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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM
\
EFFECTS OF VARIOUS OUTBOARD AND CENTRAL FINS ON LOW-SFEED
STATIC—STABILITY AND ROLLING CHARACTERISTICS
| OF A TRIANGULAR-WING MODEL

By Byron M. Jaquet and Jack D. Brewer

SUMMARY
An investigation has been conducted in the 6—foot—d1ameter
rolling-flow test section of the Langley stability tumnel to determine
the effects of various outboard and central fins on the low-speed
static—stability and rolling characteristics of a triangular—wing model.
. One of the purposes of the investigation was to determine a fin

configuration which would maintain good directional stability through—
out the lift—coefficient range.

Reasonably good directional stability could be obtained by the.
use of either outboard or central vertical fins. When the outboard
arrangement was used, the most satisfactory directional stability
wag obtained when the fins were mounted as close to the tips as
possible; the characteristic triangular-wing vortices appear to
cause less adverse effects on the fin effectiveness for the extreme
outboard location. .The best central—-fin arrangement to obtain good
directional stability, along with comparatively low effective

dihedral, was the high-aspect—ratio (2. 31) fin mounted in the forward
position (trailing edge of fin at trailing edge of wing) on the
fuselage.

For either outboard or central arrangements, the fins were much
more important than the wing itself in contributing to the lateral
force due to roll and the yawing moment due to roll. Although the
contribution of the fins to the damping in roll was smaller than
the contribution of the wing, it was of significant magnitude.
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INTRODUCTION

In estimating the dynamic stability of an airplane, it is
necessary to know the static and rotary stability derivatives. In
reference 1 it was noted that some of the stability derivatives of -
triangular wings could not be predicted with good or even fair
accuracy by available theories. As a result, the estimation of the
gtability of a triangular-wing airplane would be unreliable unless
an experimental means of obtaining the stability derivatives was

used. ‘

Since the original concept of the use of triangular wings far
high-speed flight, numerous experimental investigations have been
made to determine the low-—speed static—stability characteristics
and, in some cases, the damping in roll of these wings. (See
references 2 and 3.) Previous investigations have been rather
limited in scope since they did not provide much information on the
contribution of the fuselage and various vertical—tail arrangements
to the stability derivatives~(particularly the rotary derivatives).
The damping in roll was generally determined by the use of a forced
rotation rig, such as the one described in reference 4, and, as a
result, complete models could not be tested with ease.

In the Langley stability tummel it is possible to determine
experimentally the rolling, pitching, and yawing derivatives of -
complete models in addition to the static stability derivatives. To
obtain the rolling derivatives (as in the present'case) the model
i1s mounted rigidly on a conventional balance strut and the air
stream is rolled about the model by means of rotating vanes. (See
reference 4.) o

The present investigation was conducted to determine the
effects of various centrally located vertical fins, in two positions
on the fuselage, and the effects of two outboard—fin configurations,
in various spanwise positions, on the low—speed static-stability
and rolling characteristics of a triangular—wing model. The model
gelected is representative of current designs of triangular-wing
aircraft. :

One of the purposes of.the present investigation is to attempt
to determine a fin configuration which will maintain good directional
stability throughout the lift—coefficient range.
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SYMBOLS

The data presented herein are in the form of standard NACA
coefficients of forces and moments which are referred to the
stability system of axes with the origin at the calculated aero—
dynamic center of the wing. The positive directions of ths forces,
moments, and angular displacements are shown in figure 1. The
coefficients used herein are defined as follows:

o 1lift coefficient (L/gS)
QL maximum 11ft coefficient
max .
Cy longitudinal—force coefficient (X/qS)
Cy lateral-force coefficient (Y/qS)
c, rolling-moment coefficient (L'/qsf)
Cp pltching-moment coefficient (M/qST)
C, yawing-moment coefficient (N/qSb)
L lift, pounds
X longitudinal force, pounds
Y : lateral force, pounds
Lt rolling moment, foot—pounds
M pitching moment, foot—pounds
N yawing moment, foot—pounds ,
A aspect ratio (bg/s)
b spaﬁ, feet
S area, square feet )

c chord parallel to plane of symmetry, feet
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b/2
mean aerodynamic chord, feet <§L/P c2d%>
0

longitudinal distance from apex of triangle to quarter—chord
point of any chordwise section, feet
longitudinal distance from apex of triangle to quarter—chord
o b/2
point of mean aerodynamic chord, feet § cx dy
: 0
taper ratio

