL CD Cm M

M 

(deg)
P 

Initial Relative 

1.621 / 
1..92 } ±0.0004 ±0.0004 ±0. 0018 ±0.01 ±0.08 ±0.01 ±20,000 
2.40J

Reynolds numbers of tests. - The test values of the Reynolds numbers 
based on , two-thirds of the root chord, are given in the following 
table:
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Wing  
Reynolds number 

N = 1.62 M = 1 . 92 M = 2.40 

1 1.39 x 106 1.25 x 106 1.00 x 106 

2 1.39 1.25 1.00 
3 1.38 1.23 .99 

.4 1.20 1.08 .86 
1.08 .96 

6 1.00 .90 .72 
7 .94 .84 .67 
8 .86 .77 .62 
9 .78 .70 .6 

10 .74 .66 .53 
U .64 .57 .46

RESULTS AND DISCUSSION 

The variations of lift, drag, pitching moment, an& lift-drag ratio 
for an angle-of-attack range of approximately 60 to 6° are given for 
all wings of both the elliptical-leading-edge and wedge-leading-edge 
series. These characteristics at Mach numbers of 1.62, 1 . 92, and 2.40 
may be seen in figures 5, 6, and 7, respectively, and. are summarized 
in table 2. Similarly, the characteristics of eight flat-plate wings, 
with round and beveled leading edges, tested at a Mach number of 1.92, 
are presented in figure 8 and are summarized in table 3. 

Lift 

For the individual wings, the lift generally varies linearly with 
angle of attack. For this reason, the lift results can be discussed 
and 'compared with theory on the basis of lift-curve slope. It has been 
shown in references 4, 5, and. 6, that tan E/tan in is a basic 
parameter in sweptback-wing or triangular-wing theory. Values 
of tan S/tan in greater than 1 represent a wing whose leading edge 
is ahead of the Mach cone, the converse being true for values 
of tan S/tan in less than 1. References 5, 6, and 8 have pointed 
out that for triangular wings with leading edges 'ahead of the Mach 
cone, the lift-curve slope has Ackeret's theoretical two-dimensional 
value of

4 
\dxLJco - VM2 - 1

(1) 
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and that for triangular wings with leading edges behind the Mach cone 
this value becomes

tan 6 
d.CL - 2 tan in	

(2) 

dm -	 - 1 

The lift-curve slopes are shown in figure 9 and are plotted as a 
ratio to the theoretical two-dimensional slope, given by equation (1), 
against the parameter tan €/tan in. The ratio of the measured lift-

. curve slope to the two-dimensional value is, for any given relation of 
the Mach line and leading edge, relatively independent of Mach number, 
more so for the wedge than for the elliptical-leading-edge series. In 
the lower range of values of tan E/tan in, 0 to 0.5, the elliptical- and. 
wedge-leading-edge series give approximately the same value of lift-
curve-slope ratio, though somewhat higher than that predicted bythe 
linear theory. At values of tan 6/tan in between 0.5 and 0.6, the 
curves of both serle.s cross the theoretical curve and give values 
considerably less than the theoretical value in the vicinity of tan 6 = 

tan in 

As the leading edge becomes coincident with and moves well ahead of the 
Mach cone, the lift-curve slopes exhibit a tendency to increase. This 
effect is much more marked for the wedge-leading-edge series and indicates 
a more rapid lift recovery, probably due to a more rapid approach to 
attachment of the shock wave to the wedge leading edge. At a value 
of tan 6/tan in of 2 . 19, the lift-curve slope of the wedge-leading-
edge series attains 98 percent of the two-dimensional value. It was 
noted that the present tests shoved none of the marked breaks in the 

vicinity of tan € = 1 as were obtained in the tests of reference 10 
tan In 

on a series of thin, flat-plate triangular wingsi and to ascertain 
whether the thicker nature of the present wing series might possibly 
have eliminated such breaks, eight thin-plate wings of comparable thick-
ness to those tested in reference 10 were teated at a Mach number of 1.92. 
Figure 9 shows that no breaks Or abrupt changes in lift-cur ve slopes were 
obtained, from these wings. However, in contrast to the results for the 
thicker triangular-wing series, at values of tan 6/tan in less than 1 the 

2 thin wings gave slightly higher lift-curve slopes for the sharp leading-
edge configuration than for the round leading edge. Figure 10 is a 
compilation of several existing results of tests on triangular wings. 
The faired curves of the present tests are included for conrparison. 
Except for the present tests and the tests of reference 10, the wings 
were subject to effects of the body on which they were mounted. 
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]rag 

