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NACA RM L9I O 1 CONFIDENTI AL 

NATIONAL ADVI SORY COMMITrEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

A FREE-FLIGHT TECHNIQUE FOR MEASURING DAMPING IN ROLL 

BY USE OF ROCKET -POWERED MODElS AND mME INITIAL 

RESULTS FOR RECTANGULAR WINGS 

By James L. Edmondson and E. Cl aude Sander s, Jr. 

SUMMARY 

A simplified method for obtaining free -flight measurements of 
damping in roll through use of rocket -powered models has been developed; 
and initial configurations have been tested through a Mach number range 
of approximately 0.85 to 1.40, which corresponds to a Reynolds number 

range of 4.5 x 106 to 8 x 106 . The basic principle of this method is 
that the model 1s forced to roll by a nonaerodynamic rolling moment of 
known magnitude Which is produced by a canted-nozzle assembly, and the 
damping i n roll is computed by balancing the moments acting on the model. 

The initial configurations tested and reported here in had r ectan
gular "wings of aspect ratio 3 .71 and NAC A 65AO09 and NACA 65A006 airfoil 
sections. The dampinE in r oll is maintained through transonic speeds 
and is somewhat less than wing theory at supersonic speeds. 

INTRODUCTION 

A simplified mBthod for obtaining damping in roll experimentally at 
transonic and supersonic s peeds has been developed which utilizes a 
simple rocket-powered model adaptable to systematic testing. A known 
nonaerodynamic forcing moment produces roll; and, by measurements of the 
inertia of the model, Mach number, and rolling velOCity, the damping in 
roll can be determined with reasonable accuracy. A description of the 
method and results of the initial flight tests are reported herein. 

The two ini tJal confi f,'UTations tested were 1. 3-scale models of 
roll-contral-effectiveness configurations 50 and 51 of reference 1 
with rectangular wings of aspect ratio 3.71 and NACA 65A006 and 
NACA 65A009 airfoil sections. The damping-in-roll coefficient w~8 
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2 CONFIDENTIAL NACA RM L9IO 1 

obtained lor these configurations from a Mach numb~r range of approxi
mately 0.85 to 1.40, corresponding to an approximate Reynolds number 

range of 4 .5 x 106 to 8 x 106. These flight tests were conducted at 
the Pilotless Aircraft Research Test Station, Wallops Island, Va. 

SYMBOLS 

C1 rolling-moment coefficient (q~b) 

C1 damping-in-roll coefficient (dc 1) 
P dPb 

2V 

C15a rolling-moment -effectiveness coefficient (~:) 

5a angular deflection of one aileron, degrees (equally deflected 
ailerons on all wing panels) 

C10 out-of-trim rolling-moment coefficient (~~b) 

D 

L 

F 

T 

cp , p 

cp 

V 

total-drag coefficient (~) 

total drag, pounds 

rolling moment, foot -pounds 

rate of change of r olling m8ment with rolling velocity, 
foot-pounds 

radians per second 

out-of -trim r olling moment , foot-pounds 

thrust, pounds 

torque, pound.-foot 

r oll ing angu18r ve l ocity , radians per second 

rulling an ular acceleration , r adians per second2 

forward velocity, feet per second 
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NACA RM 19101 CONFIDENTIAL 3 

a longitudinal acceleration, feet per second2 

g acceleration due to gravity, feet per second2 

~~ helix angle generated by wing tip in roll, radians 

Q dynamic pressure, pounds per ' sQuare foot 

M Mach number 

A aspect ratio ( ~~) 

b wing span, feet (diameter of circle generated by wing tips) 

S' total wing area of two wings, square feet (wing panel assumed 
to extend to model center line) 

S total wing area of three wings, square feet (wing pane l a s sume d 
to extend to model center line) 

d distance from center line of model to center line of i ndividual 

w 

units of nozzle assembly, inches 

weight, pounds 

moment of inertia about longitudinal axiS, slug-feet 2 

wing-torsional-stiffness parameter, inch-po~d per degree 
(twisted and measured at wing tip) 

angle of flight pat~ to horizontal, degrees 

Subscripts: 

1 sustainer-on flight 

2 coasting flight 
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4 CONFIDENTIAL NACA RM 19101 

