—r

NACA RM L9DO08

RM L.9DO08

RESEARCH MEMORANDUM

ESTIMATED TRANSONIC FLYING QUALITIES OF A TAILLESS
AIRPLANE BASED ON A MODEL INVESTIGATION
By
Charles J. Donlan and Richard E. Kuhn

Langley Aeronautical Laboratory
Langley Air Force Base, Va.

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

WASHINGTON

June 8, 1949
Declassified November 8, 1957







NACA RM 19D08

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
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ESTIMATED TRANSONIC FLYING QUALITIES OF A TAILLESS
ATRPLANE BASED ON A MODEL INVESTIGATION

By Charles J. Donlan and Richard E. Kuhn

SUMMARY

An analysis of the estimated flying qualities of a tailless airplane
with the wing guarter-chord line swept back 35° in the Mach number range
from 0.40 to 0.91 has been made, based on tests of a model of this air-
plane in the Langley high-speed 7- by 10-foot tunnel.

The analysis indicates longitudinal-control position instability at
transonic speeds but the accompanying trim changes are not large. Control-
position maneuvering stability, however, is present for all speeds.
Longitudinal and lateral control appear adequate, but the demping of the
short-period longitudinal and lateral oscillations at high altitudes is
poor and would probably require artificial demping.

INTRODUCTION

Stabllity and control tests of a tallless-type swept-wing airplane
model have been conducted in the Langley high-speed T7- by 10-foot tunnel
through the Mach number range from 0.40 to 0.91. The flying qualities
that might be expected from such an airplane have been estimated from
these data for assumed wing loadings of 24 and 34 pounds per square foot
at sea level and at an altitude of h0,000 feet. All computations are
based on a center-of-gravity position of 17 percent of the mean aero-
dynamic chord.

The estimated flying qualities of the airplane are presented in the
body of the paper and in figures 1 to 23. A discussion of the wind-
tunnel tests is presented in the Appendix and the data are presented in
figures 24 to L4l.

COEFFICIENTS AND SYMBOLS

The system of axes employed, together with an indication of the
positive forces, moments, and angles, is presented in figure 1.
Pertinent symbols used in this paper are defined as follows:




Astatic
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1ift coefficient (Lift/qS)
drag coefficient (Drag/qS)

pitching-moment coefficient (Pitching moment/qSG)

- rolling-moment coefficient (Rolling moment/qSb)

side-force coefficient (Side force/qS)

yawing-moment coefficient (Yawing mament/qu)
free-stream dynamic pressure, pounds per square foot;(ggg)
wing area b /o

wing mean aerodynamic chord (M.A.C.) <6 = %JQ ngﬁ>
chord, parallel to plane of symmetry

wing span

air velocity, feet per second

rolling velocity, degrees or radians per second

yawing velocity, radians per second

pitching velocity, radians per second

speed of sound, feet per second

Mach number (V/a)

Reynolds number (E%é)

absolute viscosity, pounds-seconds per square foot
mass density of air, slugs per cubic foot

angle of attack, measured from X-axis to fuselage center
line, degrees

angle of attack of model under no-load conditions

control deflection, measured on chord line parallel to the
plane of symmetry, degrees

angle of yaw, degrees




NACA RM L9DO8

B
1
€
A
L/D
W/s
3¢y,
us = 5
aC
1
Cu =37
aC
n
Cny = 3%
3Cy
; 3¢,
.
ov
aC
cnp — pg
Aov
3y
CYp T yPb
o7
aoC
3 1
Clr 5 Th

o5

angle of sideslip, radians

angle of attack of principal longitudinal axis of airplane,
positive when principal axis is above flight path at the
nose, degrees

angle between fueselage center line and principal axis Of
inertia, positive when fuselage center line is above

principal axis, degrees

angle of flight path to horizontal axis, positive in climb,
degrees

1ift-drag ratio (CL/CD)

wing loading (Weight/S)
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Lo = 3a
3C,
Cm, =
2V,
kXO radius of gyration in roll about body axes, feet
kYO radius of gyration in pitch about body axes, feet
kZ radius of gyration in yaw about body axes, feet
¢
Subscripts:
a; alleron
[ left
ie right

