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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

MEASUREMENTS OF AERODYNAMIC CHARACTERISTICS OF A 

350 SWEPTBACK NACA 65 -009 AIRFOIL MODEL WITH ~-CHORD 

BEVELLED-TRAILING-EDGE FLAP AND TRIM TAB BY THE NACA 

WING-FLOW METHOD 

By Harold I . Johnson and B. Porter Brown 

SUMMARY 

This investigation is the third of a series concerned with the 
determination of fundamental character istics of trailing-edge contr ols 
at transonic speeds . A 350 sweptback untapered airfoil model of aspect 

ratio 3 has been fitted with various ~-chord full - span flap s dif f ering 

only in type of aerodynamic balance . The first series of tests was 
run with a plain flap which represented the case of zero aerodynamic 
balance . The second series of tests was run with a flap that had a 
large horn balance. Results from these t wo series of tests have been 
reported previously. The tests described herein were made with a flap 
that incorporated a bevelled trailing edge with an included trailing
edge angle of 230 . Important r esults fol l ow . 

The lift characteristics of the model and flap were similar to 
those measured previously with true - contour flaps on the model . Sealing 
the flap gap increased the lift - curve slope and the flap effectiveness 
appreciably and also caused a rearward shift in the center of pre s sure 

of the load due to flap deflection . The ~-flap - chord by 1 -flap - span 

bevelled trim tab had poor trimming characteristics at all speeds 
tested (M = 0.65 to 1 .15) , inasmuch as the hinge moment due to tab 
deflection reversed for various parts of the deflection range at 
different Mach numbers. The bevelled trai l ing edge appears to be an 
unsatisfactory type of aerodynamic balance for airplanes required to 
traverse a large speed range because at subsonic speeds the degree of 
balance was highly nonuniform and at low supersonic speeds most of the 
balancing effectiveness disappeared . 
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I N T ROD U C T ION 

A wing- flJw investigation is being made to determLne the charac 
teristics of conventional low - speed aerodynamic balances at transonic 
speeds . In this investigation a t ypical sweptback airfo i l-flap combi 
nation representing either a wing or a tail surface is being fit ted 

with t-chord full - span flaps differing only in type of aerodynamic 

balance . The primary objectives of the investigation are the determi 
nation of flap hinge moments and flap effectivene ss ; however, it has 
been found convenient and desirable also to measure the lift and 
pi. tching -mow~i1t characteristics of the complete models. The first 
serie s of tests was made with a plain flap which r epre sent s t he case 
of zero aerodynamic balance (reference 1). The second series of tests 
"IaS made with a horn-balanced flap that was designed to have a large 
degree of aerodynamic balance at low speeds (reference 2). The pre sent 
series of tests was made with a bevelled-trailing-edge flap that had a 
trailing-edge angle of 230 in planes perpendicular to the hinge line. 
'l'he true -contour NACA 65 -009 section flap tested in reference 1 had a 
trailing-edge angle of approximately 60 . 

The test s consisted of measurement s of the l i ft, pitching moments, 
and hinge moment s acting on a semispan airfoil-flap model having a 
sweepback angle of 35°, an aspect ratio of 3 .07, a taper ratio of 1. 0 , 
an NACA 65 -009 section in plane s perpendicular to the leading edge over 

the forward 75 percent of the chord , a full - span ~- chord bevelled-

trailing-edge flap, and a ~- span by ~-flap-chord trim tab . Tests were 
3 3 

made with the f lap gap both sealed and unsealed. In general, data were 
obtained over an angle -of -attack range of -50 to 18° , a flap-de f lection 
range of ±200 , a tab -deflection range of 0 to 10°, a Mach number range 
of 0.55 to 1.15 , and a Reynolds number range of about 500 , 000 
to 1,400 , 000 . Because the tests were run within two widely separa ted 
alt itude ranges, the data can be used to study some effects of Reynol ds 
number even though the h ighest Reynolds number encountered was small in 
comparison with probable full - scale Reynolds numbers. 

S Y M B 0 L S 

M ~verage Mach number over model 

MA airplane free - stream Mach number 

R Reynolds number 
• 
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airplane free - stream dynamic pressure 

average dynamic pressure over model 

airplane lift coeffi cient (AirPlane lift) 
qASA 

model lift coefficient (Mode~slift) 

model pitching-moment coefficient (measured about axis 
18.1 percent M.A . C. ahead of leading edge of M.A.C.) 

