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RESEARCH MEMORANDUM

PLANING CHARACTERISTICS OF THREE SURFACES
REPRESENTATIVE OF HYDRO-SKI FORMS

By Kenneth L. Wadlin and John R. McGehee
SUMMARY

The planing characteristics, as determined by tank tests, are pre-
sented for three surfaces representative of hydro-ski forms. One surface
was of rectangular plan form with a flat bottom, the second surface had a
rectangular plan form with transversely curved bottom and the third
surface had a flat bottom but was triangular in plan form. The range of
trims investigated was 4° to 20°. The data are presented in the form of
plots of load, resistance, trimming moment, and draft against wetted
area. Plots of wetted length, wetted area forward of the observed wetted
length at the chine, and aerodynamic tare forces are included.

INTRODUCTION

The use of retracteble planing surfaces, called hydro-skis, for
supporting jet-propelled water-based airplanes during the high-speed part
of thelr teke-offs and landings, was proposed in reference 1. The
results of some preliminary tests of models fitted with hydro-skis are
presented in references 1 and 2.

Hydro-skis are intended to be parts of the airplane which can be
extended for landing and teke-off. Since the skis come from the fuselage
which is generally rounded or the wing which is more or less flat, the
skis also will generally have rounded or flat cross sections. Though
some data are available on flat rectangular planing surfaces (see refer-
ences 3 and 4), the range of trims is limited. Practically no data are
available on the characteristics of planing surfaces with convex cross
sections or plan forms other than rectangles.

Information as to the effects of plan form and cross-sectional
curvature should therefore be an aild in designing hydro-skis and hydro-
skl arrangements. Because of this, an investigation was initiated at
Langley tank no. 2 to determine the characteristics of planing surfaces
of several plan forms and transversely curved bottoms. This paper pre-
sents the results of some planing tests of three such surfaces. For con-
venience in locating the data presented, an index of figures is presented
in table 1. Because of current interest of the Air Force and the Bureau
of Aeronautics in obtaining data pertaining to hydro-skis, the data in
this paper are presented without analysis or discussion to make it avail-
able as quickly as possible.
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MODELS AND APPARATUS ¥

The principal details of the models tested are given in figures 1
to 3. Model 250A had a flat bottom surface and a rectangular plan form.
Model 250B had a rectangular plan form but the bottom was curved in cross
gection. Model 250D had a flat bottom and a triangular plan formj; it
was tested with the base of the triangle forward (leading edge). All
models had the same plan-form area (0.347 sq ft) and were made of solid
mahogany. The upper surface was arbitrarily faired by meking all the
longitudinal sections circular arcs with a height at the center of 5 per-
cent of the chord which forms the bottom of the section.

The tests were made on the small model towing gear in Langley tank
no. 2. The test setup is shown in figure L.

Two lenticular struts supported the models from a trimming moment
dynemometer which was fastened to the towing staff. A phosphor bronze
strap in the dyneamometer restrained the model in trim. Electrical strain
gages fastened to this strap indicated the trimming moment encountered.
The towing staff was free only in rise and the vertical load was varied
by counterbalancing. Changes in draft were read by means of a disc and
pointer arrengement which mechanically magnified changes in the vertical
position of the staff. The guldes for the staff were connected to the
resistance dynamometer. This dynamometer consisted of a cantilever
spring, the deflections of which were magnified by an optical system.

PROCEDURE
General -

The tests consisted of towing the models at various speeds and
loads, at fixed trims of 4°, 8°, 12°, 16°, and 20°. A sufficient number
of loads were chosen at each trim to define the variations of resistance,
trimming moment, and draft with wetted length. The maximum speed was
determined by the measuring limits of the equipment and ranged from 30
to 35 feet per second. The minimum speed was set at 10 feet per second
gince indications were that below this speed satisfactory planing data
could not be obtained with these models. Resistance, trimming moment,
draft, and wetted length were read. Draft is the depth of the trailing
edge of the model below the free-water surface. Trimming moment was
measured about an arbitrary point above the model and from the measured
results the trimming moment about the trailing edge at the center line
of the model was calculated.