MODEL AND AIRPIANE

The test model represented a tailless, swept-wing, Jet-propelled,
fighter-type airplane. The physical characteristics of the solid-steel
model are presented in figure 2, and pictures of the model mounted on
the sting-support systems used for this investigation are presented in
figure 3. TFor the portions of analysis for which full-scale airplane
dimensions were required, a model scale of 0.08 was assumed. The control
surfaces, which are plain flaps with sealed gaps, are intended to be used
for both longitudinal and lateral control. Rudders were not simulated on
the model. Air flow through the jet-intake ducts was permitted for all

msw,amimm<f'meeﬂmwtpm%%
be seen in figure 3(a).

together with its mirror image, can
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BASTS OF ANALYSIS

The most recent specification for satisfactory flying qualities
(reference 1) has been used as a guide in the present analysis. However,
inasmuch as the analysis is restricted to the high-speed configuration
without regard to control forces (no model hinge-moment data were
obtained) and because much of the interest centers about the behavior
of the airplane at speeds above those at which adverse compressibility
effects are encountered, no detailed step-by-step comparison with the
specifications has been attempted.

The estimated characteristics of the aircraft at each Mach number
are based upon the results of tunnel tests at the same Mach number but
at the test Reynolds number indicated in figure 4. The full-scale
Reynolds numbers corresponding to flight at sea level and at an altitude
of 40,000 feet are also shown in figure 4. No attempt was made to
account for Reynolds number effects in interpreting the results. It is
of interest to note, however, that a few unpublished tests made with
transition fixed at the leading edge in order to simulate flow conditions
at high Reynolds numbers were in good agreement with the basic free-
transition tests. This indicates that, although the bulk of the data
was obtained with free transition, the model data were not obtained in a
critical range of Reynolds number.

RESULTS AND DISCUSSION

Performance

Flight conditions.- The variations with Mach number of the 1ift
coefficient required for level flight for the various wing loadings and
altitudes considered in the analysis are given in figure 5 and the
corresponding angle-of-attack variation is given in figure 6. Figure 6
is useful for estimating the inclination of the principal axes of inertia
for the different flight conditions. It will be observed that the angle
of attack for level flight at sea level for the lighter wing loading
becames slightly negative at the highest Mach numbers. This condition,
of course, is a result of the shift in angle of zero 1ift effected by
the deflected clevator required for balance.

Lift-drag ratios.- The variation of the untrimmed lift-drag ratios:
at the various Mach numbers as a function of the 1ift coefficient is
presented in figure 7. It will be observed that the 1lift coefficient
for maximum L/D is essentially independent of Mach number, although
the magnitude of the available L/D maximum drops rather rapidly above
a Mach number of 0.80. The level-flight L/D values associated with
the trimmed-flight conditions defined in figure 5 are presented in
figure 8. The advantages to be gained by flying at high altitude are
forcefully illustrated by this figure.
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Longitudinal Stability and Control

Strictly speaking the elevator deflections for the various configu-
rations discussed in the following paragraphs are slightly in error (about
1/3 of a deg too much down elevator) because the data used in the analysis
were not corrected for the additional pitching-moment correction discussed
in the appendix.

Static longitudinal stability.- The static lcngitudinal stability

of the airplane is presented in figure 9 in the form of the variation of
the elevator position required for trim with Mach number. Control-
position instability is first manifested at a Mach number of 0.90 at sea
level and at a Mach number of 0.85 at an altitude of 40,000 feet. The
causes of the control-position instability exhibited above these Mach
numbers are traceable to the rapid changes occurring in the basic
untrimmed pitching-moment coefficient (fig. 10(a)) and to the changes

in control effectiveness (fig. 10(b)). The resultant changes in trim,
however, appear to be relatively gradual and of moderate magnitude, at
least to a Mach number of 0.91, and may not be obJjectionable.

