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By'Clarencé W. Matthews
SUMMARY

An analysis is made of the effects of compressibility on the
pressure coefficients about several bodies of revolution by comparing
experimentally determined pressure coefficlents with corresponding

pressure coefficients calculated by the use of the linearized equations -

of compressible flow. The results show that the theoretical methods
predict the subsonic pressure-coefficlent changes over the central
portion of the body but do not predict the pressure-coefficient changes
near the nose. Extrapolation of the linearized subsonic theory into
the mixed subsonic-supersonic flow region fails to predict a rearward
movement of the negative pressure-coefficient peak which occurs after
the critical stream Mach number has been attained. Two equations
developed from a consideration of the subsonic compressible. flow about
a prolate spheroid are shown to predict, approximately, the change with
Mach number of the subsonic pressure coefficlents for regular bodies of
revolution of fineness ratio 6 or greater.

INTRODUCTION

- During the last several years a number of papers have been
published concerning the theoretical aspects of the effects of
compressibility on the flow over bodies of revolution (references 1
to 4); however, few analyses of experimental data have appeared.
Since an experimental investigation of the effects of compressibility

" on the pressures about various bodies of revolution could contribute
much to the basic knowledge of subsonic three-dimensional flow, the
present work was underteken.
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In this investigation, two prolate spheroids of fineness ratios 6
and 10, an ogival body, and a prolate spheroid with an annular bump
near the nose were tested. The experimental pressures about these
bodies are compared with the pressures computed by the linearized
compressible-flow theory. Several relations developed from theoretical
considerations of the flow about a prolate spheroid are presented for
correcting the lncampressible pressure coefficients of regular bodies
of fineness ratios 6 to 10 for the effects of compressibility in the
subcritical flow range.

SYMBOLS

b. maximum radius of body

Cy ' normal -force coefficient based on plan-form areé of ellipse
f fineness ratio of body <21—b> .

1 total length of body (see fig. 1)

Mey critical Mach number

Mg free-stream Mach number

Py local static pressure

Pg free-stream static pressure

P pressure coefficient 2%—:—25

§DV2 ,

r radiué of‘body

u camponent of local.velocity parallel to free stream

v .' camponent of local velocity 1n vertical plane perpendicular

to free stream

v ‘ total local velocity

w component of local veloclty perbendicular to u and v

W free-stream velocity

x coordinate along major-axis of body

[T
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a angle of attack

B =\1 - Mg

4 ratio of specific heat at constant pressure to specific heat

at constant volume
p density
)] veloclity potential

y, &, o ellipsoidai coardinates (see ;;}g;énpe 5)

Subscripts:

c compressible value

1 incompressible value

cr critical value

gt incompressible value of flow about hypothetical stretched

body

MODELS

Sketches. of the bodies of revolution tested, which show the
locations of the pressure orifices and.other pertinent details, are
‘presented in figure 1. The ordinates of the typical transonic or
ogivel body and the prolate .spherold with an annular bump are given
in table I. The ordinates of the.sectlion of the sting support, which
1s a part of the body of revolution, are those of a prolate spheroid
of fineness ratio 6. The same support was used for each body. The
couplings used to change the angle of attack were mourrted in the sting
11 inches downstream from the end of the body. Except at the first
three stations indicated in figures 1(a), 1(b), and 1(c), the pressure
orifices were located around the body as shown in the sketch, '
figure 1(e). These orifices were spaced 15° apart on one side of the
body in order to obtain a falrly accurate normal=-force coefficient upon
integration of the pressure ¢oefficients. The orifice at the first

station was located in the nose. The orifices at the next two stations
were located at 90° intervals\around the body. The pressure orifice
openings were 0.010 inch in d%?meter.

(V]
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TESTS

The pressures about the bodies were measured in the Langley 8-foot
high-speed tunnel through the Mach number range 0.3 to 0.95. The angle-
of-attack ranges were 0° to T.7° for the regular bodies and 0° to 2° for
the prolate spheroid with an annular bump. The pressures were recorded
by photographing a 10-foot 100-tube mancmeter board filled with
acetylene tetrabromide.-

The free-stream pressures and Mach numbers were determined fram an
empty-tunnel calibration based on the pressures at an orifice located
4 feet upstream of the model.

Several preliminary plots of local pressure coefficients as
functions of free-stream Mach number showed considerable scatter for
Mach numbers less than 0.5, probably because of the difficulty of
reading the small pressure differences and because of the possibility
that the tunnel was not held at each Mach number a sufficient length
of time to insure complete settling of the manameter 1liquid. Because
of this scatter, 1t was necessary to neglect the pressure coefficients
below Mg = 0.5 1n extrapolating the pressure-coefficient curves to a
stream Mach number of zero. The data used in the analysis in this
investigation were picked from the extrapolated curves.

