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RESEARCH MEMORANDUM 

EFFECTS OF VARIOUS OUTBOARD AND CENTRAL FINS ON LOW-SPEED 

STATIC-STABILITY AND ROLLING CHARACTERISTICS 

OF A TRIANGULAR-WING MODEL 

By Byron M. Jaquet and Jack D. Brewer 

SUMMARY 

An investigation has been conducted in the 6-foot-diameter 
rolling-flow test section of the Langley stability tunnel to determine 
the effects of various outboard and central fins on the low-speed 
static-stability and rolling characteristics of a triangular-wing model. 
One of the purposes of the investigation was to determine a fin 
configuration which would maintain good directional stability through-
out the lift-coefficient range. 

Reasonably good directional stability could be obtained by the 
use of either outboard or central vertical fins. When the outboard 
arrangement was used, the most satisfactory directional stability 
was obtained when the fins were mounted as close to the tips as 
possible; the characteristic triangular-wing vortices appear to 
cause less adverse effects on the fin effectiveness for the extreme 
outboard location. The best central-fin arrangement to obtain good 
dirctiona1 stability, along with comparatively low effective 
dihedral, was the high-aspect-ratio (2.31) fin mounted in the forward 
position (trailing edge of fin at trailing edge of wing) on the 
fuselage. 

For either outboard or central arrangements, the fins were much 
more important than the wing itself in contributing to the lateral 
force due to roll and the yawing moment due to roll. Although the 
contribution of the fins to the damping in roll was smaller than 
the contribution of the wing, it was of significant magnitude. 

RESTRICTED
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INTRODUCTION 

In estimating the dynamic .stability of an airplane, it is 
necessary to know the static and rotary stability derivatives. In 
reference 1 it was noted that some of the stability derivatives of 
triangular wings could not be predicted with good or even fair 
accuracy by available theories. As a result, the estimation of the 
stability of a triangular—wing airplane would be unreliable unless 
an experimental means of obtaining the stability derivatives was 
used.

Since the original concept of the use of triangular wings for 
high—speed flight, numerous experimental Investigations have been 
made to determine the low—speed static—stability characteristics 
and, in some cases, the damping in roll of these wings. (See 
references 2 and 3 . ) Previous investigations have been rather 
limited, in scope since they did not provide much information on the 
contribution of the fuselage and. various vertical—tail arrangement8 
to the stability derivatives (particularly the rotary derivatives). 
The damping in roll was generally determined by the use of a forced 
rotation rig, such as the one described in reference ii., and, as a 
result, complete models could not be tested with ease. 

In the Langley stability tunnel it is possible to determine 
experimentally the rolling, pitching, and yawing derivatives of 
complete models In addition to the static stability derivatives. To 
obtain the rolling derivatives (as In the present case) the model 
is mounted rigidly on a conventional balance strut and the air 
stream Is rolled about the model by means of rotating vanes. (see 
reference 1.,) 

The present investigation was conducted to determine the 
effects of various centrally located vertical fins, in two positions 
on the fuselage, and the effects of two outboard—fin configurations, 
in various spanwise positions, on the low—speed static—stability 
and rolling characteristics of a triangular—wing model. The model 
selected is representative of current designs of triangular—wing 
aircraft. 

One of the purposes of the present Investigation is to attempt 
to determine a fin configuration which will maintain good directional 
stability throughout the lift—coefficient range. 

\
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SYMBOLS 

The data presented herein are in the form of standard NACA 
coefficients of forces and monients which are referred to the 
stability system of axes with the origin at the calculated aero-
dynamic center of the wing. The positive directions of the forces, 
moments, and angular displacements are shown in figure 1. The 
coefficients used herein are defined as follows: 

CL	 lift coefficient (L/qS) 

CL	 maximum lift coefficient 
max

longitudinal—force coefficient (X/qS) 

C..	 lateral—force coefficient (Y/qS) 

rolling—moment coefficient (L'/qSb) 

Cm	 pitching-moment coefficient (M/qSE) 