The minimum drag coefficients for the 8-percent-thick triangular-
wing series are presented in figure U for the three Mach nuixthers and 
compared with the theoretical pressure drag as predicted from linear 
theory. The wave drag of the triangular wings of double-wedge section 
was computed by the method of reference 7 for the three positions of 
the Mach line, namely, ahead of, between, and behind leading edge and 
ridge line. The equations used are included in' appendix A. Below a 
value of tan e/tan m of approximately 1.6 the elliptical leading edge 
produces the lower minimum drag. Above this value the converse is true. 
This effect might be expected in view of the lessening of the adverse 
pressure gradient aft of the ridge line predicted by theory for high 
values of tan €/tan m. A similar effect was noted in the lift results 
(fig. 9) in that the lift-curve slopes of the wedge-leading-edge wings 
became greater than those of the elliptical-leading-edge wings beyond a 
value of tan e/tan m of approximately 1.6. Unusually low values of 
the minimum drags of wing 7 at all Mach numbers were due to the fact 
that the thickness of this model was only 97 percent of the specified 
amount. The curves have been faired through a point corrected for this 
thickness error. It should. be  noted that for wings of this thickness 
ratio and range of Reynolds numbers the linear theory is in poor agree-
ment with the test results.' As can be seen by adding a reasonable 
skin-friction-drag Increment to the linear-theory values, the best 
correlation of actual test values and theory occurs at values 
of tan €/tanm less than 0.7. In any case it is very doubtful 
that actual test results will achieve the characteristic peaks 
Indicated by the linear theory as the Mach line successively passes 
over the ridge line and behind the leading edge; rather, a much smoother 
curve appears to be the physical result. 

Drag-Rise Factor 

Reference 1l shows the theoretical value of the drag-rise 
factor CTh/CL2 for triangular wings having a subsonic leading edge 
(velocity component normal to leading edge is subsonic) and realizing 
leading-edge suction as

ACD 	 1 
(3) 

C1,2 = (c 
^7dm ) 

where a Is in radians.
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The last term of this equation accounts for the forward inclination 
of the resultant force on the wing due to the presence of leading-edge 
suction. For the case of the triangular wing with supersonic leading 
edge, this latter tern will vanish and the drag-rise factor becomes 
merely the reciprocal of the lift-curve slope. The difference between 
the reciprocal of the lift-curve slope and the value ICWCL2 represents 
the increment of drag rise due to leading-edge suction. The drag-rise 
factors for the triangular-wing series are presented in figure 12 for 
the three Mach numbers and are compared with theory. Experimental values 
of LCilCL2 were obtained from the parabola which appeared to fit best the 

variation of LCD with CL. The test results given by the reciprocal 
of the individual lift-curve slopes are compared with the experimental 

values of t.CD/CL2. For all Mach numbers the experimental CD/CL2 
curves were higher than the theory with leading-edge suction and gave 
lower values than, but exhibited the same general trend as, the curves 
of the reciprocal, lift curve slopes. As previously stated, the difference 
between the experimental ECD/CL' values and the reciprocal of the lift-
curve slopes indicates, according to equation (3), leading-edge suction. 
On this basis, but contrary to expectations, the greater suction is 
realized by the wedge-leading-edge wings. The extensive change in 
leading-edge shape probably introduced phenomena other than leading-
edge suction, having such a large effect as to mask the effects of the. 
suction. The method of indicating leading-edge suction based on equa-
tion (3) is apparently inadequate for the wings tested. Although leading-
edge suction would not be expected for thin, uncainbered wings of sharp 
leading edge, it is possible that the wedge-leading-edge wings may 
realize some leading-edge suction because of the well-forward location 
of the maximum-thickness point, the large absolute thickness of the 
wings, and the resulting large included angle. of the wedge leading edge. 

The experimental CWCL2 curves for the wedge-leading-edge wings 

gave a lower value of drag rise, departing from the elliptical-leading-
edge values very noticeably as the Mach cone is swept behind the leading 
edge. Such an effect might possibly be expected from theoretical drag 
considerations as the elliptical leading edge creates a stronger bow 
wave or unattached shock. At Mach numbers of 1.92 and 2,40 the experi-

mental curves of CWCL2 for the wedge-leading-edge wings show less 
drag rise at high values of tan €/tan in, roughly l.!l and higher, than 
that predicted by theory. However, the fact that the theoretical curve 
assumes no change in the basic form drag and friction drag with angle 
of attack and does not include viscous effects must, of course, be 
considered in making any comparison with theory. 