A rigorous evaluation of the neutral-point location (center-of-
gravity position for which %ﬁ = 0) at these Mach numbers would indeed
indicate that the control-fixed neutral point moves well ahead of the
center-of-gravity position. However, the utility of the neutral-point
concept largely vanishes when irregular and rapid changes in trim occur.
The desired information on static longitudinal stability appears to be

most directly conveyed through charts like figure 9.

Maneuvering stability.- For tailless aircraft which possess very

SCpy
little damping in pitch, the factor <§E£ very nearly defines the
M
stick-fixed 'meneuver margin" - the distance, expressed as a fraction of
the chord, that the center of gravity is ahead of the 'maneuver point."
(The maneuver point is the center-of-gravity position for which the rate
of change of control deflection with normel acceleration vanishes.)

The variation of the maneuver-point location with Mach number is
presented for several 1ift coefficients in figure 11. It is evident
that the maneuver point moves rearward, in general, at the higher Mach
numbers. However, because of the nonlinearities involved in the evalu-
ation of the maneuver point, its influence can be studied more con-
venizntly in conjunction with the evaluation of the effectiveness of the
longitudinal control.

Longitudinal-control effectiveness.- The amount of elevator control

required for various accelerated-flight conditions is presented in
Figure 12. For flight at sea level (figs. 12(c) and 12(d)), only




NACA RM L9D0O8 1

about 1° of elevator is required to produce a 6g acceleration at a Mach
number of 0.85. The elevator must always be moved in the desired
direction, however, as would be expected from the maneuver-point movement
previously discussed (fig. 11). The minimum degree of stick-position
maneuvering stability that can be tolerated will depend on the associated
stick-force gradient. A small stick-position gradient, however, may make
it difficult to design the control system to supply an adequate force
gradient and still keep the maximum control force for other conditions
within the capeabilities of the pilot. At altitude of 40,000 feet

(figs. 12(a) and 12(b)), much larger control deflections are required for
the accelerated-flight conditions which makes the design of the control
system even more critical.

Dynamic stability.- The characteristics of the stick-fixed short-

period longitudinal oscillation are presented in figures 13 to 16. The
computations are based on the formulas of reference 2 and the appropriate
parameters in table I. While it is desirable that the short-period
oscillation be damped to one-tenth amplitude in one cycle, it is obvious
from figure 16 that this tailless design would not meet such a require-
ment at altitude. For the altitude case, it is seen that an oscillation
of about 40 percent of the original amplitude still persists after one
complete oscillation. At sea level, on the other hand, the damping of
the oscillation appears to be adequate.

The damping characteristics have been evaluated for the control-
fixed condition although the specifications are based upon free controls.
However, if an irreversible control system were used on this airplane,
the fixed-control characteristics would dictate the behavior of the
aircraft.

Lateral Stability and Control

Lateral stability parameters.- Because of the absence of any rudder
data from which trimmed yawed conditions could be evaluated, the direc-
tional and lateral stability will be adjudged from the stability parameters
presented in figure 17. In general, the data indicate adequate static
lateral stebility. It will be noted, however, that the speed brakes
decrease the directional stability and produce a slight negative dihedral
effect (Fegative Clw} at the highest Mach numbers.

Lateral control.- The lateral-control characteristics of the air-
plane are presented in figure 18 in the form of the variation with Mach

number of the wing-tip helix angle gg obtained with various total

aileron deflections. The helix angle was computed from the simple

b
relation gv = —%l_ using the aileron rolling-moment data presented in
1
iy
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figure 34 and the demping characteristics given in figure 18. The
damping coefficients were estimated by the method of reference 3. Some
unpublished experimental Clp data indicate that for this wing plan

form the theoretical values are in good agreement with experiment.

The rate of roll expressed in degrees per second is presented in
figure 19. Aeroelastic distortion effects would undoubtedly decrease
the rates of roll from those indicated in figure 19, but in any event
the rates of roll should be extremely high. It will be noted that, as
in the case of longitudinal control, lateral-control effectiveness begins
to decrease rapidly at the highest Mach numbers.