For the tests reported in this paper, the Reynolds number varies
from approximately 2,700,000 per foot at Mg = 0.40 to 3,950,000
at Ms = Oo9’+o

The wall interference may be approximately determined by using
the equations of reference 6. Since the corrections were small, they
were not applied to the pressures in the figures which present
experimental data alone; that is, figures 2 to 6, 10, and 11. However,
the corrections, even though small, were applied to the experimental
data used for the comparisons between the theoretical and the experi-
mental values; namely, figures 7 to 9, 13, and 1k.

THEORETICAL METHODS

The theoretical subsonlc pressures about a prolate spheroid may
be computed by applying the Prandtl-Glauert correction to the incam-
pressible potential-flow equations in the manner suggested in refer-
ence 7. In this soclution of the linearized form of the equations for
compressible flow, the body is stretched in the free-stream direction
by the factor 1/B; the induced velocity components u - W, v, and w -
about the stretched body are compp.ted by potential-flow methods (for
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prolate spheroids; see reference 5); and the induced velocities u - W,
‘v, and w are corrected by the factors 1/p°, 1/B, and 1/B, respec-
tively. The corrected velocities are the compressible veloclties at
the corresponding points on the original body. The following formula,
as is shown in appendix A, 1s the result of the application of this
method to the flow over prolate spheroids:

2 ' . 2
2 H H,F
v 1 8t . 2 1 st” st
1-—= = <1 - == - K, 23in% sin“ag - (=5 - 1 - ===
w82 Gst Dyt 8t (,32 > < Gst >
2 2
Ho F Hgt¥
+ Kbst sinfw sin?aﬂt + _g;_g& - _g;_g& - EKbst sin‘w sin?ast
' st st : -
(1a)

where
Fgt = V1 - p2 cos agy - uyl - €2 cos o sin agt
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(log i't Z) - 2e

KaSt =1- 1 + e e
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1l + e 2e
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The pressure coefficients may be computed fram the following
relation: ' :

2-1 .2, _ V2 7" -

| [} S M Q. wej -1

Pe = . 7 _ (1p)
5 Mg |

Because of the nature of the transformation, equation (la) does not
hold for large angles of attack; that is, where a = sin a ceases to
be a fair approximation, or for asmall -fineness-ratio bodies.

The compressibllity effects indicated by application of the
linearized theory of compressible flow to prolate spheroids are not
apparent from equations (1). The effects may be shown simply for the
special case of the center of a prolate spheroid at zero angle of
attack. As shown 1n appendix B, the following relation is obtained:

Fe _({, log B __f2 - log 2f 2)
1 - log 2f/| £2 - B2(log 2f - log B)

Thus, the theoretical solution indicates that the ratio of the com-
Pressidble pressure coefflcient to the incompressible pressure coeffi-
clent on bodies of revolution will vary conformably to a function

of log B and f rather than with 1/B as in two-dimensional flow.

’ P 1o
Equation (2) may be reduced to the form == = 1 + g P

Py T = 1og or "hlich

is presented in reference 8.

Another and easier method of obtalning an approximate solution of
the linearized equations for very thin bodies may be found in refer-
ences 2 to 4. This method consists of integrating an approximated
source-sink distribution to obtain the induced-velocity ratios from
which the pressure coefficients may be computed. Since the . .source-
sink distribution is approximated by the derivative of the cross-
sectlional area with respect to the length of the body, this method is
more generally applicable to bodies of revolution than is the method
of applying the Prandtl-Glauert correction to the exact incompressible-
flow solution. It is shown in appendix A that, for prolate spheroids
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zero angle of attack, this method gives the following results:

ges 7 end 21: Equations (3) and (18) should be corrected to read

0 | xY2, . pere
- 1 " 1 (l 1)+\/(1-T) XA
£2 7 ST L e 7 2. piec
2 (1 £ x) + BEPS X + Ber X :. E_E_
q* ! 12 1@ 12 By 12 g )

2
Throughout the midportion of the body, if pe EE is considered small
1

1

of the following equivalent forms which show the effects of compressi-
bility:

2
compared to < - 35 or fg, equation (3) may be approximated by either

2 1og B
Pg = Py ™ ) (h)
£
P log B
ol - S it ... - 3
Byt Y wlog B (5)

Both relations indicate that the effect of compressibility on the
subsonic flow about a body of revolution. at any given Mach number is to
lower the pressure coefficients over a large portion of the body. These
relations for the effect of compressibility are in accord with similar
equations presented in references 2 and 3.

RESULTS AND ANALYSIS

Comparison of experimental and theoretical pressure distributions.-

The local pressure-coefficient distributions are presented in figures 2
to 6 for various values of free-stream Mach number. Figures T to 9 are
replots of some of the data of the preceding figures corrected for wall
interference, together with results of the theoretical calculations by
means of equations (1) and (3). Figures 2 to 6 show a decrease in the
experimental pressures OvVer the central portion of the body with
increasing Mach number, as predicted by equation (4). However,
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figures 7 to 9 indicate that -the linearized theory predicts a decrease
in the pressures over the entire body, whereas the experimental data °
show that a point on the body exists ahead of which the pressures
increase rather than decrease (see also figs. 2 to 6). The lack of
agreement of the linearized theory with the experimental results near
the nose of the body 1s to be expected because of the assumptions made
in its derivation. It might be pointed out that the effect of com-
pressibility on the experimental pressure coefficlents is approximately

10 rotate the pressure-coefficient distributions about the incompressible-

stream-pressure point. The actual point about which the rotation may

be considered to take place shifts its location from slightly downstream
of the stream-pressure point on the top of the body to slightly upstream
of the stream-pressure point on the bottom of the body.

