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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
RESEARCH MEMORANDUM

AFRODYNAMIC CHARACTERISTICS OF A WING WITH QUARTER-
CHORD LINE SWEPT BACK 45°, ASPECT RATIO 4, TAPER

RATIO 0.3, AND NACA 65A006 AIRFOIL SECTION

TRANSONIC-BUMP METHOD

By Boyd C. Myers, II, and Thomas J. King, dr.
SUMMARY

As part of a transonic research program, a series of wing-body
combinations are being investigated in the Langley high-speed T-
by 10-foot tunnel over a Mach number range of about 0.60 to 1.18
utilizing the transonic-bump, test technique.

This paper presents the results of the investiga&}on of a wing-
alone and wing-fuselage configuration employing a wing with the quarter-
chord line swept back 45°, with aspect ratio 4, taper ratio 0.3, and an
NACA 65A006 eirfoil section. Lift, drag, pitching moment, and root
bending moment were obtained for these configurations. In addition,
effective downwash angles and dynamic-pressure characteristics in the
region of a probable tail location were also obtained for these con~
figurations and are presented for a range of tail heights at one tail
length. In order to expedite the publishing of these data, only a
brief analysis is included.

INTRODUCTION

A series of wings with and without a body are being investigated in
the Langley high-speed 7- by 10-foot tunnel to study the effects of wing
geometry on the longitudinal stability characteristics at transonic
gspeeds. A Mach number range betweenrOméQ_ggg_lL}8 is obtained utilizing
the transonic-bump technique. Previous data pubITEEEﬁfin—%his_senlggﬁ__
are presented in references 1 and 2. _—
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This paper presents the results of the investigation of the wing-
alone and wing-fuselage configurations employing a wing with the
quarter-chord line swept back 45°, aspect ratio 4, taper ratio 0.3, -
and an NACA 65A006 airfoil section parallel to the stream.

MODEL AND APPARATUS

The wing of ths semispan model had 45° of sweepback referred to the
quarter-chord line, aspect ratlo 4, taper ratioc 0.3, and an NACA 65A006
airfoil section parallel to the free stream. The wing was made of
beryllium copper and the fuselage of brass. A two-view drawing of the
model is presented in figure 1, while ordinates of the fuselage of
fineness ratio 10 are given in table I.

The model was mounted on an electrical strain-gage balance, which
was enclosed in the bump; and the 1lift, drag, pltching moment, and
bending moment about the model plene of symmetry were measured with
calibrated galvanometers.

Effective downwash angles were determined for a renge of tail
heights by measuring the floating angles of five free-floating tails
with the aid of calibrated slide-wire potentiometers. Details of the
floating tails are shown in figures 2 .and 3, while a pictorial view of
the model on the fump with three of the floating tails is given as
figure 4. The tails used in this 1nvestigation were the same as those
used in references 1 and 2.

A total-head comb was used to determine dynamic-pressure ratios for
a range of tail heights in a plane which contained the 25-percent mean-
aerodynamic-chord point of the free-floating tails. The total-head
tubes were spaced 0.25 inch apart. '

COEFFICIENTS AND SYMBOLS

CL 1ift coefficlent (TWice ngﬁl llft)

Cp drag coefficient (TWice P:gﬁl drag)

Cm pitching-moment coefficient referred to 0.25¢
| Twice panel pitching moment
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Cp bending-moment coefficient at plane of symmetry

Root bending moment
Sb
122
q effective dynamic pressure over span of model, pounds per

square foot %pv2

s twice wing area of semispan model, 0.125 square foot

g mean aerodynamic chord of wing, 0.181 foot; based on
relationship g j:b 2c2dy (ﬁéing thearetical tip)

c | local wing chord |

b twice span of semispan model

y spanwise distance from plane of symmetry

p air density, slugé per cubic foot

v free-stream velocity, feet fer second

M effective Mach number over spaﬁ of model

M local Mach number

Mg average‘chardwise local Mach number

R Reynolds number of wing based on ¢

o angle of attack, degrees

€ ‘ effective downwésh angle, degrees

qwake/q ratio of point dynamic pressure at the quarter chord of the
tail mean aerodynamic chord to free-stream dynamic pressure

: C
Je.p. lateral center of pressure, percent semispan <?OOE%>
. ¥L
hy . tail heiglt relative to wing chord plane extended, percent
semispan; positive for tail positions above chord plane
extended :
a.c. aerodynamic center
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TESTS

The tests were made in the Langley high-speed T- by 10-foot tunnel
utilizing an adaptation of the NACA wing-flow technique for obtaining
transonic speeds. The technique used involves the mounting of a model
in the high-velocity flow field generated over the curved surface of a
bump located on the tunnel floor. (see reference 3.)