Reynolds number

dynamic pressure, pounds per square foot (pV2/2)
density of air, slugs per cubic foot

free—atream velocity, feet per second

angle of attack méasured in plane of symmetry,_degrees
angle of yaw, degrees

angle of sweepbaék of leading edge, degrees
angle of gweepback of quarter—chord line, degrees

helix angle generated by wing fip in roll, radians

angular velocity in roll, radians per second
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C
CY =—"¥'
¥ ooV
oC
Cz =_1
P apb
2V
oC
c, =—
1Y
32
2V
o
CY':"““'Y"
1PN )
v
Subscripts:
w wing
t . fin

APPARATUS, MODEL, AND TESTS.

The present investigation was conducted in the 6—foot—diameter
rolling—flow test section of the Langley stability tunnel which is
described in reference 4. The tests were made on a conventional
gix—component balance system with the model mounted at the calculated
aerodynamic center of the wing.

All of the component parts of the model were constructed of
laminated mahogany and were given highly polished surfaces. The
wing had an angle of sweepback of the leading edge of 600, a
modified NACA 65(06)-006.5 profile parallel to the plane of symmetry,

and an aspect ratio of 2.31. The ordinates of the fuselage are
given in table I. The fuselage cross section was circular. A slot
was cut in the top of the fuselage to allow forward and rearward
movement of the central vertical fins. The pertinent dimensions of
the wing and fuselage are shown in figure 2. Outboard fins of
aspect ratio 1.5, Ap = 45°, and A = 0.45 were tested in the

spanwige positions shown in figure 3(a). Shown in figure 3(b) are

.,
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the spanwise positions of the outboard fins of A=1.4 '
with.,ALE =53%° and A = 0.22. Single central vertical fins having

aspect ratios of 0.77, 1.15, and 2.31 were tested on the fuselage in
the two positions shown in figure 4. The fins of A = 0.77

and A =1.15 were previously tested on a triangular wing without

a fuselage and are reported in reference 1. - Photographs of same
of the models are presented as figures 5 to 10.

To obtain the aercdynamic characteristics of the model
at ¥ = 0°, measurements were made of the 1ift, longitudinal force,
and pitching moment through an angle—of—attack range from
gbout @ =-4° to a = 38°. 'The model was tested through the same
angle—of-attack range at ¥ = +5° to.determine the static-stability
derivatives sz, an, and Cqu for{each fin configuration. The

rolling moment, yawing moment, and lateral force were measured
through a yaw range of —30° to 30° at angles of attack of about 0°,
6%, 129, 18%, 24O, and 30°, The rolling derivatives were determined
- for each fin configuration by testing the model through the angle—
of-attack range at values of pb/2V of -0.066, —0.020, -0.023,

and 0.071. The test Reynolds number and Mach number were 1.62h x 10°
and 0.13, respectively.

CORRECTIONS AND ACCURACY

The angle of attack, the longitudinal—force coefficient, and
the rolling-moment coefficient were corrected for the effects of
the Jet boundaries. The data are not corrected for blocking.

In rolling flow the support tares appeared negligible for the
wing alone up to approximately a = 16°. However, at higher angles
of attack there were large interference effects, and, since they
could not be accurately evaluated, the rolling derivatives above
approximately a = 16° are not presented.
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The measurements taken are believed

following limits:

Uy, dOGIreEB ¢« ¢ ¢ ¢ o ¢ o 4 o s s s s e
Y, degrees . . v v o v 6 s b e e e e o W

to be

RESULTS AND DISCUSSION

Presentation of Results

accurate within the.