- As the flow approaches and exceeds the critical stream Mach number,
a further change in the pressure distributions occurs. This change of
gshape (figs. 2 to 5) is essentlally a rearward movement of the negative
pressure peak. The nature of this change 1s emphasized in the Mg = 0.95
sections of figures 7 and 8. These figures show that the linearized
theory does not predict the shift in peak pressures which occurs as the
flow becomes supercritical.

The rearward shift of negative pressure peaks which occurs on the
top of the body seems to be changed to-a forward shift on the bottom of
the body, figures 3(c), 4(c), and 5(c). It is reasonable to assume that
part or all of this forward movement of the bottom negative pressure
peak may be explained by the positive pressure field which exists ahead
of the under part of the sting support

A caomparison of figures T and 9 shows that the linearized theory
gives better results for the greater-fineness-ratio body. The pressures
about the fineness ratio 10 prolate spheroid are in better agreement
with theory even for the stream Mach number of 0.95 than are the pres-

" sures about the fineness ratio 6 body. It may also be observed that the

thecretical pressures about the flneness ratio 10 prolate spheroid which
are calculated by the two different methods are in excellent agreement,
thus showing that for bodies of fineness ratios of 10 or greater the
simpler method of computing pressures presented in references 2 to 4 is
fairly reliable.

Influence of chenging noge shape.- The effects of changing the

shape of the nose of a body are seen by comparing figures 2(a) and 3
with Pigures 2(c) and 5. The incampressible pressure distribution 1s
changed as may be expected. However, the nature of the effect of
compressibility is the same for this body as it 1s for-the prolate
spheroid of fineness ratio 6. The incremental pressure changes are
almost the same, and the rotation and shifts of pressure peaks are
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very similar for both bodies. This comparison shows that the effects
of compressibility do not depend to a great extent on body shape so
long as the body does not depart from the specifications required for
the application of the linearized equations.

Influence of fineness ratio.- The influence of filneness ratio on
the effects of campressibility may be observed by camparing figures 2(a)
and 3 with 2(b) and 4. These figures show that increasing the fineness
ratio reduces the changes in pressure caused by varying the stream Mach
number. This effect is predicted by the linearized theory in
equation (4). It may also be observed that the pressure peaks are less
praminent and do not shift their location to the extent found in the
lower-fineness-ratio bodies.  The changes in the shape of the pressure
digtributions are also reduced and comparable changes occur at higher
Mach numbers. The delay in the change of the shape of the pressure
distribution is demonstrated by comparing figures 7 and 9 at Mg = 0.95.
For the fineness ratio 6 prolate spheroid, a marked change in the
pressure distribution has already occurred, whereas for the fineness
ratio 10 body the shape of the pressure-distribution curve is almost
the same as at lower Mach numbers. A consideration of the observed
effects of Increasing the fineness ratio indicates that such a change
definitely reduces the effects of compressibility.

Influence of angle of attack.- It may be shown by the use of the

linearized theory that, at least to a first approximation, the 1ift and
moment forces on a bedy of revolution are not affected by changes in
Mach number (see reference 4). The validity of this prediction is
demonstrated in figure 10 which shows that the variation of the normal-
force coefficient with Mach number is small for both the f = 10

end f = 6 prolate spheroids. : )

Influence of an annular bump. - A study of the effects of com-

pressibility on the velocities about an infinitely long body containing
surface waves, reference 9, shows that these effects become two-
dimensional in nature when the length of the surface waves becomes
small with respect to the body radius.. Since an annular bump on a
body of revolution approximates these conditions, the flow over such

a bump may also be expected to show two-dimensional effects. An .
examination of figures 2(d) and 6 shows that the range of pressure
coefficlents found in the flow over a prolate spherold with an annular
bump is of the same order as those found in two-dimensional flow.