It is evident from the extremely rapid rates of roll possible on
this airplane that the limiting rate of roll will probably be conditioned
by the pilot's ability to withstand the angular accelerations imposed.

Dynamic stability.- Using the parameters presented in table I, the
characteristics of the control-fixed lateral oscillations have been
evaluated by the method of reference 4 and are presented in figures 20
to 23. The values of Clp presented in this table are slightly differ-

ent from those given in figure 18, but the effect of this difference on
the dynamic stability characteristics was found to be negligible.

It will be noted from figure 23 that the deamping of the oscillation
is marginal for the sea-level conditions and is definitely unsatisfactory
for the altitude conditions according to the desired damping criterion
get forth in reference 1. If flight tests on airplanes of this type
subsequently demonstrate the real need for additional damping, the
simplest way to provide for it would be to introduce artificial damping
into the system in the form of rudder control coupled to a gyroscope
sensitive to yawing velocity as discussed, for example, in reference 5.

A check on spiral stability was also made for the conditions stated
in figure 20. It was found that spiral instability was present at a
Mach number above 0.9, but the degree of spiral instability was so slight
that the time required for the angle of bank to increase 10 percent was
of the order of 1 minute at an altitude of 40,000 feet and 4 minutes at
gea level.

CONCLUSIONS

An analysis of the transonic flying qualities to be expected from
a tailless airplene in the Mach number range from O.40 to 0.91 based on
a model investigation indicates the following conclusions:

1. The airplane would exhibit longitudinal control-position

instability at transonic speeds but the accompanying trim changes at
these speeds should not be large.
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2. Control-position maneuvering stability would be present at all
speeds Investigated although the control-position gradient may be as
high as 6g's per degree of elevator deflection at low altitudes.

3. The damping of the short-period longitudinal oscillation at
high altitudes would be less than desired.

4. The demping of the lateral oscillation at high altitude would be
very poor and would probably require artificial damping.

5. Longitudinal and lateral control appear to be adequate at all
speeds investigated.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va.
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APPENDIX

WIND-TUNNEL INVESTIGATION

Tests

Scope. - The tests covered a Mach number range of 0.40 to 0.91 and

an_angle-of-attack range of 0° to 10°. Yaw tests were conducted through
4 at 0° and 6° angle of attack. Longitudinal-control tests were con-
ducted for -L.4O to0 9.5° elevator deflection through the angle-of-attack

and Mach number renge, and aileron-control tests covered -1.80 to 18.9°
deflection of the left aileron through the angle-of-attack and Mach number
range. The effect of the fins, canopy, and speed brakes on the longitudinal
and lateral stability and control was also investigated.

The variation of test Reynolds number with Mach number for average
test conditions is presented in figure 4. The size of the model used
in the present investigation resulted in a corrected tunnel choking Mach
number of about 0.94. Experience has indicated that, with this value of

choking Mach number, the data should be reliable up to a corrected Mach
number of about 0.91.

Support system.- The model was Supported by a sting extending from
the rear of the fuselage to a vertical strut located behind the model.
A photograph of the model supported on this system is shown in figure 3(a).
The tare forces and moments produced by the center sting were determined
by mounting the model on two wing supports which were also attached to
the vertical strut and testing the model with and without the center sting
(fig. 3(p)). For wing-alone tests the method that was employed to obtain
pitching-moment tares was found to glve unreliable results. Consequently,
no pitching-moment data for the wing alone are presented in this report.
Angles of attack and yaw were changed by the use of interchangeable
couplings in the stings behind the model. Deflections of the support
system under load were determined fram static-loading tests.