. e "o . . . . i‘0.:1-
e ¢ o o o o o ‘_".O.l
e e e e e . . %0.0025

e e e e e . . *0.0025
e e e e . . . *0.0005
e o s o o . . ¥0.00047
e e e e ... %0.0011
e+ .. . $0.00042

In presenting the data of the present paper, the various
outboard fins and central fins are considered to be component parts
of one model. In some of the plots the wing—fuselage—combination
data are included so that the contribution of each fin can be seen

more easily.

The data are presented in the following groups:

Figures

Bagic wing and wing-fuselage combination .. . . .. . . . 1l to 15

Effect of outboard fing . . . . . o . .
Effect of central fins . . ¢ « + ¢ ¢ o &

o o s e o o 16 to 26
« + e« .. 27 to 38

Some of the important stability characteristics are presented in
table II (at CL = 0) to enable a more direct comparison of the

configurations.
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Wing and Wing-Fuselage Results

The addition of a fuselage to the triangular wing slightly
decreases the lift—curve slope and the value of C (fig. 11). A

Louax

conspicuous characteristic of the wing, alsé apparent when the
fuselage is present, is the flat portion of the 1lift curve at and
slightly below the maximum 1ift coefficient. The fuselage causes a
slight decrease in longitudinal stability below QL = 0.2 and an

increase in longitudinal stability at higher 1ift coefficients.

The fﬁselage causes a destabilizing increment in the directional--
stability parameter C and causes a elight‘decrease in the

nv

~variation of CZW with ¢ at ¢ =0 (fig. 12). The addition of

the fuselage to the wing causes the curves of C, plotted against

‘to become nonlinear at smaller 1ift coefficients, whereas the curves
of Cz plotted against V¥ are not appreciably changed (figs. 13

and 14).

The variation of CY with CL is slightly decreased by the
by ' , ' .
addition of the fuselage. (See fig. 15 and table II.) The fuselage

adds a small positive increment to the curve of for the wing

which results in a more positive variation of C

S o L

wing-fuselage combination. It should be noted that Cnp for the

wing is zero or positive at positive 1lift coefficients, whereas
reference 1 reported that available theories predict negative values
of Cn at small positive 1lift coefficients. The fuselage had a
P : : )
very small effect on Cy -
: p

with C for the

Effect of Outboard Fins‘

Small symmetrical outboard fins.— Mounting the .fins of A = 1.5,

S ,
» = 0.45, and gE = 0.083, symmetrical above and below wing chord line,

W
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(see fig. 3(a)) in either position 1 or 2 does not produce any

gignificant changes in CL or longitudinal stebility at low 1lift
a

coefficients (fig. 16 and table II). However, when the fihs are in

the inboard position . (position 2) a sudden decrease occurs in Cy,
a

at Cp = 0.63. A sudden decrease occurs in longitudinal gtability
at the same 1ift coefficient. . : <

Tuft gtudies indicated that a sudden flow reversal (stalling)
occurred just outboard of the fins in either position. This reversal
was not shown by tuft studies of the wing—fuselage combination.
Reference 5 indicated the presence of two semispan vortices on a
wing of approximately.triangular plan form. Pressure investigations
reported in reference 6 show that the two semispan vortices are
swept inward from the tips as the angle of attack is increased. It
appears that when these vortices come in contact with the finsg, the
vortices are disturbed in such a manner as to cause a sudden stalling
of the portion of the wing outboard of the fins. As the fins are
moved inboard, the contact of the vortex and the fin is delayed until
a higher angle of attack, but when it does occur, the adverse affect
is greater since the area outboard of the fin is larger. A brief
check test of the fins of A = 1.4 in position 3 at a Reynolds -

number of 2.58 X 10® indicated that the premature stall occurred at
the same 1lift coefficient as the lower Reynolds number tests
‘(reported herein) indicate. Tt seems likely that the vortex
disturbances caused by the fins also result in a decrease in fin-
effectiveness. This effect is shown by the breaks in the static
derivatives CY » C_, and CZ gshown in figure 22, The fins do
v v ‘
not appear large enough to give good directional stability. The
variation of Clw with QL is not appreciably affected by the fins

in either position. (See fig. 17 and table II.)