MODEL AND APP MATUS 

Model 

A sketch of the models used in this investigation is shown in 
figure 1. The models are simply const r ucted with minimum i nternal 
instr umentation t o allow systematic flight testing of various wing con
figurations. A complete mDdel, as shown in figure 2, consists of a 
wooden fuselage with reinforced wooden wings , a nose co~taining b9tteries 
and spinsonde, a ballast tube that attaches to r ocket-motor head cap, 
and a r ocket motor with canted nozz l es . The installation of the rocket 
motor with canted nozz l es is shown in figure 3. The canted-nozz le 
assembly consists of four amall nozzles which are offset from the center 
line of the model and set at an angle to provide the desired tor~ue. 

Apparatus 

The apparatus used to obtain the re~uired data were: 

(a) A spinsonde in the nose of the model which transmits a 
polarized signal 

( b) A spinsonde r eceiver on the ground which receives the polari zed 
signal and recor ds a time history of rolling velocity 

(c) A continuous -wave Doppler radar unit which r ecords a time 
histor y of f orward ve l ocity 

Cd) Radiosonde e~uipment which records atmospheric data at the 
time of the flight 

The for ward velocity from the Doppler radar record is combined with 
static pressure and speed of sound from the radiosonde r ecord to compute 
dynamic pressure and Mach number, respectively. 

The models are boosted from a rail-type launching stand, as shown 
in figure 4. 

TECHNI QUE 

IJ.1he basic principle of this tecbni~ue is that the model is forced 
t.o r oll by a nonaerodynamic rolling moment of knOv,'l1 magnitude which i s 
:pr oduce d by the c8...'lted-noz zle assembly , and the d.amping in roll is 
computed by "balancing t he moments acting on the model. The mome~ts 
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NACA RM L9IOl CONFIT>ENTIAL 5 

causing roll are produced by the tor~ue of the canted nozzle and the out 
of trim due to unavoidable misalinement of component parts of t~e model. 
The moments opposing roll are produced by the inertia of the model and 
damping in roll of the wings and body. For one degree of freedom, tne 
e~uation for e~uilibrium can be written 

I~ - Lp¢ = T + Lo ( 1) 

or in coefficient form 

(2) 

Because both damping moment and out-of-trim moment are unb10wn, two 
conditions must be found for the same Mach number. This is accomplished 
by using both sustainer-on flight (denoted by subscript 1) and coasting 
flight (denoted by subscript 2). Now the e~uations are 

( 4) 

Solving these two e~uations, assuming C20 is the same for conditions 1 

and 2, yields 

The rolling acceleration term of e~uation (5) is a small fact or in 
the evaluation of C2 in this case, but is easily applied by a faired 

p 
point-by-point differentiation of the rollin~-velocity-versus-time curve 
and by measuring the inertia characteristics of the model . The inertia 
of the model is measured with the rocket motor loaded (launching 
condition) and empty (burnout condition). The inertia is constant 
during deceleratinc flight (burnout condition); however, it is necessary 
to compute the inertia during the accelerating flight while the powder 
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6 CONFIDENTIAL NACA RM L9IO 1 

grain is burning. The grain is assumed to burn so that the radius of 
gyration of the grain remains constant; therefore , the inertia of the 
grain varies as the mass. Since the mass is burned at a constant rate, 
the inertia will be linear with burning time - the two end points being 
lmown . 

The torque produced by the canted nozzle can be determined in two 
ways . The total impulse of all rocket motors of the type used in this 
investigation is constant so t hat the thrust of each motor can be deter
mine d by comparison with ground tests knowing the ratio. of burning times. 
The torque produced by the canted nozzle is then computed by the 
re lation 

T = Fd tan( cant angle) ( 6) 

The other method Which can be used involves computing the torque from 
the rocket thrust obtained from flight measurements of accelerations 
during sustainer-on and coasting portions of the flight. The thrust is 
comput ed from t he fl ight data by the relationship between accelerations 
at the same Mach number. 