C 	 yawing—moment coefficient (N/qSb) 

L	 lift, pounds 

X	 longitudinal force, pounds 

Y	 .	 lateral force, pounds 

L t	 rolling moment, foot—pounds 

N	 pitching moment, foot—pounds 

N	 yawing moment, foot—pounds 

A	 aspect ratio (b2/S) 

b	 span, feet 

S	 area, square feet 

c	 chord parallel, to plane of symmetry, feet

3
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b/2 
mean aerodynamic chord, feet (a f c2dY) 

x -	 longitudinal distance from apex of triangle to quarter—chord 
point of any chord.wiee section, feet 

iE	 longitudinal distance from apex of triangle to quarter—chord. 

( 
oint of mean aerodynamic chord,

Jb/2
p feet ( a cxd.y)

\S o	 / 

taper ratio

R	 Reynolds number 

q	 dynamic pressure, pounds per square foot (pv2/2) 

P	 density of air, slugs per cubic foot 

V	 free—stream velocity, feet per second 

a	 angle of attack measured in plane of symmetry, degrees 

angle of yaw, degrees 

A 
LE	 angle of sweepback of leading edge, degrees 

•	 angle of sweepback of quarter—chord line, degrees 

pb/2V	 helix angle generated by wing tip in roll, radians 

P	 angular velocity in roil, radians per second 

CL 

a	 a. 

iV	 * 
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CY 
Cr = - 

Ji,	 ir 

C	
jc 

lp

2V 

Cnp- 

cy = Cy 
PE 

2V 

Subscripts: 

w	 wing 

t	 fin

APPARATUS, MODEL, MW TESTS 

The present investigation was conducted in the 6—foot--diameter 
rolling—flow test section of the Langley stability tunnel which is 
described in reference 1. The tests were made on a conventional 
six—component balance system with the model mounted at the calculated 
aerodynamic center of the wing. 

All of the component parts of the model were constructed of 
laminated mahogany and were given highly polished surfaces. The 
wing had an angle of sweepback of the leading edge of 600, a 
modified NACA 65(06)_006. 5 profile parallel to the plane of symmetry, 

and an aspect ratio of 2.31. The ordinates of the fuselage are 
given in table I. The fuselage cross section was circular. A slot 
was cut in the top of the fuselage to allow forward and rearward 
movement of the central vertical fins. The pertinent dimensions of 
the wing and fuselage are shown in figure 2. Outboard fins of 
aspect ratio 1.5, A = 1150, and X = 0.45 were tested in the 

spanwise positions shown in figure 3(a). Shown in figure 3(b) are
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the spanwise positions of the outboard fins of A = 
with A = 530 and X = 0.22. Single central vertical fins havingLE 
aspect ratios of 0.77, 1.15, and 2.31 were tested on the fuselage In 
the two positions shown in figure 40 The fins of A = 0.77 
and A = 1.15 were previously tQsted on a triangular wing without 
a fuselage and are reported in reference 1. Photoaphsof some 
of the models are presented as figures 5 to 10. 

To obtain the aerodynamic characteristics of the model 
at r = 0°,. measurements were made of the lift, longitudinal force, 
and pitching moment through an angle-of-attack range from 
about a. = ..J40 to a. = 38 0 . The model was tested through the same 
angle-of--attack range at r = ±50 to determine the static-stability 
derivatives C

Z , C ij , 
and C	 for each fin configuration. The 

.  

rolling moment, yawing moment, and lateral force were measured 
through a yaw range of -300 to 300 at angles of attack of about 00, 
60, 120, 180, 240, and 300 . The rolling derivatives were determined 
for each fin configuration by testing the model through the angle-
of-attack range at values of pb/2V of -0.066, -0.020,-0.023, 
and 0.071. The test Reynolds number and Mach number were 1.624 x 10 
and 0.13, respectively.

CORRECTIONS AND ACCURACY 

The angle of attack, the longitudinal-force coefficient, and 
the rolling-moment coefficient were corrected for the effects of 
the jet boundaries. The data are not corrected for blocking. 