Lift-Drag Ratio 

The maximum values of lift-drag ratio (L/D)max are presented in 

figure 13 for the three Mach numbers and compared with the linear theory 
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for sharp-leading-edge wings with and without the effect of leading-edge 
suction. The theoretical (L/D) max for uncambered wings is 

(L/D)= 1 /
	 1max

 \/CD(CWCL)	

(4) 

In the theoretical calculations it was assumed that turbulent flow 
exited over the greater portion of the wing aft of the, ridge line. 
Accordingly, a friction-drag coefficient based on turbulent flow and 
a mean value of the test Reynolds numbers was assumed to be 0.0093. 
This value was added to the previously calculated wave-drag values in 
determining the theoretical (L/D)max o No points are indicated on the 
test curves as it was often necessary to extrapolate the L/D curves 
of the individual wings to obtain the value of (L/D)max, a result of 
the low angle-of-attack range of the tests. The extrapolated values 
are given in table 2. As expected, the highest values of (L/D)max 
were obtained at low values of tan €/tan tn, the region of low values 

Of minimum drag. In the vicinity of tan E =	 the test values are 
tan in 

greater than the theoretical because of the abnormally large drag values 
predicted by theory. At the higher values of tan E/tan tn, the test 
results are less than theory primarily because the experimental lift-
curve slopes are less than theory and the experimental drag is greater 
than theory. The higher (L/D) max of the elliptical-leading-edge 
wings at low values of tan E /tan in may be traced to the smaller 
minimum drag of these wings rather than any large realization of 
leading-edge-suction force. In general, the linear theory gives a 
fair approximation of maximum L/D for wings of this thickness ratio. 
It is interesting to note that values of (L/D) Max as high as 8,1 
were obtained for the thin-plate wings (see table 3) as compared with 
a value of 5.8 for the thick-wing series. 

Center of Pressure and Pitching Moment 

Pitching-moment-curve slopes 
dCM

 at zero lift are. presented in 
dm 

figure 14 as a function of tan c/tan in and show that the center of 
area is a good approximation of the center of pressure. Figure 15 gives 
the actual center-of-pressure location. For both the elliptical- and 
wedge-leading-edge series, the center of pressure shifts forward with 
increase in tan c/tan in, the over-all travel being approximately 10 per-
cent. The location of the center of pressure appears relatively inde-
pendent of Mach number for the wings of a given leading-edge shape. 
However, the center of pressure of the elliptical-leading-edge wings 
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lies 3 to 4 percent ahead of its location for the wedge-leading-edge 
wings, probably as a result of the difference in profile and associated 
differences in shock locations. 

Liquid-Film, and Schuleren Photographs 

Schlieren photographs were taken of wings 1, 5, and. U. Wing 1 
represents the highly sweptback wing near the center of the Mach cone; 
wing 5, the condition of the leading edge near the Mach cone; and wing U, 
the condition of supersonic leading edge for all test Mach numbers. 

In figure 16(a) plan-form schlieren photographs of wedge-leading-
edge wing 1 are shown for oO and 11.0 angle of attack at a Mach number 
of 1.62. The corresponding liquid-film patterns are shown in figure 17(c),, 
the upper surface being shown for the 40 angle-of-attack condition. In 
the schileren photographs a distinct wake or trailing vortex may be seen 
leaving the trailing edge near the tips at zero angle of attack. At an 
angle of attack of 40 the vortices are mach more intense and exhibit a 
tendency to form two distinct line vortices from either tip. The liquid-
film photographs show similar patterns to exist on the wing surface. The 
dry regions obviously are due to the large shear intensity through 
momentum transfer along the lines of vorticity. It appears that the 
location of the outer line of vorticity approaches coincidence with the 
position just aft of the ridge line, at which point the adverse pressure. 
gradient Is steepest. The attendant thickening of the boundary layer 
favors transition, and it has been shown In the past by numerous high-
speed boundary-layer Investigations that the transition point coincides 
rather accurately with the beginning of the steep pressure rise. It is 
believed that the Inboard lines of vorticity are the result of an over-
lapping effect or rolling up of the shed vortices along the transition 
line directly associated with the high sweep of the transition line and 
leading edge. The outer lines of vorticity are probably due in part to 
a realization of the Kutta-Joukowski condition calling for strong parallel 
vortices extending downstream from the point of maximum width of the air-
foil. With sufficient drying time allowed, the entire area enclosed by 
the vorticity lines in the liquid-film tests became dry, indicating a 
complete turbulent region in this area. However, in order to associate 
the phenomenon better with that shown by the schlieren photographs, the 
drying time was shortened for the figures presented herein. No separa-
tion is apparent from the profile schileron photographs of figure 18. 