Typical contours of local Mach number in the vicinity of the model
location on the bump, obtained from surveys with no model in position,

. are shown in figure 5. It 1s seen that there is a Mach number gradient

of about 0.04 over the model semispan at low Mach numbers and from 0.06
to 0.07 at the highest Mach numbers. The chordwise Mach number gradient
is generally less than 0.01l. No attempt has been made to evaluate the
effects of the chordwise and spanwise Mach number variations. Note that
the long dashed lines shown near the root of the wing (fig. 5) represent
a local Mach number that is 5 percent below the maximum value and _
indicate the extent of the bump boundary layer. The effective test Mach
number was obtained from contour charts similar to those presented in
figure 5 using the relationship '

2fb/e
M= S cMg dy
0

) The variation of mean test Reynolds number with Mach number is
shown in itigure 6. The boundaries on the figure indicate the range in
Reynolds number caused by variations in test conditions in the course
of the investigation. '

Force and moment data, effective downwash angles, and the ratio of
dynamic pressure at 25 percent of the mean aerodynamic chord of the tail
to free-stream dynamic pressure were obtained for the model configu-
rations tested through a Mach number range of 0.70 to 1.18 and an angle-
of-attack range of -2° to 10°.

No tares have been applied to the data to account for the presence
of the end plates on the models. Jet-boundary corrections have not been
evaluated because the boundary conditions to be satisfied are not rigor-
ously defined. However, inasmuch as the effective flow field is large
compared with the span and chord of the model, these corrections are
believed to be small. :

By measuring tail floating angles without a model installed, it was

" determined that a tail spacing of 2 inches would produce negligible

interference effects of reflected shock waves on the tail floating
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angles. Downwash angles for the wing-alone configuration were therefore
obtained simultaneously for the middle, highest, and lowest tail posi-
tions in one series of tests, and simultaneously for the two inter-
mediate positions in succeeding runs. (see fig. 3.) TFor the wing-
fuselage tests, the effective downwash angles at the chord-plane extended
were determined by mounting a free-floating tail on the center line of
the fuselage. The downwash angles presented are increments from the
tail floating angles without a model in position. It should be noted
that the floating angles measured are in reality a measure of the angle
of zero pitching moment about the tail-pivot axis rather than the angle
of zero lift. It has been estimated that, for the taill arrangement used,
a downwash gradient of 2° across the span of the tail will result in an
error of less than 0.2° in the measured downwash angle.

Total-head readings obtained from the tail-survey comb have been
corrected for bow-wave loss. The static-pressure values used in
computing dynamic-pressure ratios were obtained by use of a static
probe with no model in position.

RESULTS AND DISCUSSION

N

A table of the figures presenting the results is given below:

Figure
Wing-alone force data « « « o o o s o o o 4 s b e e e e e e e e e T
Wing-fuselage force data . . . e &
Effective downwash angles (wing alone) e e e e e e e e e e e 9
Effective downwash angles (wing fuselage) S K
Downwash gradients . « ¢ « ¢ ¢ o o o o ¢ ¢ ¢ o ¢ o i e 00000 o. . 11
Dynamic-pressure SUTVEYS « « « o o o o o o o o o o o o o o o o o o+ o 12
Summary of aerodynamic characterlstics S I

The discussion is based on the summarized values given in figure 13
unless otherwlse noted. Note that the slopes summarized in figure 13
have been averaged over a lift-coefficient range of *0.1 at the given
1ift coefficient.

Lift and drag characteristics.- The isolated wing lift-curve slope
measured near zero 1lift was about 0.064 at a Mach number of 0.70. This
siope compares with a value of O. 065 estimated for this Mach number
using unpublished  semispan data for a geametrically similar model from
the Langley two-dimensional tumnel as & low-speed point and applying a
campressibility correction as outlined in reference 4. The basic
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lift-curve slope up to a Mach number of 1.00 was increased about 10 per-
cent by the addition of the fuselage. Beyond a Mach number of 1.00 the
fuselage effect on the lift-curve slope is diminished.