In rolling flow the support tares appeared negligible for the 
wing alone up to approximately a. = 160. However, at higher angles 
of attack there were large interference effects, and, since they 
could not be accurately evaluated, the rolling derivatives above 
approximately a. = 160 are not presented.
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The measurements taken are believed to be accurate within the 
following limits:

a,,	 degrees	 .......................... ±0.1 
degrees	 ........................ .	 ±0.1 

.......................... ±0.0025 

C 	 ............................ ±0.0025 

C 
	 ............................. ±0.0005 

C 

CM	
.........	 ..	 ....	 ............... ±O.OlJ_ 

Cn	 .	 ............................. 00042

RESULTS AND DISCUSSION 

Presentation of Results 

In presenting the data of the present paper, the various 
outboard fins and central fins are considered to be component parts 
of one model. In some of the plots the wing—fuselage—combination 
data are included so that the contribution of each fin can be seen 
more easily. 

The data are presented in the following groups:

Figures 
Basic wing and wing—fuselage combination . . . . . '.. . . 	 11 to 15 
Effect of outboard. fins .............. . , .	 16 to 26 
Effect of central fins ...................27to38 

Some of the important stability characteristics are presented in 
table II (at CL = o) to enable a more direct comparison of the 

configurations. 
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Wing and Wing-Fuselage Results 

The addition of a fuselage to the triangular wing slightly 
decreases the lift-curve slope and the value of C 	 (fig. II). A

conspicuous characteristic of the wing, alsO apparent when the 
fuselage is present, is the flat portion of the lift curve at and 
slightly below the inaxiniuni lift coefficient. The fuselage causes a 
slight decrease in longitudinal stability below	 = 0.2 and an 

increase In longitudinal stability at higher lift coefficients. 

The fuselage causes a destabilizing increment in the directional--
stability parameter C	 and causes a slight decrease in the 

variation of C	 with CL at CL = 0 (fig. 12), The addition of 

the fuselage to the wing causes the curves of C plotted against r 

to become nonlinear at smaller lift coefficients, whereas the curves 
Of C1 plotted against r are not appreciably changed (figs. 13 

and 1). 

The variation of C

	

	 with CL is slightly decreased by the p 
addition of the fuselage. (See fig, 15 and table Ii.) The fuselage 
adds a small positive increment to the curve of C 	 for the wing 

which results in a more positive variation of C 	 with CL for the 

wing-fuselage combination. It should be noted that C	 for the 

wing is zero or positive at positive lift coefficients, whereas 
reference 1 reported that available theories predict negative values 
Of C	 at small positive lift coeffIcients. The fuselage had a 

p 
very small effect on C1

p 

Effect of Outboard Fins 

Small symmetrical outboard fins.- Mounting the fins of A = 1.5, 

X = O.15 , and Lt = 0.083, symmetrical above and bblow wing chord line, 
W
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(see fig. 3(a)) in either position 1 or 2 does not produce any 
significant changes in CL or longitudinal stability at law lift 

coefficients (fig. 16 and table II). However, when the fihs are in 
the inboard pos1tion.(position 2) a sudden decrease occurs in Clia. 

at CL = 0.63. A sudden decrease occurs in longitudinal stability 

at the same lift coefficient. 

Tuft studies indicated that a sudden flow reversal (stalling) 
occurred just outboard of the fins in either position. This reversal 
was not shown by tuft studies of the wing—fuselage combination. 
Reference 5 indicated the presence of two seinispan vortices on a 
wing of approximately.triangular plan form. Pressure investigations 
reported in reference 6 show that the two sem!span vortices are 
swept inward from the tips as the angle of attack is increased. It 
appears that when these vortices coins in contact with the fins, the 
vortices are disturbed in such a manner as to. cause a sudden stalling 
of the portion of the wing outboard of the fins. As the fins are 
moved inboard, the contact of the vortex and the fin is delayed until 
a higher angle of attack, but when it does occur, the adverse affect 
is greater since the area outboard of the fin is larger. A brief 
check test of the fins of' A = 1.4 in position 3 at a Reynolds 

number of 2.58 x 106 indicated that the premature stall occurred at 
the same lift coefficient as the lower Reynolds number tests 
(reported herein) indicate. It seems likely that the vortex 
disturbances caused by the fins also result in a decrease in fin 
effectiveness. This effect is shown by the breaks in the static 
derivatives C , C ,and C	 shown in figure 22. The fins do 

Y4,.	 n*
. l 	 - 

not appear large enough to give good directional stability. The 
variation of C, with CL is not appreciably affected by the fins Li! 

in either position. (See fig. 17 and table II.) 