Corrections.- The test results have been corrected for tare forces
and moments produced by the support system. However, there are small
additional corrections to the pltching-moment and rolling-moment coefficients
which have not been incorporated in the data. These corrections, which
are inherent in the balance system, were determined subsequent to the
completion of the present investigation, but the data of this paper can
be corrected as follows:

(Cp) =N(en)

> (0)3(0.0)
corrected I presented 3

(Cz)

(cy) - 0.0008

corrected presented
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The Jet-boundary corrections to the 1ift and drag were computed by
the method of reference 6. The Jet- boundary corrections to other
components were considered negligible.

The drag has been corrected for the buoyancy produced by the small
longitudinal static-pressure gradient in the tunnel. All coefficients
and Mach numbers were corrected for blocking by the model and its wake

by the method of reference 7.
RESULTS AND DISCUSSION

The results of the wind-tunnel tests are presented in the following
figures. The pitching-moment coefficients are presented about a center
of gravity located at 17 percent of the mean aerodynemic chord.

Basic Force Data: Figure
Longitudinal —
Piltch tests, effect of control deflection, speed brakes,
fins, cenopy, end wing-alone data . . . + . . . . . . .24 25 26
Iilhe e aey e slelsl N0 s 5 ToR G0 0 60 0 0 00 00 o e B 2H
Cn
Curves of 8C—L ol ol e et Mo Mgt oAt RO o S o oI T LT o T 28
Control efflectiveness paramoter « « o « o.o o o o o o s 29
Lateral -
Yaw tests, effect of speed brakes, fins, canopy, and
wing- alone data 5 Gk 0o 0ol G 0 0o @ gials B 5(0), il
Lift coefficient of yaw tests o3 sl el MeRRl o e e R SR 32
Latoral-atdbillity dorlivatived « « o & ¢ v o o s foigs. s » 33
Lateral-control tests . . . . Gig o oo G GG ot e 34
Effect of alleron deflection on drag B =i e e ciseule bRt R 35
Effect of fins on aileron effectiveness « « « « o « o . . 36

Miscellaneous Data:

fuft sbudies ol Elow Over'wihg v - & Ve o . e smm s 4 37
Speed-brake configurations -
Drawing of fuselage DrakeB «'ec o o s o o s o s.os s o 38
M esibuddieaiit ORI, S T SEGERENG S o g o 39
Effect on 1lift, drag, and pitching moment R 40
Drag increments St SRR O S o e S o R & B 41

Longitudinal stability and control.- The aerodynamic characteristics
in pitch of the model and various components are presented in figures 24,
25, and 26. TFor these tests a cluster of static and total head tubes
was installed in the right duct to measure the flow during tests. The
inlet-velocity ratios measured were small compared to those which might
be expected in flight; however, calculations have indicated that only a
small pitching moment results from turning the inlet air through the
angle of attack at the duct inlet.
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Visual observation of tufts indicated no external flow separation
from the duct inlets at any Mach number at low angles of attack. At the
highest angle of attack, however, a local separation from the upper
surface of the duct 1lip was observed at Mach numbers as low as 0.45

(fig. 37) -

The elevator effectiveness parameter Cmgy (fig. 10(b)) was deter-
mined from cross plots of the data from figure 24 and is defined as the
slope of the pitching-moment coefficient plotted against elevator-
deflection curve at zero elevator deflection. The pitching-moment coeffi-
cient was found to vary linearly with deflection through the deflection
range at the lower Mach numbers. At large deflections the effectiveness
was somewhat reduced at the higher Mach numbers.

)
88750 to 4 .40

data obtained from elevator deflections 0° and -4.4° only.

The effectiveness parameter < (fig. 29) is based on

Lateral stability.- The variation of lateral-stability characteristics
with Mach number (astatic = 0° and 6°) for several configurations of the
model are presented in figures 30 and 31. During the test runs in which
these data were obtained, the 1lift coefficient varied as indicated by the
curves in figure 32. The angle-of-attack change from the wind-off static
values (agtatic = 0° and 6°) was caused by the deflection of the support
system under aerodynamic load and is indicated by the values of the
actual angle of attack shown in figure 32.