The two-dimensional nature of the flow over an annular bump is

further demonstrated by camparing the pressure coefficients with the
Von Karmén relationship (reference 10) for the effects of compressi-
bility on two-dimensional flow, figure 11. This figure shows fair
agreement between the Von Kérmén relation and the experimental
relationships for those regions of the body where the flow does not
separa.e and the slope of the body is reasonably small; namely,
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the 8.33-, 11.5-, 13.6-, 16.5-, 17.9-, and 19.8-percent stations.  The
15-percent station 1s highly irregular and cannot be explained by
elther two- or three-dimensional theories. The otherlptgtions are
severely affected by separation phencmena. The Von Kermén relation,
however, fails to explain the phenomena once the critical speed is
- exceeded. :

Correction of Incampressible pressure distributions for the effects
of compressibility.- Equations (2) and (4) suggest that an incompressible -

pressure distribution might be corrected for the effects of compressi-
bility by considering a rate-of-increase type function such as Pc/Pi
or a pressure-increment type of function such as P, - Pj. In order to
show whether the effects of compressibility may be expressed by such
functions, a number of the pressures over the regular bodies at zero
angle of attack have been plotted in figure 12 in terms of P,/P;

and P - Py against x/1 and Mg. Tunnel-wall corrections have been
omitted, but the omission does not affect the discussion or conclusions.
An examination of the effects of position on the body on both functions
shows that, except at supercritical Mach numbers, the values of Pc/Pi
and P, - Py are roughly constant between the 25- and the 50-percent
stations. Over the forward part of the body, the values are more
variable. ‘ : ' )

The Pc/Pi function becames discontinuous in the neighborhood of
the stream-pressure point. This behavior may be attributed to the fact
that the pressure coefficient is zero at the incompressible stream-
Pressure point and, since one of the effects of compressibility is to
shift the stream-pressure point, discontinuities may be expected in the
neighborhood of this point. However, since the pressures in this region
are small, a wide variation in Pc/Pi mey be permissible without
causing serious error in the corrected results.

The Pg - Py correctlion may also be expected to becams irregular
in the region of the nose. The experimental curves show that this
function changes sign in the neighborhood of the stream-pressure point
so that any correction function of this type should include the
position on the body. However, such a function cannot be obtained
from the linearized method as this method does not indicate the change
~of sign shown in the experimental data.

The experimental values of P; - Py and Pc/Pi at the centers of
the regular bodies are compared with equations (4) and (5) in filgure 13
in order to show the validity of the prediction of the effect of com-
pressibliliity by the linearized potential-flow theory. It is observed
that equation (5) within its limitations predicts the effects of com-
.pressibility for three-dimensional flow whereas the relation

P
Ef = % which 1s used to predict the compressibility effects of
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two-dimensional flow does not. It may also be observed that
equations (4) and (5) predict .the effects of campressibility with
about the same degree of accuracy.

. The correction functions are applied to several incompressible
pressure-coefficient distributions in figure lh which are compared
with the corresponding experimental distributions. It is shown in
figure 1k(a) that increasing the fineness ratio of the prolate spheroid
fraom 6 to 10 or reducing the bluntness of the nose, which is the
essential difference between the oglval body and the prolate spheroid,
extends the region of the body for which corrections can be made fram
the 20-percent station for the fineness ratio 6 prolate spheroid for-
wvard at least to the 10-percent station for the sharper-nose bodies.

' The Pc/Pi function expresses the effect of campressibility more
accurately in the vicinity of the nose than does the P, - P4 function.
This behavior is to be expected since one of the effects of compressi-
bility already noted is the rotation of the pressure distribution,
which 1s accounted for by the Pc/Pi expression but not by the -

Pc - Py expression.

The increasing error which results from increasing the stream
Mach number is shown in figure 14(b). At Mg = 0.80, the incompress-
ible pressure coefficlents about the fineness ratio 6 prolate spheroid
may be corrected with a fair degree of accuracy as far forward as the
5-percent station. As the Mach number increases, the divergence
between the corrected values and the experimental values in the region
of the nose increases and, with still greater Mach numbers, tends to
spread toward the center. At Mg = 0.94, which is supercritical for
the fineness ratio 6 prolate spheroid, the correction formulas are
still applicable at the center, thus indicating that successful extra-
polation of the linearized theory into the supercritical range will
depend on the eection of the body to which the extrapolation is
applied.

As may be expected, the success of the linearized theory in
expressing the effects of compressibility decreases as the angle of
attack increases. The principal reason for this behavior is that an
angle of attack involves a pressure peak on the forepart of the top
of the body which moves rearward when the stream Mach number approaches
and exceeds the critical value for the body. Since the correction
formulas either rotate or translate the incompressible pressure distri--
bution, they camnot express this change in the shape of the pressure
distribution. This phenomenon is demonstrated in figure 14(c), which
Presents a comparison of the corrected pressurs-coefficient distri-
butions and the experimental distributions of the flow about the
fineness ratio 6 prolate spheroid at several angles of attack. Even
though the shift of the peak pressure is not accounted for in the
. correction formula, the corrected distributions are not seriously in

°
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error at the peaks and the agreement improves over the midportion of
the body. Thus, if some error is permissible, these formulas may be
applied for angles of attack as high as T7° or 8°.

Figure 14(c) indicates that equation (5) does not correct as
satisfactorily over the central portions of the body at angles of
attack as equation (4). This lack of agreement is due to the com-
Pressibility effect on the 1ift forces. It has already been shown that
the 11ft forces are not much affected by compressibility, hence the
increments of the pressure coefficients due to compressibility are
about the same for the top and bottom of the body. Since the absolute
values of the pressure coefficients are less on the bottom of the body
and greater on the top than if the 1ift forces had not been present,
the equation (5) will overcorrect the pressure coefficients on the top
and undercorrect those on the bottam. The same reasoning shows that
equation (4), which gives a constant increment over the entire body,
will express the campressibility -effect with an angle- of attack better
over ?h? central part of the body to which it applies than will equa-
tion (5). ‘ . !