The plan-form schlieren photographs of wings 5 and U show a some-
what different phenomenon than that exhibited by wing 1. (See figs. 16(b) 
and 16(c).) Similar photographs of wing 5 at a Mach number of 1.92 are 
shown in figure 19. At zero angle of attack, shocks are seen leaving 
the trailing edge of each wing well inboard of the tips and are appar-
ently composed. of two or more shocks arising from points on the wing. 
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If these shocks be traced forward, the apparent point of origin will be 
found at a point between the apex of the ridge line and the forward. tip 
of the sting, being nearer the former. As the wings are given angle of 
attack, these shocks separate into two distinct shocks, neither of which 
occupies the position in relation to the wing.tips that occurred for 
the a = 00 condition. One shock has moved. Inboard, and the other out-
board. The rate of outward travel with angle of attack for the out-
board. shock Is much greater than the rate of inward travel for the inner 
shock. For wedge-leading-edge wing 5, tracing the shocks forward places 
the apparent point of origin aft of the ridge-line apex and well ahead 
of the forward tip of the sting. For wedge-leading-edge wing 11, 
tracing the inboard shock at a = 40 produces a point of origin aft of 
the sting tip while the outer shock continues to maintain a point of 
origin between the sting tip and the ridge-line apex. Thus the sting 
may be eliminated as a source of these shocks. Comparison of the photo-
graphs of the elliptical-leading-edge wings (fig. 20) and the corre-
sponding photographs of the wedge-leading-edge wings (fig. 16(b)) shows 
that the shocks leave the trailing edge of the elliptical-leading-edge 
wing slightly further inboard than on the wedge-leading-edge wing. This 
would seem to indicate that the shock origin for the elliptical leading 
edge was behind that for the wedge-leading-edge wing. Tracing of the 
shock on elliptical-leading-edge wing 11 at a =0 0 yields the apparent 
point of origin well aft of the sting tip; whereas, for the same condi-
tion of the wedge-leading-edge wing, the apparent point of origin lies 
ahead of the sting tip. The shocks are evidently produced by second-
order compressibility effects similar to those observed on unswept wings 
at transonic speeds. It Is possible that thickness distribution, leading-
edge shape, and ridge-line angularity are predominant factors in formation 
and location of the shocks • The easy curvature of the ridge line of the 
elliptical-leading-edge wings would probably favor a delay in formation 
of the shocks. As stated previously, a relatively large exposure time 
was necessary for the schileren photographs of the elliptical-leading-
edge wings. This probably explains the appearance of the shed vortices 
in these photographs. 

The liquid-film patterns for wings 5 and U are shown In figures 17(a), 
17(b), and 17(d). In contrast to wing 5, wing U shows the area of large 
shear intensity near the leading edge to extend even aft of the ridge line 
for both the wedge- and elliptical-leading-edge configurations. This is 
probably associated with the higher component of free-stream velocity 
normal to the leading edge of wing 11. The sequence of liquid-film 
photographs presented in figure 17(d) shows the progressive shifting of 
the transition line on both upper and lower surfaces with angle of attack 
for wing 5 . The difference in absolute location of the transition lines 
on upper and lower surfaces at other than zero angle of attack is prac-
tically the same as the difference in location of the two shocks observed 
In the schileren photographs. In addition, the location and curvature 
of the transition line shown on each surface at angle of attack may be 
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superimposed, on the schlieren photographs to show that the inboard shock 
arises from the upper surface and the outboard shock from the lover 
surface. Considering the effect of change in surface Mach number with 
increase in angle of attack, the Mach number of the flow over the lover 
wing surface aft of the ridge line would decrease while that of the 
corresponding upper wing surface would increase. The-Mach lines from 
a fixed point of origin would change their inclination with angle of 
attack in a direction which Is in agreement with the observed, changes 
of the shock inclinations. However., the curvature of the shocks and 
the shift in the apparent point at center line are not so simply 
accbunted for. 

The profile schileren photographs of wings 1, 5, and 11 (fig. 18) 
apparently show no separation of the boundary layer. The shocks ema-
nating from the rear portion of the model may be traced to the trailing 
edge only. In some instances a very weak shock may be traced to the 
sting tip on the wing surface; however, this is. confined to the profile 
view and its over-all effect is probably negligible. 