Lateral control.- Most of the test results presented are for the
complete model configuration consisting of the wing, fuselage, canopy,
and vertical tails (figs. 34 and 35). Several tests, however, were made
with the vertical tails removed (fig. 36) and these data are uncorrected
for the small changes in angle of attack of the model caused by deflection
of the sting-support system. The data, however, can be compared with
those of figure 34 inasmuch as the lateral characteristics are not
particularly sensitive to angle of attack in this range.

It is of interest to note that at low angles of attack there is an
appreciable favorable yawing moment accompanying the large negative
aileron deflections at all Mach numbers and that this yawing moment
decreases with increase of angle of attack. A study of the data indicates
that this favorable yawing moment is attributable to the side force on
the vertical fins induced by the deflected aileron. The decrease in
yawing moment with increase in angle of attack is probably caused by the
variation with angle of attack of the incremental-drag coefficient
produced by the aileron. (See fig. 35.)

Speed-brake modifications.- Tuft studies of the flow over the model

with the original speed brakes (fig. 39(a)) indicated bad separation of
the flow over the vertical fins, particularly the inboard surface, over
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most of the Mach number renge. In an effort to improve this condition,
other speed-brake configurations (fig. 38) were tested. On the basis of
these tuft observations (figs. 39(b), 39(c), and 39(d)), it appeared
that all the modifications tested eliminated the poor flow conditions
evident at the vertical fin with the original configuration.

The effect of these speed-brake configurations on the aerodynamic
characteristics in pitch is presented in figure 40 for a static angle
of attack of 1.8°. The variation of the drag increments (ACD), produced
by the various speed brakes, with Mach number is presented in figure L1.
It is evident from these data that the modified wing brakes produced
considerably larger drag increments than the fuselage brakes.
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TABLE I

PARAMETERS USED IN DYNAMIC STABITITY COMPUTATIONS

E=0;7=0;cyp=050yr=fﬂ

Longitudinal Lateral
W/s | Altitude M n Cy, ky kg,
c (6 c G (o] c
Cmq Cm,, To % To 5 Te %.p n, i ng Tg