F - Dl 
- sin 1'1 

- sin 1'2 

Solving these two equations assuming CDl = ~ yields 

This equation does not consider a correction for base drag because this 
correction appeared t o be small in the present case. The torques 
computed from f light data were corrected to the burning time of the 
ground tests with total impulse remaining Gonstant. The two extreme 
cases are plotted against time and compared to the ground test in 
figure 5 . All the other t orque -time curves fell within th~se limits. 
Part of the difference in t orque shown may be due to an error in calcu
lating the burning times of the r ocket motors used in flight. This 
error wo'uld affect only the comparison ShO\\1Il in figure 5 because the 
actual torques used to calculate C~p were computed by the second 
method outlined above, which does not . depend upon burning time for 
accuracy . 
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An evaluation of the factors that can cause an error i n C2p is 

obtained by an analysis of e~uation (5)· The relative magni tudes of 
the terms in the numerator are such that the omission of the parentheses 
containing the ~ terms would cause about 2-percent error in C2 p at 

supersonic speeds and about 8-percent error at transonic speeds. The 
factors capable of producing their own order of magnitude of error 
in C2p are the terms containing tor~ue T and rolling velocity ~. 

From the methods of recording and computing the tor~ue and rolling 
velocity used in these calculations, the accuracy of the magnitude 
of C2p for any one model is estimated to be within ±lO per cent of a 
mean value. This accuracy is increased by t he use of two or more 
identical models. 

RESUDTS AND DISCUSSION 

Three identical models of each configuration were flight-tested t o 
allow evaluation of this method of testing. These models were boosted 
to a Mach number of approximately 0.8 before the sustainer with cant ed 
noz zles was fired; therefore, no data were obtained below t his speed. 
Typical curves of torward velocity and rolling velocity pl ott ed against 
time and tip helix angle plotted against Mach number are presented i n 
figures 6 and 7, respectively. The effect of the tor~ue produced by 
the canted nozzles on the rolling velocity can readily be s een in t hese 
figures. 

Rolling velocity for the three identical configurations with 
NACA 65AO09 airfoil section is plotted against Mach number i n figure 8(a). 
Incomplete spinsonde data were recorded for one of t hese models; only 
the coasting portion of the flight was recorded. This portion of the 
curve is shown for comparison purposes even though damping i n r oll 
could not be computed for this model. The trends of t hese curves are 
consistent in that the Sign of ~ r everses through transoni c speeds 
during coasting flight; however, the magnitudes vary becaus e of the 
varying degree of unavoidable out-of-trim moment, as can be seen during 
the coasting portion of these curves. The r olling vel ocity due to 
out-of-trim moment reverses through t he transonic speed r egion and i s 
les s effective at supersonic s peeds than at subsonic speeds. In fact , 
the out-of-trim moment on model 2B became ineff ect ive a t supersonic 
speeds. The cause of the out -of-t r im moment is not known, but is 
believed t o be large ly due t o misalinement of t he wings ( incidence). 

Roll ing velocity for t he three identica l configurations with 
NACA 65A006 airfoil section wings is plotted against Mach number in 
figure 8 (b) . I t is interesting to note , in figure 8, the r ever sal of 
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8 CONFIDENTIAL NACA RM L9IO 1 

the out-of-trim r olling velocity for the 9 -per cent-thick wing, indicating 
lateral trim instability in the transonic region, and no reversal for 
the 6 -percent -thick wing . Evidently this reversal is a wing-thickness 
eff ect and may be overcome by utilizing very thin wing sections . 

The damping- in-r oll coefficient is plotted against Mach number in 
figure 9(a) for an NACA 65A009 airfoil section wing and in figure 9(b) 
for an NACA 65A006 airfoil section wing. Subsonic experimental data 
for a similar wing (NACA 16 -009), reported in reference 2, are shown in 
figure 9 (a), and supersonic wing theory (reference 3) is shown in both 
figures 9 (a) and 9(b ) . It can be seen t hat the damping in roll for 
both airfoil sections is maintained through the transonic speed region, 
although a tendency toward decreased damping is shown. The supersonic 
values of CL.p are fairly constant up to the highest Mach number of 

these tests. 

Having determined the damping in roll for these configurations , the 
aileron r olling effectiveness may now be established by comparison with 
roll - control tests reported in reference 4. Inasmuch as the damping in 

roll is fairly constant in comparison with the variation of pb/2V of oa 
the r oll-control tests, the trend of the aileron rolling effective 

pb/2V 
ness CL.O will be similar to that of 0 through the transoni c and 

a a 
super sonic speed range of these tests. Therefore, the reduction 

in 
pb /2V 

during t he transonic speeds (reference 4) is caused by a 

reduction in aileron rolling effectiveness. 