(
MOdel pitching moment) 

qbc
2 

(
Model hin~e2moment) model hinge-moment coefficient _ 

qbfcf 

variation of model lift coefficient with angle of attack, 

per degree (~) 

variation of model lift coefficient with flap deflection, 

per degree (~~~) 
variation of model pitching-moment coefficient with angle of 

(
dCm ) 

attack, per degree ~ 

variation of model pitching-moment coeff icient with flap 

(
dCm) 

deflection, per degree dOf 

variation of flap hinge -moment coefficient with model angle 
IdC ) 

of attack, per degree (~ 

3 

variation of flap hinge-moment coefficient with flap deflection, 

( ~~hf) per degree 

( 
dCL {dO f ) 

flap relative effect ivene ss dCL/cti 
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angle of attack between model chord plane and direction of 
relative wind 

flap deflection angle between flap chord line and airfoil 
chord line measured in plane perpendicular to hinge line 

trim-tab deflection in plane perpendicular to hinge line 

sweepback angle 

taper ratio 

aspect ratio 

model span normal to wind direction (corre sponds t o one-half 
of span of complete wing ) 

model chord parallel to wind direction 

model mean aerodynami c chord (M.A.C.) 

total area of model (corresponds to one -half of area of 
complete wing) 

flap span along hinge line (corresponds to one-half of span 
of full - span flap on complete wing) 

flap root -mean- square chord perpendicular to hinge line 

flap chord parallel to wind direction 

flap area rear of hinge line 

included trailing-edge angle of flap 

trim- tab span parallel to hinge line 

trim- tab chord normal to hinge line 

trim-tab area 

airplane wing area 

~~--------------------- - -------, ------
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APPARATUS 

The model was mounted on the upper surface of an F-51D airplane 
wing as shown in figure 1. The wing contour had been modified to 
provide more uniform velocity gradients over the model test station. 
Typical local velocity gradients in both the chordwise and spanwise 
directions over the model test station are shown in figures 2 and 3, 
respectively. In calculating force and moment coefficients, an average 
dynamic pressure corresponding to the average local Mach number over 
the model area was used. No correction was applied for the effect of 
the wing boundary layer. Other tests have shown that the wing boundary 
layer has a total thickness of only about 1/4 inch. The effect of the 
wing boundary layer on the velocity distribution over the model, there
fore, was considered to be negligible. The effects of model flexibility 
were small and also considered to be negligible. Flexibility effects 
are discussed in more detail in reference 1 . 

A drawing of the bevelled-trailing-edge flap mode l including a 
list of pertinent dimensions is given in figure 4. The model was 
intended to have exactly the same over -all dimensions as those tested 
in references 1 and 2; however, small errors were made in the con
struction of the flap so that the model aspect ratio was changed 
from 3.04 to 3.07 and the flap-chord ratio was changed from 0.25 to 0.24 . 
The model was machined from solid duralumin and an end plate of 
diameter equal to the chord was attached at the root of the model. The 
gap between the flap leading edge and the basic airfoil model was 
apprOXimately 0.015 inch (0.005c). In tests of the sealed-gap condition 
the gap was closed along 64 percent of the flap span by 0 . 002 - inch-thick 
sheet rubber installed as shown in figures 4 and 5. 

The bevelled-trailing-edge flap had an included trailing-edge 
angle of 230 in planes perpendicular to the hinge line as compared with 
a trailing-edge angle of about 60 for the true-contour NACA 65-009 sec
tion tested in reference 1. In the streamwise direction the trailing
edge angle was 19 . 20

• The bevelled portion of the flap extended forward 
from the trailing- edge about one-fourth of the flap chord. From this 
poi nt to the hinge line the surface was formed by a plane tangent to 
the flap-nose radius, which was the standard nose radius for a 25-percent
chord flap on an NACA 65-009 section. (See figs. 4 and 5 .) The flap 

had a l- span by l-chord tab, located centrally along the span, which 
3 3 

could be bent to desired deflections. Bending of the tab was facilitated 
by cutting U- shaped grooves in the flap at the tab leading edge. along 
the entire tab span. The tab gap was, therefore, completely sealed 
for all t ests. 
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The recording instrumentation was the same as that described in 
references 1 and 2. 