Pressure Distributions 

Pressure distributions, were made in an effort to show that the 
location of the steep adverse pressure gradient and the line of transi-
tion were practically coincident. Pressure-distribution tests of wedge-
leading-edge wing 5 were made at a Mach number of 1.62 at the wing 
center line, 25.5 percent semispan, and 60.3 percent semlspan. The 
results are presented, in figure 21. Similar tests were made of wing 11 
for both the elliptical- and wedge-leading-edge configurations at 
22.5 percent and 64.1 percent semispan. These results are presented 
in figures 22 and 23. Except for the elliptical-leading-edge wing, 
for which a smooth pressure-distribution curve void of sharp peaks 
has been assumed to exist, no attempt has been made to fair the curves 
ahead of the ridge line because of insufficient test points in this 
vicinity. 

For the wedge-leading-edge wings the theoretical pressure distri-
bution at the test stations has been computed for zero angle of attack 
by the method given in reference 14. (See appendix B . ) In all cases 
the theory gives a fair prediction of the actual results, the greatest 
discrepancies appearing in the curve for wing U at 64.1 percent semi-
span. Most of the discrepancies are undoubtedly a result of the 
presence of the shocks on the wing surfaces not accounted for in the 
theoretical solution. 

At the center-line station of wing 5, test results indicate that 
no effect is transmitted forward through the boundary layer from the 
presence of the sting tip. At the 25.5-percent-semispan station the 
difference in the abruptness of the pressure rise aft of the ridge 
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/ 

line between upper and lower surfaces with increase in angle of attack 
Is quite obvious. At 4.20 0 angle of attack, for example, the initially 
steep advers2_presMsAm_Zr_a4ient on the lower surface favors transition-
immediately aft of the ridge line while the lower and more uniform 
adverse pressure gradient	 the upper surface would, by comparison, 
indicate a delay in transition. The liquid.-film tests have shown this 
to be the actual result. At the 60.3-percent-seiniepan station similar 
trends in the pressure distributions occur. However, the position of 
the steep adverse pressure gradients on upper and lower surfaces indi-
cate that the point of transition on the lower surface would be nearer 
the ridge line than was the case at the inboard station and., conversely, 
the point of transition on the upper surface would. be  further removed 
from the ridge line. As béf ore, the liquid-film tests exhibit such a 
pattern. Thus, the characteristics of the chordwise pressure distri-
bution with varying angle of attack bear out the liquid-film observa-
tions in regard to the curvature of the shocks arising on the wing 
surfaces and their position.-

The pressure distributions for wedge-leading-edge wing U Indicate 
that the adverse pressure gradient orginates immediately aft of the Mach 
lines from the ridge-line apex, except at the outboard station where the 
test results show the pressure rise to begin aft of the ridge line. The 
pressure distributions indicate the same effects as shown for wing 5, an 
appreciable forward movement of the shocks arising on the lower surface 
and little rearward shift of the shocks on the upper surface. At the 
22.5-percent-semispan station it is interesting to note the change in 
shape of the curve ahead of the ridge line for the upper surface at 
10.750 angle of attack. Although the initial wedge angle of the wing 
still produces a positive angle with respect to stream direction, the 
initial negative pressure followed by a positive pressure, both points 
ahead of the ridge line, may possibly be due to the, detached. shock and 
the resulting subsonic nature of the flow accompanied by the tendency 
of the high pressure on the lower surface to relieve itself by flow 
around the leading edge and over the upper surface. 

The pressure distributions for elliptical-leading-edge wing 11 show 
similar trends to the wedge-leading-edge wing though not quite so marked. 
A delay in the transition point as shown by the liquid-film tests would 
be expected from the very gradual rise of the adverse pressure gradient. 
The difference in location of the shocks on the wing surface with change 
in angle of attack Is still evident from the curves. 

General Remarks 

It appears that the peaks and breaks in the curves of this paper 
calculated by the linear theory will not In most instances be realized 
experimentally. The theoretical pressure-distribution curves for the 
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wings of angular or abrupt ridge line are possibly an exception. Much 
of the discrepancy between test and theoretical values may be attributed 
to two factors omitted in the linear theory: viscosity and shocks 
resulting-from second-order compressibility effects. Certainly the 
presence of the shocks observed on the wing surfaces and their movement 
with angle of attack influence the lift and drag results. The transi-
tion line in the boundary layer is obviously determined by the position 
of these shocks and the associated adverse pressuregradient.- It 
follows that a greater or lesser turbulent area will affect the drag 
accordingly. Thus the lower minimum drag of the elliptical-leading-
edge wings for values of tan 6/tan in less than 1.6 may be attributed 
to their lesser areas of turbulent boundary layer. Furthermore it 