Us ing t he values of 
presented in reference 4 

pb / 2V 
-0-- f or the NACA 65A009 section wing as 

a 
and CL.p for model 2A from figure 9(a), CL. Oa 

was computed by the relation 

where 0a is the angular deflection of one 0.20-chord, full-span 
aileron; all wing panels have identical ailerons deflected eQually. 
These values of CL.Oa are plotted against Mach number in figure 10. 
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Total-drag coefficient was obtained for t hese models and is p l otted 
against Mach number in figure 11 with t he t otal-drag coefficient for the 
similar roll-control-effectiveness configuration of reference 1 . The 
t otal-drag coefficient f or the roll-control-effectiveness m8dels 
with 0 .20-chord, full-span ailerons deflected approximately 50 
(reference 1) was adjusted s o that CD in figure 11 is based upon 
t otal area S, extending into fusela ge center lines, for direct com
parison with the present results with 00 aileron deflection . The total
drag coefficients agree at subsonic speeds, but the drag of the r oll
control-effectiveness model with the deflected aileron and larger tip 
helix angle (about 0.06 radians max.) is greater at supersonic speeds. 

CONCLUDING REMARKS 

The accuracy of CIp determined by this canted-nozzle technique is 

dependent mainly upon the accuracy to which the torque and r olling 
velocity can be determined. From the methods used in the present tests 
for determining these factors, the accuracy of the magnitude of CI p 

for anyone mo del is estimated to be within flO percent of a mean value . 

The results of these tests 
through transonic speeds and is 
supersonic speeds. Inasmuch as 

sh8w that damping in r oll is maintained 
somewhat less than wing theory at 
the ~amping-in -roll coefficient is 

essentially constant in comparison wit h 
pb /2V o (reference 4) through the 

a 
t ransonic and supersonic speed range of these tests, t he trend of the 
aileron-roIling-effectiveness parameter CIo will be similar to that 

a 

of pb/2V 
oa 

from r oll-control-effectiveness tests of this wing . 

Langley Aeronautical Laboratory 
National AdviSOry Committee f or Aeronautics 

Langley Air Force Base, Va. 
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Figure 1.- Sketch and physical properties of initial damping-in-roll 
research vehicles. All dimensions in inches. 
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Figure 2.- Component parts of a damping-in-roll research vehicle. 
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Figure 3.- Rear view of a research vehicle showing the installation of the cante&-nozzle assembly. 
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Figure 4.- Research vehicle-booster combination in firing position on a 
r a il- t ype l aunchi ng stand. 
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Figure 7.- Typical variation of helix angle with Mach number. 
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• ! 



NACA RM L9IOl 

.6 

.4 ~'2 

o .8 

.6 

o 
.8 

CON FI DENTIAL 

0 model 

0 model 

~::-(rer'J - r---

r."\~ ~ ~ fD~ 
...J LJ 

.9 1.0 

IU LJ t] 1.. .. I\ .. n. ~\J 

1.1 

M 
1.2 

-------
\.7 i:h::J 

1.3 14 

(a) NACA 65A009 airfoil section. 

0 model 

0 model 

8 model 

~~~rer.J) - 00< ~ c> A A 1(;) 0 ) 0 0 r------0. 

~~ ~ 
~ 

~ L.:JL.:J L:.J U L on 1t:Jl!t1!~ 
= I 

2A 

2B 

1.5 

lA 

1B 

Ie 

~ 

.9 1.0 1.I 

M 
1.2 

CON FI DENTIAL 

1.3 

(b) NACA 65A006 airfoil section. 

1.4 l5 

Figure 9.- Variation of with Mach number. 

23 

i 

J 



.006 

. 004 

-c l ba. 

.002 

o 
.8 

CONFIDENTIAL 

(~) C1 • C1 6a p 

(- ~ rrom 
Sa angu 

-f\ all wing . 

\ equally • 

\ 
~ V ---t---l-

) r-----V 
~~ 

I I 

.9 10 1.1 1.2 1.3 1.4 
CON FI DENTIAL 

M 

Figure 10.- Variation of rolling effectiveness with Mach number. 
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