T EST S 

The data presented were obtained from nine flights. Of these nine 
flights, two were made to obtain model and flap characteristics with 
flap gap open (gap = 0.005c), four were made to obtain model and flap 
characteristics with the flap gap sealed along 64 percent of the span, 
and three were made to obtain trim-tab-effectiveness data with the flap 
gap sealed. 

With gap open, one flight was made with the flap fixed in neutral 
and the entire model oscillating through an angle-of-attack range 
of _5° to 18°. The other flight was made with the model fixed at zero 
angle of attack relative to the airplane X-axis and the flap oscillating 
through a deflection range of about ±200. This procedure was repeated 
for the gap - sealed condition; however, an additional two flights were 
made with gap sealed in which the model was fixed at a = 5° 
and Of = 5°, successively. In all the foregoing flights the trim tab 
was set in neutral. Trim-tab data were obtained by fixing the model 
at a ~ 0°, oscillating the flap through a deflection range of ±200, 
and setting the trim tab on successive flights to deflections of 1.95°, 
5.4°, and 10.8°. The rate of oscillation of either the model or the 
flap was approximately one cycle per second. 

Each flight was made up of two test runs referred to hereinafter 
as the "high-dive" run and the "level-flight" run. (Trim-tab charac
teristics were measured only in high-dive runs.) The high-dive run was 
made by diving the airplane from 28,000 feet and an indicated airspeed 
of 220 miles per hour to an airplane Mach number of 0.73 at approxi
mately 18,000 feet. During this run usable data were obtained for 
average Mach numbers over the model ranging from 0.65 to 1.15 at 
relatively lower Reynolds numbers. The level-flight run was made by 
gradually slowing the airplane from 450 miles per hour to 300 miles 
per hour at 5,000 feet altitude following a dive and pull-out from 
about 15,000 feet altitude. During this run usable data were obtained 
for average Mach numbers over the model ranging from 0.55 to 0.95 
(sometimes 1.0) at relatively higher Reynolds numbers. Typical varia
tions of Reynolds number with Mach number for the two types of test 
runs are given in figure 6. 

I~ __ ~- __ ----J 
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ACCURACY 

The accuracy of the major variables in this investigation was 
estimated to be as follows: 

Mach number . . . . . . 
Angle of attack, degree 
Flap angle, degree 
Trim-tab angle, degree 
Lift coefficient 
PHching-moment coefficient . 
Hinge -moment coefficient 

±O.Ol 
±O.3 
±0.3 
±O.l 

±0.03 
±O.015 
±O.003 

Accuracies of the last three variables listed are given for the 
lowest test speed; at the highest test speed, these accuracies should 
be approximately four times better. A large part of the loss in 
accuracy was attributable to shifts in instrument zeros t4at occurred 
gradually during a flight. Hence, the errors in the data appear for 
the most part as errors in angles of zero lift, angles of zero pitching 
moment, and angles of zero hinge moment. Because the data at any given 
Mach number were obtained within a very short period of time (less than 
1 sec), the slopes of the various ' force - and moment - coefficient 
curves should be accurate to a degree approaching the instrument 
capabilities, which, in the present case, add up to about 2 percent at 
intermediate test speeds. 

PRE SEN TAT ION 0 FDA T A 

All force and moment coefficients are presented in accordance 
with standard NACA conventions regarding definitions and signs. 
Pitching moments were measured about an axis located 18.1 percent chord 
forward of the leading edge of the mean aerodynamic chord. 

In accordance with past procedure (see reference 2) all the basic 
data are presented without showing test points. However, in order to 
show the quality of the data, two typical plots of basic data are shown 
in figure 7. These plots show the number of test points evaluated at 
each Mach number from the continuous records of force, moment, and 
position. 

The following tables give the order of treatment of the results as 
well as a key to figures 8 to 30. In general, each figure consists 
of two parts. The first part shows data from the high-dive runs 
(higher maximum Mach number, lower Reynolds numbers) and the second part 
shows data from the level-flight runs (higher Reynolds numbers, lower 
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maximum Mach number). The basic data are generally given for Mach 
number increments of 0.05 through the Mach number range tested. 