Wetted Length

The wetted length read was the distance fram the tralling edge of
the model to the intersection of the dynamic solid water boundary with
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the chine of the model. (See fig. 5.) Forward of this boundary there
was a region of loose spray which seemed to fan out from the boundary.
Becauge of the transverse curvature of model 250B some difficulty was
encountered in visually reading wetted lengths particularly at the lower
trims. A few underwater photographs (see fige 5) showed that the
visually read wetted lengths were satisfactory except at L4° trim. There-
fore, additional underwater photographs were taken at 4° trim and the
wetted lengths were obtained from these photographs.

Due to a forward curvature of the solid water boundary the wetted
length at the center line of all models was greater than the observed
wetted length. The manner in which this curvature varied with the models
and thelr wetted length, trim, and speed was determined from underwater
photographs .

The slight curvature of the solid water boundary on model 250A
(rectangular plan form, flat bottom) gave only a small difference between
the wetted length at the center line and the observed wetted length.

This difference was within the experimental scatter of the test data
obtained, and therefore was not considered.

Due to the transverse bottom curvature of model 250B, the difference
in the two wetted lengths variled considerably with trim. However, the
difference was less than that which would be indicated by the intersection
of the water surface with the curved bottom surface of the model at rest
as is shown in figure 5. Figure 6 indicates the difference in the wetted
length at the center line and the observed wetted length at the chine.

For model 250D (triangular plen form, flat bottom) the dynamic water
line was in the form of an arc having a ratio of mid-ordinate to chord
(beam) equal to 0.10. Within the range of trims and speeds covered in
these tests this ratio did not vary appreciably. Because of the trian-
gular plan form of the model the chord of this arc and therefore the mid-
ordinate, varied with wetted length or wetted area. Figure 7 shows the
resulting difference in the wetted length at the center line and the
observed wetted length at the chine.

Wetted Area

The wetted area i1s defined as the wetted plan-form area. This area
was determined fram the plan form of the models, the observed wetted
length at the chine, and the addltional wetted area forward of the
observed wetted length. The additional wetted area forward of the
observed wetted length was determined from the umderwater photographs.

The wetted area forward of the observed wetted length varied in
the same manner as the wetted length forward of the observed wetted
length. The additional area involved was neglected for model 250A. The
area Involved for model 250B varied appreciably only with trim and is
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given in figure 8(a). The area involved for model 250D varied appreci-
ably only with wetted length (or wetted area) and is given in figure 8(b)
plotted against total wetted area.

Aerodynamic Tares

The aerodynamic tares for resistance, moment, and 1ift were deter-
mined for all trims. The aerodynamic drag and moment were determined
with the model attached to the towing gear, with the model removed, and
with the model and strut structure removed (towing staff alone). When
the model was attached it was positioned approximately one-half inch
above the water. When the model was removed the position of the staff
and struts was the same as when the model was attached. With the strut
structure also removed, the drag was measured at positions of the staff
to cover the range for the drafts obtained in the tests. The aerodynamic
moment tares were found to be negligible for all models.

The aerodynamic drag of the gear one-half inch above the zero draft
position but with the model removed was the same for all models and did
not vary appreciably with trim. This drag, plus the Increments due to
change in draft (as determined from the runs made with the staff alone)
is given in figure 9.

The aerodynamic drag of the gear one-half inch above the zero draft
position and with the model attached was found to be the same for
models 250A and 250B. Its variation with trim was negligible for these
models but not for model 250D. The difference in the drags with and
without the model attached was considered to be the aerodynamic drag of
the model alone. The aerodynemic drag correction for the model alone
was assumed to be equal to the ratio of the unwetted plan-form area to
the total plan-form area multiplied by the total aerodynamic drag of the
model alone. This correctlion is given in figure 10 for models 250A
and 250B and in figure 11 for model 250D. These values, in addition to
those for the gear alone, were subtracted as tare corrections from all
the resistance data before plotting.