,-appears that, regardless of whether the leading edge is supersonic, 
( until complete attachment of the shock is realized along the wing 

leading edge, the flow at or near the leading edge is physically simi-
lar to the flow over two-dimensional wings at high subsonic Mach numbers. 
At the lower values of tan €/tan in it is possible that an increased 
lift may be experienced at the leading edge 

of 
sufficient magnitude to 

raise the total lift above the predicted theoretical value. Of course 
at extremely low values of tan E/tan in such an effect would diminish.. 
At the larger values of tan E/tan in the effect of boundary layer and, 
shock interaction may be blamed for the reduced. lift with respect to 
theory; but as tan E/tan in approached the value for complete attach- 
ment of the shock to the leading edge, the transonic nature of the flow 
in the vicinity of the ridge line would give way to entirely supersonic 
flow and the actual lift would be expected to attain a value somewhat 

Ljar the theoretical. It is possible that a wing having a sharp leading 
edge and a ridge line of easy curvature might retain the smaller region 
of turbulent boundary layer associated with the elliptical-leading-edge 
series. This configuration would also favor earl y attachment of the 
leading-edge shock with the consequent higher lift and lower drag 
exhibited by the wedge-leading-edge series at values 
of tan €/tari in much greater than 1. 

CONCLUSIONS 

Supersonic tests at Mach numbers of 1.62, 1.92, and 2.4O of 
22 triangular wings having 8 percent thickness ratio, an 18-percent location 
of maximum-thickness point, and representing two leading-edge configu-
ratiOns, wedge and elliptical, for each apex angle indicate, the following 
conclusions: 

1. For.a given wing series the ratio of the actual lift-curve slope 
to the theoretical two-dimensional value was, for any given ratio of the 
tangent of the vertex half-angle to the tangent of the Mach angle 
(tan c/tan in), relatively independent of Mach number. 
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2. The experimental lift-curve slopes for both the elliptical- and 
wed.ge-leading-edge configurations were essentially the same, but slightly 
higher than theory for wings with leading edges well behind the Mach cone. 
With the Mach cone in the vicinity of the leading edge, the lift-curve 
slopes were considerably lower than theory. With the leading edge well 
ahead of the Mach cone the wedge-leading-edge configuration approached 
very close to the theoretical two-dimensional lift-curve slope. 

3. Except for cases with the Mach cone well behind the leading edge, 
the elliptical-leading-edge configuration gave lower minimum drag. This 
advantage was attributed to the lesser area of turbulent boundary layer 
on these wings. 

4. The linear theory applied to the wedge-leading-edge series was 
quite inadequate for prediction of the drag. 

5. The maximum lift-drag ratios for the elliptical-leading-edge 
configuration were higher up to a value of tan E/tan in equal approxi-
mately to 1.3, from which point the wedge-leading-edge configuration 
exhibited the greater value. 

6. The location of center of pressure was relatively independent of 
Mach number for a given wing series and approached the center of area. 
An essentially linear variation of location of center of pressure 
with tan E/tan in occurred with the over-all travel being approximately 
10 percent. For the elliptical-leading-edge wings the center of pres-
sure lay 3 to 4 percent ahead of its location for the wedge-leading-
edge wings. 

7. Any leading-edge suction achieved by the elliptical-leading-edge 
wings was evidently of such magnitude as to be overshadowed by other 
effects.

8. The position of shocks arising on the wing surfaces, the line of 
boundary-layer transition, and the steep adverse pressure gradient were 
found to be practically coincident. 

9. The agreement of the theoretical with experimental pressure 
distributions was much better for the wing of subsonic leading edge 
than for the wing having supersonic leading edge. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va. 
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APPENDIX A 

CALCULATION OF PRESSURE ffiAG 

The equations. for computation of the pressure drag of triangular 
wings are as follows: 

(1) Mach line behind, both the leading edge and the ridge line 

CD= 	 ___

r2)t 	 rVi - r? +

(Al) 

(2)Mach line ahead of the leading edge but behind the ridge line 

2 G2 (n 	 1	 -! - 10 n - 
CD =	

r(1 - r)2 + r(l - r)\2 	 Vn2 - 1	 JJ 

where

-jiog n	 r côahn (n,r) - 
- + r[n - 1	 n2 - 

+	 2	 tan-1( \Jl - r2n2 
•	 -	

(A3)

r  

fl -rn 

(3)Mach line ahead of both leading edge and ridge line 

2T 2r G2 '	 pt	 • 1	 / log in' 	 logn CD =
	 - r) 2 - (1 - r) 2 + r(l - r)r 2 - 1 - n2 - 1 