BASIC DATA 

Characteristics Content Gap Figure 

CL against a, (Of = 0°) Open and sealed 8 

Lift CL against a, (Of = 5°) Sealed 9 
CL against Of (a, ~ 0°) Open and sealed 10 
CL against Of ! (a, ~ 5°) Sealed 11 

Cm against a, (of = 0°) Open and sealed 12 

Pitching moment em against a, ( of = 5°) Sealed 13 
Cm against Of (a, ~ 0°) Open and sealed 14 
Cm against Of (a, ~ 5°) Sealed 15 

Ch against a, (of = 0°) Open and sealed 16 
Ch against a, ( Of = 5°) Sealed 17 
Ch against Of (a, ~ 0°) Open and sealed 18 

Hinge moment Ch against Of (a, R:l 5°) Sealed 19 
Ch against Of (a, ~ 0°; Sealed 20 

OTT = 0°, 1. 95°, 
5 .4°, and 10. 8°) 
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SUMMARY DATA 

Characteristics Content Gap Figure 

CLa ) CLD) ~ against M Open and sealed 21 
Df 

Lift (a ~ 0°; Df = 0°) 
Effect of Of on CLa Sealed 22(a) 

Effect of a on CLD Sealed 22(b) 

CIlla,) CmO) a . c ,) c.p. due Open and sealed 23 
to Df a gainst M 
( a ~Oo ) Df=OO) 

Eff ect of Df on , Sealed 24(a) 
Pitching moment Effect of a on CmD Sealed 24(b) 

Effect of Df on a . c . Sealed 25 
Effect of a on c . p . Sealed 25 

due to bf 

Cha against M (a '" 0° '" ) 
Open and sealed 26 

Df = 0°) 
Effect of Df on Cha Sealed 27 
ChD against M (a ~ 0°) Open and sealed 28 

Hinge moment Df = 0°) 

Effect of a on ChD Sealed 29 

Ch against bTT (a ~ 0°) Sealed 30 

Df = 0°) 

J 
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DIS C U S S ION 0 F RES U L T S 

BASIC DATA 

Lift Characteristics 

Lift due to angle of attack (figs. 8 and 9). - Compre s sibility had 
no adverse effect on the ability of the airfoil to develop lift in the 
low and moderate angle -of-attack ranges. At angles of attack near 100 , 
however, a sharp break occurred in the lift curve s in the re gion M = 0 . 95 . 
This break disappeared at M = 1.05 and higher speeds . As may be seen, 
the test range (~ = 180 ) was insuff icient to yield information on the 
variation of maximum lift coefficient with Mach number. However, su ch 
information may be found for the model with a plain flap in reference 1. 

The effect on shape of the lift curves of changing the flap angle 
from 00 to 50 ~as practically negligible. One of the small systematic 
changes noted was a delay to larger angles of attack in the occurrence 
of the sharp break in the lift curve near M = 0 . 95. 

Sealing the flap gap had a peneficial. effect on the lift 
characteristics of the model at angles of attack below approximately 80 . 
Inasmuch as only 64 percent of the gap length was sealed in the t e st s 
(refer to fi g . 4), further gains in lifting ability could be expe cted 
from sealing a greater length of the flap gap . 

Lift due to flap deflect ion (figs . 10 and 11).- The bevelled
trailing-edge flap showed generally good flap effectiveness . There wa s 
a considerable loss in effectiveness at small flap angles at M = 0. 95 
(fig. 10(a)) in the unsealed condition, which was alleviated by sealing 
the gap . In addition to this eff ect, the seal gave a worth-while over
all improvement in flap effectiveness over most of the speed r ange 
tested. When the angle of attack was increased from 00 to 50, the flap 
effectiveness was reduced somewhat . 

The foregoing results appear on the surface to be at variance with 
other recent tests of controls with large trailing-edge angle s made in 
wind-tunnels (references 3 and 4) . These tests showed violent l osse s 
or even reversals in flap effectiveness in the transonic speed range 
with controls having somewhat smaller trailing-edge angles than that 
tested herein. The difference in re sults i s probably due to t he d i f fe r
ence in airfoil section. The wind-tunnel tests were made with a i rfoil 
sections that have large trailing-edge angles which extend forward 
over approximately the entire flap chord. In the subject test s the 
large trailing-edge angle extended forward a distance equal to only 
one-fourth of the flap chord. Hence, it is possible in the sub ject 
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tests that part of the expected loss in flap effectivene ss due to the 

large trailing -edge angle on the last ~ chord of the flap was replaced 

by a gain in effectiveness from the forward ~- chord portion of the flap 

acting as a blunt trailing-edge control of smaller chord . If this 
analys is is borne out by further work, the conclusions to be drawn are 
that tra i ling-flap effectiveness at transonic speeds will be be st for 
airfoil sections having their maximum thicknes s well forward in order 
to obtain a small over-all flap trailing-edge angle, and that flap 
eff ectiveness for a given airfoil section cannot be changed appreciably 
by local modifications to the contour of the flap short of resorting 
to a finite trailing-edge thickness (reference 5) . 