The curves of Cj and CZ plotted against ¥ are linear to

higher 1ift coefficients when the fins are in position 1 (figs. 18
and 19).

The addition of the fins in either position caused C /CL to

be more positive and CnP/CL to be more negative than for the wing—

~

fuselage combination -(fig. 20 and table II). As the fins were moved
inboard there was no displacement of CY or Cn at QL = 0. This
: Y
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A

effect was perhaps caused by the symmetrical arrangement of the fin
above and below the wing chord line. The effect of the fins on C,

P
was small. |

Large upper—surface outboard fins.— When the larger

S
fins <A =1.4, A = 0.22, and 'sf = 0022> shown in figure 3(b) are

mounted on the wing, lower values-of (&\ are obtained than those

obtained with the previously discussed fins. (See table II.) As
in the case of the smaller fing, a premature stall occurs at QL = 0.6

when the larger fins are moved inboard from the tips to position 3 .
and at Cp = 0.48 when they are moved to position 2. (See fig. 21.)

When the fins are in the extreme outboard position (position 1), the
premature stall was not apparent and the configuration had a
resulting higher maximum 1ift coefficient (fig. 21).

A decrease in longitudinal stability occurs at Cp, = 0.48 when
the fing are in position 2 and at Cp, = 0.6 when the fins are in

position 3. These decreases are probably due to the disturbance of
the vortices described previously; the decrease occurs at a lower
1lift coefficient with the fins in position 2 since the fins are
_closer to the tips and to the leading edge of the wing in this
position than in position 3. When the fins are in position 1, a
sudden decrease in longitudinal stability does not occur.
Sharp breaks occur in the static derivatives CYW’ an, and CZW
where the prémature stall occurs (fig. 22). When the fins are in
the extreme outboard position (position 1), good .directional sta—

bility is obtained almost to CL . It seems apparent that, for a
max _ 4
triangular—wing configuration using outboard fins, the best

directional stability is obtained when the fing are located as close
to the wing tips as is possible; the vortices appear to cause less
adverse effects on the fin effectiveness for the extreme outboard
location. As the fins‘are moved inboard, the variation of Cy

with .Cy, 1is slightly decreased, as are the values of CZW at CL =0
(fig. 22 and table II).
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k 1
More linear curves of C and Ch plotted against V¥ are

obtained when the fins are in position 1 (figs. 23, 24, and 25) than
either of the other positions.

Moving the fins inboard from the tips does not appreciably
affect but the values of C at O become less
Oy, /CL T, Cp =

negative  (fig. 26 and table II). All three positions give larger
variations of CY with CL than the wing—fuselage combination.
P

In general, moving the fins inboard results in a'less-negative>

varlation .of Cn with QL (which is of opposite sign of that of
Y
the wing—fuselage combination) and less positive values of Cnp

at Cp, = 0. Moving the fins inboard from the tips causes a decrease

in C at Cp = 0. In general, C decreases slightly with an
'p 'p
" increase in 1lift coefficient. A sharp decrease occurs in CZ at

b
the 1ift coefficient corresponding to -the premature stall (fig. 26).

It appears that, if good directional stability is desired,
outboard fins may be used on a triangular-wing airplane only if they
are mounted as close to the tips as is possible; the vortices seem
to cause less adverse effects on the fin effectiveness for the
extreme outboard location.

Effect of Central Fins

Forward position.— The central vertical fins had very small
effects on the 1ift, longitudinal-force, and pitching—moment charac—
teristics of the model as is seen in figure 27 ‘and table II.

Increasing the fin aspect ratio results in an increase in
directional stability up to C; (fig. 28). The fins of A = 1.15

and A = 2.31 provide smaller variations of C with CL than

v

the other fin (fig. 28 and table II). The use of negative dihedral

would probably shift the curve of. CZ down to a smaller maximum °
' L4

value.