CONCLUSIONS

The results of the tests made on several bodies-of'revolution have
shown the following effects of compressibility on three-dimensional
flow: .

1. In general, the compressibility effect is to increase the
rressure differences over a body of revolution. The pressure distri-
butions are approximately rotated about & point near stream pressure

~and the negative-pressure peaks are moved rearward.

2. The linearized modification of the compressible potential-flow
equation will predict the pressures .over the central portion of the body
but will not predict the changes in pressure aheed of the stream-
Pressure point nor will it predict the change in shape which occurs
with supercritical flow. '

3.'The correction formulas

P . .
—c =,l + —1.2&_8_._
Py 1 - log of
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(where Pe -md Py are the compressible and incampressible pressure

coefficients, respectively, f is the fineness ratio, and B =\/1L - M@
in which M 1is the Mach number) may be used approximately to correct
incompressible-flow pressures over the central portlon of streamline
thin bodies of revolution; the errors will increase as the supercritical
Mach number 1is approached and exceeded. Since Pc/Pi rotates the
pressure dis*ribution, 1t is the better correction to use at zero angle
of attack; h. ver, the form P. - P4 expresses the, effects of angle of

attack more correctly and should be used when an angle of attack other
than zero is involved. :

k. The effects of compressibility are approxiﬁately the same for
various bodies of the same fineness ratio, provided the body shape
satisfies the requirements of the linearized theory.

5. Increasing the fineness ratio tends to reduce the effects of
compressibllity. o o - -

6. The effects of campreséibility on an annular protuberance of
short chord on a body of revolution tend to follow more nearly two-
.dimensional laws than three-dimensional laws. ’

7. Lift forces and moments over the forward vart of the body are
relatively unaffected by compressibility.

'Langley Aeronautical Laboratory
' National Advisory Committee for Aeronautics
Langley Air Force Base, Va.
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APPENDIX A

DERIVATION OF THE EQUATIONS FOR THE COMPRESSIBLE PRESSURE

COEFFICIENTS OF THE FLOW ABOUT A PROLATE SPHFROID

.The solution of the linearized compressible-flow equation for a .
prolate spheroid discussed in the text requires a derivation of the
relation for the incampressible velocities about the body. The incom-
Pressible velocities about a prolate spheroid are defined by the poten-
tial equations given In reference 5. These equations may be combined
and written :

. g-l .
+ B(sih @) \/1 - u2 V te - l<%- log 2 +1 - 2§ >cos a> (6)
| - = -1

In order to satisfy the boundary conditions for the flow over a prdlate
spheroid, the constants A and B are

' 1
o = Wul cos a + A(cos a)u(%@log 6+1 >

A = LI
§o 1 4 c'0 + 1
B = — ¥
Co -2 1 . o + 1
D 2 o8 c -1
~ where 4 o is the value of the coordinate which represents the body. It
| a° - b2 1
may -be shown that the eccentricity of the ellipse e = ——2—— = E—
a ol

.where a and b are the lengths of the major and minor axes of the
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prolate spheroid. Since the fineness ratio f is equal to a/b,

T .
e=,/1~ ;§. The incompressible veloclity camponents obtained by

differentiating the potential equation are

1 - 2 _u\/<l-ué)<l‘62)

u*
ARE = -—-___—5 Kﬁ cos a

K% cos w s8in a

1 - e 1 - &fu?
- J_Q'_g 2(1 - 62)
_=_p.(]_ p>(2126> KacoswCOSG+MKbCOS%Sina
W l-eu A l'eaue

+ K5 sin®w sin a

, (1)
- u\]l-uzl-e‘?
%; - - < ‘)ﬁ : > Kq 8in ® cos a
1 - 92u2
ue(L - e2)

> Kb sin ® cos ® sin o
l-e u2

- Ky sinw cos o sin a
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¢

N N
+ e \
log - 2e
l-e
=1 - '
1 + 2
(log 'e>- °
- € 1 - e°
> (8)
1 + e\ - 2e
log -
. 1 -e 1’62
=1 - >
2 -2
logl+e_e(l e<)
11 -e 1 - e° J

and u*, v¥, and w* are the velocity components in a coordinate system
alined with the x-axis of the body. These velocities are transformed
to the wu, v, and w components by the following equations:

Al

> (9)

%=%cosa+%sina
*
%=-%Sina+v%-cosa,
¥ o_ow
W W )
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With the preceding transformation, the velocity equations become