Pitching-Moment Characteristics 

Pitching moment due to angle of attack (figs. 12 and 13).- The se 
data showed no unusual variations. The seal did not change the 
pitching -moment characteristics appreciably except at high angle s of 
attack where the pitching moments were increased by the addition of 
the seal. 

Pitching moment due to flap deflection (figs. 14 and 15).- In 
general, the pitching moments due to flap deflection followed the same 
trends as the lift due to flap deflection. As in the case of the lift, 
the pitching moments also were increased considerably by sealing the 
flap gap. In figure 14 the data for the gap -open condition are 
apparently in error somewhat due to a zero shift . 

Hinge-Moment Characteristics 

Hinge moment due to angle of attack (figs. 16 and 17).- The hinge
moment-coefficient variations with angle of attack were very erratic 
with frequent changes between positive and negative floating tendencies 
below a ~ 80 and below a Mach number of 1.0. Above a ~ 80 the flap 
always exhibited a strong negative floating tendency. At supersonic 
speeds the curves tended to become linear and the flap had a strong 
negative floating tendency at all angles of attack. 

A compari son between the (a) and (b) parts of the figures shows 
that the bevelled-trailing-edge flap was very susceptibl e to Reynolds 
number effect s . Large Reynolds numbers gave greater pos itive floating 
tendencie s in the 10'", angle-of -attack range (a < 80

). The dependence 
of the bevelled-trailing -edge-flap hinge moments on Reynolds number 
is not surpri s ing inasmuch as the balancing eff e ctivenes s of such 
controls depends on separa t i on effects at the trailing edge which are, 
of course, influenced by Reynolds number . 
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The general shapes of the hinge-moment curves were not greatly 
affected by changing the flap angle from 00 to 50. 

Sealing the gap did not appreciably change the hinge-moment 
characteristics although it did tend to reduce the small-amplitude 
waviness in the hinge-moment curves near zero angle of attack. 

The data indicate the hinge moment was not zero at zero flap 
deflection and zero angle of attack. The reason for this i s believed 
to be small construction errors which introduced slight asymmetry into 
the model. 

Hinge moment due to flap deflection (figs . lS and 19).- As mi ght 
be expected, the variation of hinge-moment coefficient with flap defle c 
tion at subsonic speeds was nonlinear. At Mach numbers of 1.0 and 
higher the curves became much steeper , indicating an abrupt lo ss in 
balance. Just as in the case of angle of attack, higher Reynolds 
numbers gave an increase in flap balance for deflection (compare 
figs . lS(a) and lS(b». 

Throughout the deflection range tested, the flap was generally 
less balanced with the gap sealed; however, the balance at small deflec
tions was maintained to higher Mach numbers with the gap sealed. The 
data indicate the hinge moments with gap open were very irregular at 
low speeds near zero deflection. These irregularities were eliminated 
completely by seal ing the gap . 

Hinge moment due to tab deflection (fig. 20).- The trim-tab 
effectiveness is indicated by the vertical spacing of the curves of 
figure 20 . At Mach numbers below 0.90, the tab gave increasing hinge 
moments of the correct sign with increasing tab deflection at zero flap 
deflection. At large positive flap angles the tab effectiveness 
reversed at small tab angles; whereas, at large negative flap angle s the 
tab effectiveness usually reversed at larger tab angle s . At Mach num
bers above 0.90 the tab effectiveness usually reversed at moderate tab 
angles for all except large positive flap angles. Within the accuracy 
of the data, therefore, it appears the tab tested would constitute a 
weak if not entirely unsatisfactory trimming device. 

SUMMARY DATA 

Lift Characteristics 

Lift-curve slope (figs. 21 and 22(a».- The lift-curve slope s 
showed a general increase with increasing speed up to a Mach number of 
at least 1.0. At higher speeds the lift-curve s lope fell off slightly. 

---- ----- ~--- -- --- ---
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Sealing the flap gap was definitely beneficial to increasing the lift
curve slope at all transonic speeds tested . The maximum lift - curve 
slope measured with gap sealed was 9 percent higher than the corre
sponding maximum lift - curve slope with gap open (fig . 21(a)) . Reynolds 
number effects on lift-curve slope were small . 