+ n 1 I - sin-1	 • (A4) 
rn	 nJj 
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where

= 1 - r	 log n + r cosh-in 

	

i + r [\J2 - i	 \,j2,1 

	

+	 1	 1o[1 +	 2Vn2 - 1	 11 
r 2 - 1	 [	 n(1 - r) +	 - 1 - r2n2 - ij	 (A5) 

and

	

= i - r	 log rn +	 i	 io[rn2 - 1 + \Jr2n2 - l)(n2 - i) 

	

1Lr2
+r	 _l Vn

2 - .i	 n(1-r)	 JJ 
______	 (A6) 

13 = J2 - 1 

T	 thic]mess ratio at root chord 

r	 location of ridge-line apex in percent root chord from 
trailing edge 

.tanm

tan 
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APPENDIX B 

CALCULATION OF PRESSURE DISTRIBUTIONS 

The n thod and equations for computation of the pressure distri-
butions over triangular wings are as follows: 

The wing is broken down into two infinite wedge wings, and by super-
position of the conical-flow solutions, the pressure distribution is 
obtained for each wedge. Combining the solutions yields the pressure 
distribution for the composite wing. The flow solutions for the given 
conditions are presented as follows:	 - 

(1) Leading edge within Mach cone 

ILP 
=	 Iw1 

q

I	 2 
•t 1 W tanh	

(x)

< < 0 = w = w1 

	

tan	
ww1 

-	 - w12	 2 1 - 

(2) Leading edge outside Mach cone 

AP	 W,-	 ______ tan

 Fw_ 	 < < 
O=w=l 

2_ 2w1
	

< < 

- 13 \jil	
1. = w = w1 

where w1 = tan e , w, in like manner ., represents the position of a radial tan  
line through the apex of the wedge being analyzed; 5, the deflection or 
wedge half-angle with the proper sign attached; y, the span ordinate of 
the given chord.wise stationi and x, the chordwise ordinate at the same 
station with reference to the apex of the particular wedge. 
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TABLE l. - DIMENSIONS OF TRIANGULAR-WING MORELS 


(a) 8-Percent-Thick Triangular-Wing Model 

Wing
 

WI b Cr 

(ft)
6 

(deg)
x M.A.C. 

(ft)
Area 
(sq ft)

Aspect 
ratio 

A 

1 0.175 0.499 9.93 0.18 0.08 0.333 0.O11.37 0.700 
2 .323 .11.99 17 . 91 .18 .08 -333 o8o5 1.292 
3 .398 .11.93 21.96 .18 .o8 .329 .0980 1.612 
4 .1402 .431 25.01 .18 .08 .287 .0867 1.8 
5 .1409 .386 27.92 .18 .o8 .257 .0790 2.114 
6 .11.13 .360 29.84 .18 .08 .240 .0743 2.3011" 

a7 .423 .336 32.15 .18 .o8 .224 .0711 2.518 
8 .1433 .307 35.21 .18 .08 .205 .0665 2.812 
9 .1436 .279 38.01 .18 .o8 .186 .0607 3.130 

10 .1444 .265 39.92 .18 .08 .177 .0588 3.350k" 
11 .1463 .230 145.15 .18 .08 .153 .0532 14.023 

aRemeasurement shows y 0.078. 

(b) Flat-Plate Triangular-Wing Model 

Wing

Sharp leading edge
Round leading edge 
(rad.	 0.008 In.) 

E M.A.C. t/c € M.A.C. tic 
(deg) (ft) (percent) (deg) (ft) (percent) 

1 25.13 0.289 1.3 25.00 0.283 1.3 
2 30.03 .233 1.6 30.147 .226 1.7 
3 32.00 .219 1.7 31.93 ;206 1.8 
4 35.17 .204 1.8 35.17 .200 1.9
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TABLE 2.- 513l'IMARY OF RULTS FOR 8-PERCENT-




THICK TRIANGULAR WINGS 

Wedge leading edge Elliptical leading edge 

Wing (d.C\ (dC'

()niax
()

()znax
CDmj 

)= 'L=O L=0 L=0. 