%= :ﬁ;@(ﬁ cos a - u\/:ez cos ® sin a><\/z-‘p.2 Kg cos a )
-‘u\/l - 62 Ky cos w sin o.> + Ky sin2d) sin®a
%: - ll-—2—2<\/]__——T2 sin a+p 1-'e2 cos W cos a)( l-u2 Kg cos cx,l
- o1 :
- uVl - 2 Kyp cos a) sin _a.> + Ky sin°w cos a sin a
%= - E—l\/_-—z-—-f sin a)<\/l-7Ka cos a. - p;\/l-ez Ky cos w sir_lA o.)
1- e“u<=. .

f (10)

- Ky sin w cos ®w sin a ‘ _ : J
These equations may be rewritten more simply by setting
F=\1-u2cosa-p - ¢ cos ® sin a
F = \fl - ue.'sin a + p.\}l - 62 cos W ;:os a

\/l - e Kg cos a - u\/l - &2 Ky cos o 8in a

=
1

G =1 - e%?

Fo = u\/l - 2 gin @
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Then

+ Kb sincw sinea

P! -

%: - T + Ky sin“w cos a sin a F (11)

FoH

W
;‘-r:-*a--Kbsinwcosmsina J

The method of correcting for compressibllity discussed in the text may
now be approximately applied by increasing the fineness ratio by 1 /B
and reducing the tangent of the angle of attack by the factor 8. Thus,

and
‘tan gy = B tan or.'

where egy and agy are the eccentricity and the angle of attack of

. the stretched body. Although this stretched body differs slightly from
the properly stretched body, the approximation is very close for large
fineness ratios and small angles of attack. It may be shown that the
properly stretched body 1s an ellipsoid having three unequal axes; how-
ever, under the present restrictions the two minor axes are very nearly
equal, so that only small errors will be caused by the above approxi-
mation of the stretched body.

The compressible induced velocities are now determined by sub-
stituting oy and ey, "in equation (11) and multiplying the resulting
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w
velocity increments % -1, %, and 7 by the factors 1/82, 1/8,

and 1/B, respectively, or

-

L

‘ <%>c "5 G.')st | ' (12)

(:‘:)c - H%)st ]

The compressible pressure coefficients may be computed from the
veloclties by the following formula:

7
el )
P, =
%"
where
V2 = u® 4 v2 4 2 (13)

Cambination of equations (11), (12), and (13) yields

ve 1 Hst2 2 o 1 A HotFst 2
1 - == > 1=—~—— - byt sinfw sin“a -<§2-> <1- -——-)

H2 B Ggt

2 2
5_‘,4.. D "_' +(Kb . sin2w sinea,st + g‘b St> _ ( gt St)
W 8 8t Ggt*

- 2Kbst sin°w sineast (k)
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A simpler first approximation may be obtained by considering the
approximate relation

Since

2 [HgtFst
Pc = - -—(H-i-— -1+ Kbst sinw sin2a5t> (15)

A simpler equation may be developed for the pressures over a
prolate spheroid at zero angle of attack by considering the method of
approximate source-sink distributions described in references 2 to L.
In these references, it is shown that

Au i ’ S'(t)(x - t)dt
= =2 = = —
Pe (w) 2x ¢ [(x S RE Ber2]3/2 (16)

where t 1is & coordinate along the major axis of the body and S(t) is
the cross-sectional area of the body. For a prolate spheroid, . -

o _ kPt hmpt2

S(t) = nr - >
from which

a[s(t)]  ump2 2t>

- - e
Thua

Page 20: The final equation should be corrected to read

o2 (- F)(x - t)as
-2 [

[(x kg Bzrzjs/z




NACA RM LOF28 ‘ o 21

After integration and collection of terms




22 o NACA RM LOF28
APPENDIX B

REDUCTION OF PRESSURE-COEFFICIENT FORMULAS TO OBTAIN SIMPLE
FUNCTIONS FOR CORRECTING INCOMPRESSIBLE PRESSURE

DISTRIBUTIONS FOR THE EFFECTS OF COMPRESSIBILITY

Two functions which may be used to express the relation between the
compressible and incompressible pressure coefficients are the ratio and
the increment between the two coefficients P, and Py; that is,

Pc/Pi and P, - Pj. Both functions may be expressed in simple equa-

tions by substituting the pressure-coefficient functions for the mid-
point of the body into both the ratio function and the increment
function. In order to simplify equation (14) let u = 0, sin agy = Ba,

and K =1 -k or ke =1 - K « Then
gt st- at Bt ’
v2 1 kgt o o 5
1 - =— = =12k - — - Kac(1 - K; a~ - 2k
P Be[at 52 pe( ' B)(bstﬁ st) (l?)
ve
For small values of 1 - =—
-
2
P o=1-0o-
c
we
also for large values of f
-Kb —>2
; 8t
hence
2

PC = :é EKSt - ?Z_ = LFQ?(l = Be) (Beu? - kSt)
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Since B2=1 at M=20

2
-k
P 1 B

Since L4a?(1 - B2) <32a2 - kst> is emall campared to 2kgt, the term
containing a may be neglected; thus

L A O ‘ . (20)