The effect of flap deflection on lift - curve slope was small and 
inconsistent (fig. 22(a)) . At transonic speeds, deflecting the flap 50 
reduced the lift - curve slope slightly . 

Fla effectiveness (figs. 21 and 22(b)). - The absolute flap 
effectiveness CL5 showed a gradual decrease over the speed range 
tested with an additional abrupt loss and recovery in effectiveness 
between M = 0 . 90 and M = 1.05. Sealing the gap gave a general 
increase in flap effectiveness over the speed range of about 25 percent . 
Other effects of the seal were to raise the Mach number of minimum flap 
effectiveness from 0.95 to 1 . 0 and to raise the minimum flap effective 
ness by about 35 percent (fig . 21(a)). The data obtained from the 
level -flight runs (fig. 21(b)) were not as clear-cut as the high -dive 
data, but disregarding the apparent inconsistencies in the gap - sealed 
data, these data are in fair agreement with those of figure 21(a). 
The effectiveness of the bevelled flap compared favorably with that 
of the plain flap and horn -balanced flaps of references 1 and 2, 
respectively . 

The variations of f l ap relative effectiveness with Mach num-

ber were similar to those of absolute flap effectiveness ( CL5) . 

The effect of increa sing the angle of attack on flap effectiveness 
(fig. 22(b)) was to iron out variations in effectiveness due to com
pressibility . This result is in agreement with previous tests 
(reference 2). 

Pitching -Moment Characteristics 

-moment coefficient er degree angle of attack (fi s . 23 
and - The pitching-moment - coefficient slopes C~ were about 

M = 0 . 85 and then increased considerably up to M = 1.0 
after which they again tended to assume a constant value . Sealing the 
flap gap had little effect on the pitching-moment variations with angle 
of attack up to a Mach number of 0 .95. Reynolds number effects and 
flap -deflection effects also did not change the p itching-moment varia
tions at transonic speeds although some changes were indicated at 
subsonic speeds . 

_J 
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Pitching-moment coefficient er degree fla deflection (figs . 23 
and 2 b .- The variations of CID5 with Mach number were very similar 
to those of CLo with Mach number. There was a greater increase 
in Cmo due to sealing the gap than there was in CLo . Also) as in 
the case of lift, the pitching-moment - slope variation due to com
pressibility was reduced greatly by changing the angle of attack from 00 

t o 50 . (See fig . 24(b).) 

Aerodynamic - center location (figs . 23 and 25). - The aerodynamic
center position at low speeds varied between 10 and 20 percent mean 
aerodynamic chord depending on gap condition and Reynolds number . The 
Weissenger theory predict s an aerodynamic - center location of 20 percent 
mean aerodynamic chord for the plan form tested. In this cOQ~ection it 
is known that thickening and bevelling the trailing edge tends to move 
the aerodynamic center forward. Also there is evidence that important 
lifting-surface effects come into play at low aspect ratios which are 
inadequately treated by the theory and cause a further forward shift in 
aerodynamic - center position . 

In the subsonic speed range the effect of sealing the flap gap was 
to shift the aerodynamic center forward about 3 percent mean aerodynamic 
chord. Increasing the Reynolds numbers from those obtained in the high
dive runs to those obtained in the level-flight runs (fig. 6) caused an 
additional forward shift in aerodynamic center of about 5 percent mean 
aerodynamic chord. 

Over the transonic speed range (up to M = 1 . 15) the aerodynamic 
center shifted rearward between 15 and 20 percent mean aerodynamic chord 
depending on Reynolds number and gap condition. All the data indicated 
an aerodynamic - center location of 25 percent mean aerodynamic chord 
at M = 1.0. 

The effect on aerodynamic - center position of deflecting the flap 50 
(fig . 25) was inconsistent at subsonic speeds . At transonic speeds, 
deflecting the flap 50 caused about a 2-percent rearward shift in 
aerodynamic - center position. 

Center of pressure due to flap deflection (figs. 23 and 25).- The 
center of pressure due to flap deflection showed a rearward trend with 
increasing Mach number as in previous tests wi t h other flaps (refer
ences 1 and 2). In spite of indicated random scatter of the data, the 
effect of sealing the flap gap is shown clearly . Closing the gap 
generally caused an appreciable rearward shift in center of pre ssure of 
the load caused by flap deflection. Such a rearward shift is beneficial 
to all-wing airplanes using ailavators as longitudinal control devices . 