It appears that the fin of A = 2. 31 would be more satisfactory

than either of the others, since it provides good directional
. !

11
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stafility up to O (fig. 28) and generally good directional

stability through the yaw range (fig. 31). The effective dihedral
for this fin configuration is not very large.

In general, as the fin aspect ratio is increasged CY is

Y
displaced negatively, Cn? is displaced positively, and 'Cl is
- P
increased at Cp = 0 (fig. 32 and table II). The variations of Cy
- Y

and Cnp with Cp are increased and decreased, respectively, as the

fin'aspect ratio is increased. Decreased demping in roll is noted
for all configurations as the lift coefficient is increased.

A comparison of figures 26 and 32 shows that the effect of the
outboard fins is greater than the effect of the central fins
on Cn ; the values of Cn for the outboard fins change sign,
Y : P '
whereas €, for the central fins varies only slightly with an:
P .

increase in CL'

It should be noted that the contribution of the fins to Cy
' D
and Cn is much greater than the contribution of the wing.

D
‘Although the contribution of the fins to C is smaller than the

[
_ P
. contribution of the wing, it is of significant magnitude.

Rearward positionh.— When the fins are moved to the rearward
position, higher values of C;, _are obtained. (Compare figs. 27

, ‘ max
and 33.) The longitudinal stability at Cr, = 0 is not appreciably

changed by moving the fins from the forward to the rearward rosition
on the fuselage (table II).

Good directional stability is obtained with each of the fins,
except near maximum 1ift coefficient where sudden unstable changes
occur. (See fig. 34.) The variation of C, ~with ¢ decreases

v

as the fin aspect ratio is increased, the fin of A = 1.15 providing
the smallest variation as it did in the forward position. v

In gensral, more linear curves of CY’ Cn, and CZ ‘plotted

against ¥ are obtained with the fin of A = 2.31, (Compare
figs- 35, 36: and 37°) .
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The forward position on the fuselage appears to be the superior
position since smaller values of effective dihedral are obtained
along with good directional stability up to CI (for the fin

of A = 2.31), whereas in the rearward position the directional sta—
bility changes suddenly at cI from stable to unstable values.

In the rearward position the effects of the fins on the rolling
derivatives were similar, although larger in magnitude, to the
effects noted for the forward position. (Compare figs. 32 and 38.)

CONCLUSIONS

An Invegtigation of the low-speed static-stability and rolling
characteristics of a triangular-wing model with various fin
arrangements indicates the following conclusions:

1. Reasonably good directional gtability can be obtained by
the use of either outboard or central vertical fins. .

2. When the outboard arrangement was used, the most satisfactory
directional stabllity was obtained when the fins were mounted as
close to the tips as possible; the characteristic triangwlar wing
vortices appear to cause less adverse effects on the fin effectiveness
for the extreme outboard location.

3. The best central-fin arrangement to obtain good directional
stability, along with comparatively low effective dihedral, was the
high-aspect~ratio (A = 2.31) fin mounted in the forward position
(trailing edge of fin at trailing edge of wing) on the fuselage.

h._For either outboard or central arrangements, the fins were
much more important than the wing itself in contributing to the
lateral force due to roll and the yawing moment due to roll. Although
"the contribution of the fins to the damping in roll was smaller than
the contribution of the wing, it was of significant magnitude.

Langley Aeronautical Laboratory ‘
National Advisory Committee for Aeronautics -
Langley Air Force Base, Va.
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X

Le/a Frve W/nd»

Jection A-A

Figure l.— System of stability axes. Positive forces, moments, and angles
are indicated.
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) A=15; A=045; JZ/JW= 0063

\
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Figure 3.— Positions and dimensions of the outboard fins. All dimensions
are in inches unless otherwise specified. Profile of fins, flat plate.
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Figure 1l.— Aerodynamic characteristics of a triangular wing of aspecf

ratio 2.31 with and without a fuselage of fineness ratio 7.38.
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