24 Sea level | 0.4 1.75 |0.1 -0.724 | -0.312 0.575| 0.145 | 0.243 | -0.240 | 0.0228 | -0.0055 | -0.0604 | -0 034l | 0.0573 |-0.372
2l Sea level 5 .85 067 -.756 -.313 575 145 243 -.245 0152 -.0037 -.0653 -.0172 .0516 -.4o1
2k Sea level .6 o .0k6 -.787 -.314 5T5 45 243 - 251 L0104 -.0026 -.0704 -.0086 L0487 -.430
24 Sea level T 25 .038 -.835 -.322 575 45 243 -.256 .0085 -.0024 -.0757 -.0057 0458 -.458
24 Sea level 8 al .025 -.918 -.34 575 .45 243 -.265 .0055 -.0018 -.0810 -.0040 .0573 - .87
2L Sea level .85 0 .021 -.972 -.3791 575 145 243 - 269 .0046 -.0018 -.0836 -.0023 -.0630 -.516
2l Sea level 875 -.05 .020 | -1.005 - b7 575 145 243 -271 004l -.0018 -.0848 -.0011 .0688 -.516
2k Sea level .9 -1 .019 | -1.036 - .565 ST5 45 243 -.275 L0041 -.0020 -.0866 0 .0716 -.487
24 Sea level 91 0 .019 | -1.049 - 654 575 «1h5 243 -.278 0041 -.0021 -.0881 0 L0745 -.487
24 | 40,000 feet | .6 4 .23 243 -.787 -.314 575 45 243 -.251 0547 -.0139 -.0730 -.0688 .0620 -.430
24k 140,000 feet | .7 2.90 .181 -.835 -.322 575 145 243 -.256 .0kok -.0113 -.0769 -.0487 .0573 -.458
24 40,000 feet | .8 1.95 .138 -.918 -.341 5T5 J45 243 - 265 .0305 -.0101 -.0818 -.0372 .0573 -.487
24 | 40,000 feet | .85 1.60 <122 -.972 -+379 575 b5 243 - 269 .0268 -.0102 -.0841 -.0258 .0630 -.516
2k 140,000 feet | .875| 1.45 .115 | -1.005 -7 575 145 243 -.271 L0251 -.0104 -.0858 -.0201 .0688 -.516
24 140,000 feet | .9 1.35 2110 | -1.036 - .565 575 145 243 -.275 .0239 -.0113 -.0879 -.0143 .0716 -.487
2k 140,000 feet | .91 1.40 2107 | -1.049 - .654 575 145 243 -.278 .0231 -.0120 -.0891 -.0115 0745 -.487
3k Sea level N 2.60 dh2 -. 724 -.312 ST5 157 240 -.240 0324 -.0078 -.0605 -.0487 -0573 -.372
34 Sea level 5 1.55 092 -.756 -.313 575 J57 240 - 245 .0209 -.0051 -.0654 -.0344 .0516 - .01
34 Sea level .6 .90 .06k -.787 - .31k 575 A57 240 - 251 0144 -.0036 -.070k4 -.0260 0487 -.430
34 Sea level o .50 0k6 -.835 -.322 575 157 240 -.256 .0103 -.0029 -.0757 -.0230 .0458 -.458
3k Sea level 8 .30 .035 -.918 - 341 575 +157 240 - 265 L0077 -.0026 -.0810 -.0171 .0573 -.487
34 Sea level 85 2 .030 -.972 -.379 575 157 240 - 269 .0066 -.0025 -.0836 -.0115 .0630 -.516
34 Sea level 875 cal .028 | -1.005 - Jlh7 575 157 240 -.271 .0061 -.0025 -.0848 -.0056 .0688 -.516
3k Sea level .9 .05 026 | -1.036 - 565 575 157 240 -.275 .0056 -.0027 -.0869 -.0029 .0716 -.487
3k Sea level 91 ol .026 | -1.049 - 654 575 J157 240 - 278 .0056 -.0029 -.0881 -.0029 L0745 -.487
34 140,000 feet | .6 6.20 345 -.787 - 314 575 <157 240 - 251 0776 -.0197 -.0759 -.1003 .0620 -.430
34 !+o 000 feet | .7 4.30 253 -.835 -.302 575 157 240 -.256 L0564 -.0158 -.078L -.0688 .0573 -.458
34 ho ,000 feet | .8 2.85 195 -.918 -.341 5T5 157 240 -.265 0431 -.0143 -.0829 -.0516 .0573 -.487
34 ho,ooo feet | .85 2.35 Sl -.972 -.379 575 A57 240 - 269 .0381 - .04k -.0848 -.0372 .0630 -.516
34 |L40,000 feet | .875| 2.1k 2163 | -1.005 - iy 575 57 240 - 271 0355 -.0148 -.0880 -.0287 .0688 -.516
34 40,000 feet | .9 2.00 155 | -1.036 - .565 575 157 240 -.275 .0336 -.0158 -.0890 - .0201 .0716 -.487
34 |40,000 feet | .91 2.00 J51 | -1.049 - 654 575 157 240 -.278 0326 -.0170 -.0902 -.0172 0745 -.487

Q06T WY VOVN
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TABLE If. COORDINATES OF SYMMETRICAT
ATRFOIL SECTTION

Ell dimensions in percent of wing chord parallel
to plane of symmstry of wingj

Station Upper- and lower-surface

ordinate
0 0

<5871 1.0958
.8803 1.3226
1.4661 1.6687
2.9264 2.2597
5.8297 2.9981
8.7103 3.4923
11.5680 3.8626
ik sl 4. 3929
22,7728 4,7516
28.2409 4,9951
33.6203 5.1488
38.9118 5.2322
44,1160 5.2200
49,2336 5.1300
54,2654 4 ,9088
59.2118 4 ,5506
6L4.0736 4, 0784
68.9587 3.5320
73.5461 2.,9550
78.1583 2,3821
82.6881 1.8395
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Figure 3.— Photographs of the test model.
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