The effect of angle of attack on the center of pres sure was 
generally small and inconsistent (fig . 25). 
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Hinge-Moment Characteristic s 

Flap floating tendency Cha (figs. 26 and 27) . - The bevelled flap 

showed large changes in floating tendency a s measured by the instantane
ous slopes of hinge -moment curves at a = 00 over the test range . At 
subsoni c speeds either increas ing Mach number or increasing Reynolds 
number caused the flap to show greater positive (against the relative 
wind) floating tendencies. At about M = 0.90 this trend reversed so 
that at supersonic speeds the flap exhibited strong negative (with the 
relative wind) floating tendencies. Deflecting the flap 50 (fig. 27) 
reduced greatly the variation of Cha with either Mach number or 
Reynolds number in the subsonic speed range; however, at supersonic 
speeds the strong negative floating tendency still appeared. As 
explained in reference 2, it is believed the strong negative floating 
tendency at supersonic speeds is a feature common to all conventional 
types of subsonic balance which affect the parameter Cha o In any 
event the large changes in hinge -moment characteristics with angle of 
attack measured for the bevelled flap lead to the conclusion that this 
type of balance is undesirable for application to an airplane required 
to traverse any appreciable speed range . 

Flap restoring tendency ChB (figs. 28 and 29). - Comparison of the 

bevelled-flap data (fig . 28) with that of the plain flap from reference 1 
shows that the bevel was very effective as an aerodynamic balance in the 
subsonic range. However, in general, the degree of balance obtained 
from the bevelled trailing edge was far from uniform, ranging anywhere 
from one -half of complete unbalance to overbalance . As in the case of 
the variations of hinge moment with angle of attack, the degree of flap 
balance for deflection increased with either Mach number or Reynolds 
number in the subsonic speed range. At supersonic speeds the flap 
quickly lost balance as was the case with the horn-balanced flap of 
reference 2. Sealing the flap gap tended to delay the loss of balance 
at super sonic speeds, but the trends of the curves leave little hope 
that the bevelled trailing edge tested could be an eff ective supersonic 
balancing device. 

Changing the angle of attack from 00 to 50 (fig . 29) had little 
effect on the subsonic balancing characteristics. The main effect was 
to hasten the lo ss of balance in the transonic speed range. 

These small- scale data indicate the bevelled-trailing-edge flap as 
tested is an unsuitable form of aerodynamic balance for airplanes 
required to traverse a large speed range because of nonuniform balancing 
characteri stics at subsonic speeds and inability to maintain aerodynamic 
balancing effectiveness through the transonic speed range. 
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Trim-tab effectiveness (fig. 30).- The bevelled trim tab gave hinge 
moments of the correct sign with increasing tab deflection at speeds 
below M = 0.90 for zero flap deflection and zero angle of attack. 
At M = 0.90, however, the data indicated complete tab ineffectiveness 
for the first 20 of tab deflection. At M = 0.95 the data showed 
complete tab ineffectiveness at deflections above 50. At and above sonic 
speed the data indicated reversal in tab effectiveness above 30 to 5° 
of tab deflection. 

CON C L U S ION S 

On the basis of wing-flow tests of a full-span ~-chord flap having 

a 230 bevelled trailing edge mounted on a 350 sweptback untapered 
NACA 65-009 airfoil model of aspect ratio 3.07, the following con
clusions were reached: 

1. The lift characteristics of the model and flap were similar to 
those measured previously with true-contour flaps on the model. 

2. Sealing the flap gap increased the lift-curve slope and the flap 
effectiveness appreciably and caused a rearward shift in the center of 
pressure of the load due to flap deflection. 

1 1 3. The 3-flap-chord by 3-flap-span bevelled trim tab had unsatis-

factory characteristics at all speeds tested inasmuch as the tab showed 
reversal of effectiveness over various parts of the deflection range 
at different Mach numbers. 

4. The bevelled trailing edge appears to be an unsatisfactory type 
of aerodynamic balance for airplanes re~uired to traverse a large speed 
range because at subsonic speeds the degree of balance was highly 
nonuniform (varyi ng considerably with both Mach and Reynolds numbers) 
and at low supersonic speeds most of the balancing effectiveness 
disappeared. 