/ 
M=l.62 

1 0.0232 -0.00075 5.0 0.0133 0.0221 -0.00004 5 . 3 0.0121 

2 .0337 -.00113 5.3 .0161+ .03147 -.00008 5.8 .0159 

3 .0366 -.00133 5.1 .0220 .0393 -.00003 5.6 .o184 

1 .0382 -.00127 5.0 .0255 .01407 -.00011 5 . 5 .0207 

5 .0388 -.00118 14.8 .0288 .01423 .00013 5.3 .0233 

-5'6 - .0388 -.00106 14.7 - .0309 .01422 .00013 5.0 . 02 61 
a7 .03814 -.00100 14.6 .0313 .01+26 .00039 5.0 .0259 

---78 .0385- ç -.00081 1+.4-' .0352. .01421 .000147 14.6 .0300 

9 .0387 -.00056 14.2 .0372 .0429 .00070 4.4 .03214 
. 0396 -.000514 14.2 .0388 .01431 .00075 14.1 .0337 

11 .01416 .00007 11..1. .04331`1 .014149 .001146 14.1 .0399 

M=1.92 

1 0.0216 -0.00078 5.2 0.0125 0.0215 -0.00036 5 . 3 0.0119 

2 .0287 -.00013 14.9 .o186 .0298 -.00023 5 . 3 . .o151t 

3 .02914 -.00095 14.7 .0219 .0317 -.00010 5.0 .0185 

14 .0295 -.00083 14.4 .0256 .0328 -.00005 14.9 .0205 

5 .0300 -.00056 14.3 .0277 .0335 .00029 14.6 .0228 

6 .0296 -.000148 14.1 .0291* .03314 .00027 14.5 .0258 
87 .0299 -.000314 14.1 .0292 .0332 .00057 4.t3 .0253 

8 .0308 -.00018 14.0 .0333 .0330 .00073 14.0 .0293 

9 .0316 .00000 3.8 .03142 .0337 .00077 3 . 9 .0323 
10 .03214 .00010 3 . 9 .0355 .03140 .00110 3.8 .0331 
11 .03146 .00057 3 . 7 .0396 .0353 .00180 3 . 5 .0397 

M=2.140  

1 0.0189 -0.00070. 14.7 0.0127. 0.0192 -0.00009 5.2 0.0109 

2 .0223 -.00058 14.4 .0179 .0236 .00008 14.8 .011+8 

3 .0225 -.00027 14.2 .0211 .021414 .00035 14.5 .0179 
.0229 -.00003 14.1 .0238 .02146 .000147 14.3 .0196 

5 .0237 .00009 14.0 .0260 .02147 .00055 14.0 .0221+ 

6 .0211.3 .00016 3.8- .0272" .021+9 .00059 3.8 .02148 
a7 .0211.5 .00022 3.8 .0272 .02514 .00064 3 . 7 .0252 

8 .0256 .00037 3.7' .0301' .02514 .00077 3 . 3 .0291 

9 .0266 .00053 3 . 7 .0293 .0258 .00086 3.2 .0319 

10 .0281 . .00053 3 .5/. .0325' .02 .00095 3.2 .0333 
11 .0317 .00100 3.14 .0350 .0270 

-

1	
4.00145 3.0 .0397 

S asee table 1(a).
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Figure 2.— Dimensions of 8—percent—thick triangular—wing models. (Sting 
dimensions identical for all wings. E, elliptical leading edge; 
W, wedge leading edge.) CONFIDENTIAL
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Figure 3 .— Dimensions of flat—plate triangular--wing models. (sting

supports identical with thick—wing installation.) 
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Figure 4.— Triangular—wing models. 
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(a) Wing 1.	 a = 40. 

a. = 00.	 a = 

(b) Wing 11.
59001 

Figure 16.— Plan—form sclilieren photographs of wedge—leading—edge wings 
at N = 1.62. 
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Figure 16.— Concluded. 
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(a) Wedge—leading--edge

wing 11.

a. 40, upper surface. M = 00.

M =
	

(b) Elliptical—leading-
edge wing 11.

a. = 4, upper surface. 

Alp

( 

a. = 0.	 (c) Wedge—leading—edge 	 a. = 40, upper surface. 
wing 1. 

Figure 17.— Liquid—film patterns at N = 1.62. 
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Figure 17.- Concluded. 
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a = 00.	 (a) Wing 1.	 0 

= 00.	 (b) Wing 5.	 a = 

a = 00.
	

(c) Wing :ij.
	 0

L-59002 
Figure 18.— Profile schileren photographs of wedge--leading--edge wings 

at M = 1.62. 
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POOP 

a = 20.	 M =

L-59005 
Figure 19.- Plan-form schileren photographs of wedge-lead.in-edge vine 5


at M = 1.92. 
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(a) Wing 5. 

IV 
41^1

a. = 00. 

(b) Wing U.
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Figure 20.— Plan--form schilerens of ellipt ical—leading--edge--idngs 
at M = 1.62. 
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