The curves of C and C 1 plotted against 4r are linear to 

higher lift coefficients when the fins are in position 1 (figs. 18 
and 19). 

The addition of the fins in either position caused. CY./CL to 

be more positive and Cs/CL to be more negative than for the wing—

fuselage combination-(fig. 20 and table II). As the fins were moved 
inboard there was no displacement of C. or C	 at CL = 0. This 

p	 p
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effect was perhaps caused by the symmetrical arrangement of the fin 
above and below the wing chord line. The effect of the fins on C1

p 
was small.  

Large upper—surface outboard fins.- When the larger 

fins (A = 1.4, X = 0.22, and	 = 0.22) shown in fire 3(b) are, St
SW 

mounted on the wing, lower values-of CT	 are obtained than those 

obtained with the previously discussed fins. (See table II.) As 
in the case of the smaller fins, a premature stall occurs at CL = 0.6 

when the larger fins are moved inboard from the tips to position 3 
and at CL  0.48 when they are moved to position 2. (See fig. 21.) 
When the fins are in the extreme outboard position (position 1), the 
premature stall was not apparent and the configuration had a 
resulting higher maximum lift coefficient (fig. 21). 

A decrease in longitudinal stability occurs at CL = 0.48 when 
the fins are in position 2 and at C L = 0.6 when the fins, are in 
position 3 . These decreases are probably due to the disturbance of 
the vortices described previously; the decrease occurs at a lower 
lift coefficient with the fins in position 2 since the fins are 
closer to the tips and to the leading edge of the wing in this 
position than in position 3 . When the fins are in position 1, a 
sudden decrease in longitudinal stability does not occur. 

Sharp breaks occur in the static derivatives C , C , and ' C Y.I1,	 fl1r	 ir 
where the premature stall occurs (fig. 22). When the fins are in 
the extreme outboard position (position 1), gooddirectional sta-
bility is obtained almost to CL 	 It seems apparent that, for a

Maxmax 
triangular—wing configuration using outboard fins, the best 
directional stability is obtained when the fins are located as close 
to the wing tips as is possible; the vortices appear to cause less 
adverse effects on the fin effectiveness for the extreme outboard 
location. As the fins are moved inboard, the variation of C 

with CL is slightly decreased, as are the values of Cl* at CL = 0 

(fig. 22 and table II).

\
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More linear curves of C 1 and C plotted against * are 

obtained when the fins are in position 1 (figs. 23, 24, and 27) than 
either of the other positions. 

Moving the fins Inboard from the tips does not appreciably 
affect CY/CL but the values of C	 at CL = 0 become less 

negative (fig. 26 and table II). All three positions give larger 
variations of C 

p 
with CL than the wing-fuselage combination., 

In general, moving the fins Inboard results in a less negative 
variation .of C 

p 
with c (which is of opposite sign of that of 

the wing-fuselage combination) and less positive values of Cnp 

at CL = O Moving the fins inboard from the tips causes a decrease 

in c	 at CL = O In general, 'C 1 decreases slightly with an 
5 p 

increase in lift coefficient. A sharp decrease occurs in C 1 at 
p 

the lift coefficient corresponding to 'the premature stall (fig. .26). 

It appears that, if good directional stability is desired, 
outboard fins may be used on a triangular-wing airplane only if they 
are mounted as close to the tips as is possible; the vortices seem 
to cause less adverse effects on the fin effectiveness for the 
extreme outboard location. 