The drag rise at zero lift began at a Mach number of about 0.93 for
both the wing-alone and wing-fuselage configurations. The drag charac-
teristics are very similar to those obtained for the wing of reference 1,
which, except for taper ratio, had identical geametric characteristics
as the present wing. The absolute drag coefficlents are probably high
because of the presence of the end plates and the relatively low
Reynolds numbers at which these tests were made-

The lateral center of pressure for the wing alone (CL, = 0.4) was
located at 45 percent of the ‘semispan at a Mach number of 0.70. This
center-of-pressure location compares with a value of 4k percent semispan-
obtained from the unpublished low-speed data from the Langley two-
dimensional tunnel at a Reynolds number of 12 X 100, Between M = 0.85
and 0.95 there was a falrly abrupt movement of Ye.p. to about 49 per-

cent semispan. In a Mach number range from 0.95 to 1.05, an outboard

- shift of about the same magnitude was obtained with the less tapered .
45° sweptback wing (reference 1). The addition of the fuselage moved
the lateral center of pressure inboard about 2 percent of the scmispan
at low Mach numbers and there was very little outboard shift through
the Mach number range. ,

Pitching-moment characteristics.- Near zero lift the wing-alone
aerodynamic center was located at 40O percent of the mean aerodynamic

aC ‘
chord SEM = -O-l?) up to M = 0.90. This value compares with a

L/M '
value of 36 percent of the mean aerodynamic chord obtained from
unpublished low-speed two-dimensional-tunnel data for this wing. The
addition of the fuselage moved the aerodynamic center rearward about
1 percent mean aerodynamic chord at low Mach numbers but is generally
about 5 percent destabilizing above a Mach number of 0.95.

In the subsonic speed range, the wing-alone and wing-fuselage
piltching-moment curves indicate ingtabllity at the higher 1ift coeffi-
cients. (See figs. 7 and 8.) It is interesting to note, however, that
gbove M = 1.03 +there is no indication of this unstable trend even at
the highest 1i1ft coefficient attained (Cp, ® 0.6). Similar trends were
obgerved for the sweptback wing conflguratlons reported in references 1
and 2.

Downwash and dynamic-pressure surveys.- At Mach numbers below 1.00,

the dowvnwash gradient O¢/da near zero lift for the wing alone
(fig. 11) increased as the tail location approached the chord plane.
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Above M = 1.00, the value of O€/da was generally a maximum at tail
locations about 35 percent above. the chord plane. At higher 1ift coef-
ficients Be/aa was generally lower than the zero-lift values for tail
positions below the chord plane and was higher for tail positions &above
the chord plane (fig. 9).

The addition of the fuselage generally had little effect on O¢/da
throughout the Mach number range for practically all tail heights. Note
that the test angle-of-attack range with the free-floating talls nearest
the chord line extended was restricted because of the presence of the
fuselage (fig. 10).

The results.of the point dynemic-pressure surveys made in a
vertical plane containing the 25~percent mean-aerodynamic-chord point
of the free-floating tails used 1n the downwash surveys are presented
in figure 12. The maximum loss in dynamic pressure at the wake center
line for o = 10° was 18 percent of the free-stream dynamic pressure
at the highest Mach number.

The addition of the fuselage had little or no effect on the
dynamic-pressure ratios throughout most of the Mach number range-
At a = 10° the center line of the wake was located at a tail height
of T percent semispan throughout the Mach number range.

Langley Aeronautical Labofatory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va.
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TABLE I.- FUSELAGE QRDINATES

[]:Basic fineness ratio 12; actual fineness ratio 10
achieved by cutting off the rear one-sixth of

the body; T/4 located at 1/2]

p l=/4./4 —
l_6 d |
_ 2 'l
l— x_..l ‘
~—-—-1- —D(Mox) —|—
[ ' _
‘Ordinates
x/1 r/1 x/1 r/1 -
10 0 0 0
. 005 .00231}| 4500 .04143
L0075 | .00298|| .5000| .0416T7
.0125 | .ook28| .5500{.- .04130
L0250 | .00722|| .6000| .oOkO2k4
.0500 | .01205(| .6500| .03842
0750 | .01613{| .7000{ .03562
.1000 | .01971]| -7500| .03128
.1500 | .02593|| .8000| .02526
.2000 | .03090|{ .8338| .02000
.2500 | .03465(| .8500| .01852
.3000 | .03741|] .9000] .01125
.3500 | .03933|{ -9500| .00439
4000 | .04063(]1.0000 | O
L. E. radius = 0.00051

SNACA
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s

L-59130,1

Figure 4.- Model mounted on the bump with three free-floating tails
installed. Wing-alone configuration.
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