In order to reduce this equation to previously published forms (refer-
ences 4 and 8), it is necessary to reduce k:

log(l + e) - 26 _

1 -e

1081+e_ 2e
1l -e 1 -e°

2 - 2
By substituting e =1 - B— and the approximate form e =1 - E—,
2 of?
it may be shown that
2 of - -
K, = B=(log 2f - log B - 1) (21):
2 2
l3log2f'-ﬁlogB-f2
and )
log 2f -1
ky = (22)

log 2f - £2
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These equations show that both k'st/B2 and ky are of order of

magnitude l/f2 and, therefore, small with respect to 2.

approximation (see equation (20))

Te _ 1 ket”
Py p2 Ky
1s valid. '

If equations (21) and (22) are used in equation (23), the following |

equation is obtained:

log B 2 - log 2f

"d"'d
i R
i
’_J

or for large fineness ratios

P 1o
—c=l+—§_ﬁ_
Py 1 -.log 2f

which may be changed to its equivalent form
: 2

P - Py = —2o& P

7

Equation (18) obtained by the source-sink distr

will also reduce to equations (25) and (26)
of the body.

1 -log2ff |52 - p2(1log 2f - log B)

Hence, the

(23)

(24)

(25)

(26)

ibution method
for the central portion

,
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TABLE I
'ORDINATES OF THE TYPICAL TRANSONIC BODY AND OF THE

ANNULAR BUMP PROLATE SPHEROID

Transonic body Prolate spheroid with
annular bump
x/1 - r/l x/1 r/1
(percent) (percent) (percent) (percent)
xo".‘oo : 0.000 0.00 0.000
.50 , - 15 1.437
.75 .596 1.25 '1.854
1.25 . 854 2.50 2.604-
2.50 1.445 5.00 2.631
Y5.00 . 2.409 10.00 5.000
\\lo.oo 3.940 12.507 5.560
20.00 6.180 12.91 5. 68k
~\\3o;oo 7.480 . 13.339 5.873
‘\\ho.oo 8.121 14.167. 6.408
\\50.00 8.333 15.20+ 7.230
‘\\\géo.oo 8.162 16.247> 7.800
70.00 . 7.635 17.49 8.190
75.00 , 7.215 - 17.9L« 8.230
, ) 18. 75 8.250
20.00: | 8:230
23.32/7 8.220 -
25.007 -—8. 000
27.08 - 7.810
28.317 T.663
28. T4 - T.620
29.16+: 7. 605.
30.005 - T7.640
35.0027 T.952
50.002§ 8.290
55.002 6 8.333
65.00; , 8.290.
75.00. 8—1——T.952
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r/f/ce /ocaz‘/ons Sting supporf (same .supporf
r used for each model)

: (=24°"
(a) Prolate spheroid; f=6.

!‘ ‘ (= 40“ - —1
(b) Prolate spheroid; f=/0:

~ 1-24" J
) Typical transonic body.

|‘bump;v| g )
< ' - 1=24" J
(d) Prolate spheroid with annular bump.

(e) Angular locations of orifices.

F/'gure l.— Profiles of bodies tested.

27
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Q o m 4
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. “NACA
K /(c) Typical fransonic body; [2 (d) Prolate spheroid |
g 4 M ,=0898 | /6 with annular bump ; M,.=0.634.
O 0 20 30 40 50 O O 20 30 40 50

Percent distance from nose, x/!

Figwfe 2.— Experimental pressure ‘distributions over several
bodies of revolutions at zero angle of attack.
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2
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Figure 3 .~ Experimental

prolate spheroid
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1020 30 40 50 -
distance ~from nose, x/i
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pressure distributions
of fineness ratfio 6 at several angles
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3
W
4 H— ,
| x=56’M,-0906 o<=7.7', M, =0B93
S0 0 20 30 40 30 06 30 4 30
Percent  distance from nose , x[t
(b) w=290°

Figure 3 .— Continued.
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Ja)

Pressure

coefficient,

-
| P
/2%;,/:—’;&::8
MJ
o O -
ox=24°M,=09I7|  ©0.600 *x=37"; M,,=0.920
— L L O .600 L ] 1
& .900
v .925
> .940
pe ] ] 7]
: : % —
W
I
ox= 56° M,..=0924 x=77"; M,=0927

Percent distance from nose, x|l
) w = 180"

" Figure 3 .— Concluded.