The aerodynamic 1ift was determined by counterbalancing the model
in the air at zero speed, then running at the desired speeds and trims
and adding weight until the model moved downward, then removing the
weights until the model moved upward. The average of these two weight
1limits was considered to be the 1ift. This 1ift, which varied appreci-
ably with trim, was the same for models 250A and 250B but different
for model 250D. The aerodynamic 1lift correction was also determined
as a function of unwetted area in the same manner as for the aerodynamic
drag; 1t is given in figure 12 for models 250A and 250B and in figure 13
for model 250D. The values given were subtracted as tare corrections
from the values of load applied to the models.
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RESULTS

The results are presented in the form of plots of the load on the
water, resistance, trimming moment, and draft against total wetted area
with speed and trim as parameters. Figures 14 to 17 give the results
for the rectangular surface with a flat bottom (model 2508 ) . Figures 18
to 21 are for the rectangular surface with curved bottom (model 250B)
and figures 22 to 25 are for the triangular surface with a flat bottom
(model 250D) .

From the procedure described, the quantities in the figures are
defined as follows:

(a) Resistance is the measured resistance less the aerodynamic
drag of the towing gear less model (fig. 9) and the estimated aero-
dynemic drag of the unwetted portion of the model (figs. 10 and 11).

(p) Trimming moment is the measured trimming moment referred to
the trailing edge of the model. The aerodynamic moment tare was
negligible.

(c) The load on the water is the unbalanced weight of the model
and gear less the estimated aerodynamic 1ift of the unwetted portion
of the model (figso 12 and 13). The aerodynamic 1lift tare on the gear
alone was negligible.

(d) Draft is the depth of the trailing edge of the model below
the free water surface.

(e) Wetted area is the wetted plan-form area computed from the plan
form and the observed wetted length at the chine plus the wetted area
forward of the observed wetted length (fig. 8). The latter was
negligible for model 250A.

(f) Wetted length at the chine is the observed length from the
trailing edge of the model to the intersection of the dynamic solid
water boundary with the chine. The wetted length at the center line
was appreciably greater for models 250B and 250D. (See flga. 6 and T.)

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va.
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Model 250B.
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Figure 20.- Variation of moment with wetted area, Model 250B.
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Figure 2.- Variation of load with wetted area. Model 250D.



76

NACA RM No. LSCO3

Speed
(fps)
RfX%M
-y
W
pl‘ 5/ ,gA
y A e
: PP N
o //H ,XWQN
LA ia®
Egi&”( | . L

;

—&

I
j%:
:

015 om ‘5 om .35
Wetted area, sq ft

(b) T = 80,

Figure 22.- Continued.




NACA RM No. 19CO3

Speed
(fps)

7

ay

yd
y R EEE;
2 Pl
f 1 o
ﬁ3167 ' AZ;f >//%$/<5/
g WELEE BoA
3
ST RLF
Al g
i o4 5
8— z Boa gl
& o
L dﬁ) V‘VHIJ/D/ | 10
1 ’ OC
5 i
0 OB <10 15 .20 «25 . %) L)
Wetted area, sq ft )
(c) T =120,
Figure 22.-

Continued.




78

NACA RM No. L9CO3

Speed
(fps)
%2

i /y Wi
AL V.
5 R0 il
A £ 1 1
- A i 15
§ ?ﬁ g i n/D/
: A LA IECS
;K ol
A
4

Hﬂ;ﬂ o

BT
0O
. 15 . Z) . 5 o K) C 5
Wetted area, sq ft B
“~NACA

(d) T = 160,

Figure 22.- Continued.




NACA RM No. L9CO3

9

A %
]
\\6:§:
S

VAR L
i16 —A/f VO)/ B
g . g s |
Pl AN :
AL 1
WA 7 y
_ ' | O
LKl 4 | ] ol i
e
: |
0 5(0)5) 5 [0 odD 20 .30 i
Wetted area, sq ft W

(e) T = 200,

Figure 22.- Concluded.




80 NACA RM No. L9CO3

8
7 —_—
6
5
=
2
g u
L
1]
@
(4]
m
3
2 Speed
(fps)
P
i ) 2D
I
; )
~A =1
| 4 _ o et
% 4R 15 -0 .25 .20 .35
Wetted area, sq ft

(a) T = uo,
Figure 23.- Variation of resistance with wetted area. Model 250D.
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