Effect of Central Fins 

Forward position.- The central vertical fins had very small 
effects on the lift, longitudinal-force, and pitching-moment charac-
teristics of the model as is seen in figure 27and table II. 

Increasing the fin aspect ratio results in an increase in 
directional stability up to Cjmax (fig. 28). The fins of A 1.15 

and A = 2.31 provide smaller variations of C 1 with CL than 

the other fin (fig. 28 and table II). The use of negative dIhedral 
would probably shift the curve of. C 1 down to a smaller maximum 

value. 

It appears that the fin of A = 2.31 would be more satisfactory 
than either of the others, since it provides good directional
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stability up to CLmax (fig. 28) and generally good directional 

stability through the yaw range ( fig, 31). The effective dihedral 
for this fin configuration is not very large. 

In general, as the fin aspect ratio is increased. C 	 is .  
p 

displaced negatively, C	 is displaced positively, and C 1 I np	
p 

increased at CL = 0 (fig. 32 and table II). The variations of 
-,	 p 

and C	 with CL are increased and decreased, respectively, as the 

fin aspect ratio is increased. Decreased damping in roll is noted 
for all configurations as the lift coefficient is increased. 

A comparison of figures 26 and 32 shows that the effect of the 
outboard fins is greater than the effect of the central fins 
on C ; the values of C 	 for the outboard fins change sign, n	 np 

whereas 
Cnp 

for the central fins varies only slightly with an 

increase in 

• It should be noted that the contribution of the fins to Cy 

and C	 is much greater than the contribution of the wing. 	
p 

p	 - 
Although the contribution of the fins to C 1 is smaller than the 

contribution of the wing, it is of significant magnitude. 

Rearward. position.— When the fins are moved to the rearward 
position, higher values of CL	 are obtained. (Compare figs. 27 

max 
and 33 . ) The longitudinal stability at CL = 0 is not appreciably 
changed by moving the fins from the forward to the rearward position 
on the fuselage (table II). 

Good directional stability is obtained with each of the fins, 
except near maximum lift coefficient where sudden unstable changes 
occur. (See fig. 34. ) The variation of C 1 with CL decreases 

as the fin aspect ratio is increased, the fin of A = 1.15 providing 
the smallest variation as it did in the forward. position. 

In general, more linear curves of CY, C n , and C 1 plotted 
against ifr are obtained with the fin of A = 2.31. (Compare 
figs. 35, 36, and 37.)
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The forward position on the fuselage appears to be the superior 
position since smaller values of effective dihedral are obtained 
along with good directional stability up to C Lmax (for the fin 

of A = 2.31), whereas in the rearward position the directional sta-
bility changes suddenly at 	 from stable to unstable values. 

In the rearward position the effects of the fins on the rolling 
derivatives were similar, although larger in magnitude, to the 
effects noted for the forward position. (Compare figs. 32 and 38.) 

CONCLUSIONS 

An Investigation of the low—speed static—stability and rolling 
characteristics of a triangular—wing model with various fin 
arrangements indicates the following conclusions: 

1. Reasonably good directional stability can be obtained by 
the use of either outboard or central vertical fins. 

2. When the outboard arrangement was used., the most satisfactory 
directional stability was obtained when the fins were mounted as 
close to the tips as possible; the characteristic triangular wing 
vortices appear to cause less adverse effects on the fin effectiveness 
for the extreme outboard location. 

3. The best central—fin arrangement to obtain good directional 
stability, along with comparatively low effective dihedral, was the 
high—aspect--ratio (A = 2.31) fin mounted in the forward position 
(trailing edge of fin at trailing edge of wing) on the fuselage. 

4 • For either outboard or central arrangements, the fins were 
much more Important than the wing itself in contributing to the 
lateral force due to roll and the yawing moment due to roll. Although 
the contribution of the fins to the damping in roll was smaller than 
the contribution of the wing, it was of significant magnitude. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va.
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Jecf,'on A-A 
Figure 1.— System of stability axes. Positive forces, moments, and angles 

are indicated.
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