335 45 50 0 10 20 36 49 30
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o x=2.3; M,.=0946  © 0.600| |x=37,M,=0.937
R i ¢ .800 : —
s 23 s .800
v v .925
Q2 > .940 - .
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UV)) O i ) ; ‘
O ' b
k 4
L
2
3
: T
4 1
x=59"; M,_=0.939 x=7.6° M. =0929
5 1 1 1 J 1 J— |Cf 1
O /0 20 30 40 50 O /0 20 30 40 5
Percent distance from nose, x/! : '
(@) w=0:

Figure <4 .— Experimental pressure disiribufions over a prolate
spheroid of  fineness ratio 10 at Several angles of
atfack.
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D

coefficient,

Pressure
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0
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3
2
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3 E
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x=5.9°, M, =0935
5 | 1 N 1 )
~“O0 10 20 30 40 50
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%ge

.800

0.600|  «x=37°M, =0928

.900

925

vVd4a PO Ooo

8540

~_NACA -~

x=76 ; /\AC ~=0.925

Percent distance from nose,

(b) w=90°

Figure 4 — Conftinued.
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ﬁﬁg

-

MJ‘

o O - '

0 0.600% |x=3.7 M, =0947

o .800 SR

A 900

v .925

> .940
J} X = 76 0952I
O 10 20 30 40 50

w = /80° .
Figure 4 — Concluded.

x/l -



NACA RM LgF28 : 35

3 ;
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N/ EEni 7/

.
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~3 I
+
N )
QL 4 '
'8 l = o. =
& x=3.75; Mcr 0.889
o .5 : ' : '
8 -3
v -2 §\ _
C
==
W >/ =
o
Q .

2 ¢
4 . '

X = 55 M 0878 X = 77 /V/ 0874
S50 B 40 30 S 0 % 50
Percent distance from nose, x/!

(@ w=0°"

Figure 5. Experimental pressure distribulion -over a
Typical franson/c body at several angles of aﬁack
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coefficient, P

Pressure

R

J
S~

?<=2.l3 ; %f=0;897

S N W o

2 kel

e

]

? x=5.5", M, =0.887

0 20 30 40 50

NACA RM L9F28

C.x: 3.75 s %r=q.894

vV4p>0O0
S
)

_.925 | R
.940 > .
==

4
?// |
]

~NACA

Il

x=7.7" M, =0.884
0 10 20 30 0 50

Percent distance from nose, x/?

(b) w=90°"

Figure .5 .—Continued.
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Pressure
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~
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N

N
i
il

B

x = 23 M =0904 00.600 W |x=3.75° M =09/2
f J O .600 L 1 cr. J
: A 900
v .925 R )
> .940 |— ' —
% o~ _lg—=4
/ <~
|
ox =55 M, =098 | ox=7.7% M, =092I
O 10 20 30 40 50 O J0 20 30 40 50
Percent distance from nose, x/!
(c) w=180°

Figure S.— Concluded.
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12
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-4
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' : — ~  10:302

0 .54 —/.29
& 792 - 43

A 893 -./8
816 —./4

v d

945 —./0

b/

coefficient ,

Pressure
J
O

w =/80° : W

S5 4 8

2 16 20242832 36404445 52
Percent distance from nose , x/? :

Figure &6 .— Experimental pressure distributions over a
prolate .s,ohero;d with an annular bump. o=23°
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Q./ I, ’r‘
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S M, =0 M, =0.700
E.:.J 1 1 L L I
qg ’ —©O0 Experimental values
O ——— Prandt! — Glauert theory
———Source —sink distribution theory
0)72 | —O- ﬁJ>
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& 0O /l/}{ 1/. //
l/] / f
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M= O. 900 / M O. 950
3

'O/020304050 0/020304050
Percent distance from nose , x/ {

re 7.— Comparison of experimental and theorefical
ressures over a prolale spheroid of f/neness
e R it mAnAa nf  nttock .

39, figure 7: The curves computed by the source-sink distribution
heory should be corrected forward of the 20-percent station as follows:

~imnmla

A M=0 M = 0,700 M = 0.900 = 0.950
1
(percent) Fe Pe Pc Pe
5 0.0981 0.1027 0.0946 0.0824
10 -.00031 -.0114 -.0333 -.0506
20 -.0559 -.0722 -.0983 -.1164
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| Figure 8.— Comparison of experimental and theoretical
pressures over a prolate spheroid of fineness ratio
6 at 5.6 ° angle of atfack.
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Figure 8 .— Continued .
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Figure 8 — Concluded.
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ge 13, figure 9: The curves computed by the source-sink distribution theory
should be corrected forward of the 20-percent station as follows:

M=0 M = 0.700 M = 0.900 M = 0.950
X
1
(percent) ) B P
5 0.0366 |  0.0330 0.0269 0.0211
10 -.0067 -.0123 -.021k -.0279
20 -.0293 -.0357 -.0L54 -.0520
NACA-Langley - 12-6-51 - 410
o = M. =0 M_= 0.700
.9 il J 1 1 ‘S 1 1
;sa o2 gy
N
O —©O0 Experimenifal values
——— Prandt!—Glauert theory
o — — Source-sink distribution  theory
¢
. (9
s
(7))
$ ~/
Q : PRy e N e OO ==l
< Vs S craiat f
/ /
¥ / ”
2 J A SRAGR
M, = 0.900 M, = 0.950
90 10 20 30 40 % 0 10 20 30 40 %0
Percent distance from nose, x/1
Figure 9O.—Comparison of experimental and theoretical

pressures over a prolate spheroid of fineness
ratio |10 af zero angle of attack.
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prolate spheroid with an annular bump. o= 0 °.
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