Langley Aeronaut i cal Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va. 
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NACA 65-009 a irfoil with 24 -percent-chord full-span, 
bevelled-trailing-edge flap. 
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Figure 12.- Variation of pitching-moment coefficient with angle of attack 
throughout Mach number range te sted for of = 00 • NACA 65-009 airfoil, 
A = 3 .07, A = 350

, cf = 0 .24c , gap sealed and unsealed, bevelled

trailing- edge flap. Moment coefficient given about axis located 
18.1 percent mean aerodynamic chord ahead of leading edge of mean 
aerodynamic chord. Note shift in axis of ordinate scale for 
different Mach numbers. 
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Figure 13.- Variation of pitching-mQment coefficient with angle of attack 
throughout Mach number range tested for Of = 5°. NACA 65 -009 airfoi~ 
A = 3.07, A = 35°, Cf = 0.24c, gap sealed, beve lled-trailing-edge 
flap. Moment coefficient given about axis located 18.1 percent mean 
aerodynamic chord ahead of leading edge of mean aerodynamic chord. 
Note shift in axis of ordinate scale for different Mach number. 
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Figure 14.- Variation of pitching-moment coefficient with flap deflection 
throughout Mach number range t ested for a ~ 0° . NACA 65 - 009 airfoil, 
A = 3 .07, A = 35°, cf = 0 .24c, gap sealed and unsealed, bevelled-

trailing- edge flap. Moment coefficient given about axis located 
18 .1 percent mean aerodynamic chord ahead of leading edge of mean 
aerodynamic chord. Note shift in axi s of ordinate scale for 
different Mach numbers. 
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Figure 16 .- Variation of hinge-moment coefficient with angle of attack 
throughout Mach number range tested for of = 0°, NACA 65 - 009 air-

foi l, A = 3.07, A = 35°, cf = 0 . 24c, gap sealed and unsealed, 

bevelled- t railing- edge flap. Note shift in axis of ordinate scale 
for different Mach numbers. 
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Figure 18 .- Variation of hinge-moment coefficient with flap deflection 
throughout Mach number range tested for a ~ 0°. NACA 65-009 air
foil, A = 3.07, A = 35°, cf = 0.24c, gap sealed and unsealed, 

bevelled-trailing-edge flap. Note shift in axis of ordinate scale 
f or different Mach numbers. 
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Figure 23.- Concluded. 
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(a) Effect of flap deflection on airfoi l pitching moments at ~ ~ 0°. 

61 

Figure 24 .- Effect of flap deflection and angle of attack on airfoil and 
flap pitching-moment characteristics . NACA 65 - 009 airfoil, A = 3 · 07, 
A = 350, cf = 0 .24c , gap sealed, bevelled- trailing-edge flap. 

Pitching moments measured about axis located 18 .1 percent mean 
aerodynamic chord forward of leading edge of mean aerodynamic chord . 
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(b) Effect of angle of attack on flap pitching moments at of = 0° . 
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Figure 25 .- Effect of angle of attack on center of pressure due to flap 
deflection and effect of flap deflection on aerodynamic - center 
location . NACA 65 - 009 airfoil, A = 3 . 07, A = 35°, Cf = 0 . 24c, gap 
sealed, bevelled-trailing-edge f l ap . 
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Figure 26 .- Variation with Mach number of r ate of change of hinge
moment coefficient with change in angle of attack measu~ed 
at a ~ 0°, of = 0° . NACA 65- 009 airfoil, A = 3.07, A = 35°, 
Cf = 0 . 24c, gap sealed and unsealed, bevelle d- trailing- edge 
flap. 
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Figure 27 .- Effect of flap deflection on r ate of change of hinge 
moment coefficient with angle of attack measured at a = 00

• 

NACA 65-009 airfoil, A = 3 .07, A = 350
, Cf = 0 . 24c, gap 

sealed, bevelled-trailing-edge flap . 
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Figure 28 . - Variation with Mach number of rate of change of hinge
moment coefficient with change in flap deflection measured 
at a ~ 0°, of = 0° . NACA 65-009 airfoil, A = 3 . 07, A = 35°, 
Cf = 0 . 24c, gap sealed and unsealed, bevelled-trailing-edge 
flap. Pl a in- flap data from reference 1 included for comparison. 
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Figure 29 .- Effect of angle of attack on rate of change of hinge 
moment coefficient with flap deflect i on measured at of = 0°. 

NACA 65-009 airfoil, A = 3 .07, A = 35°, Cf = 0 . 24c, gap sealed, 
bevelled-tr ailing- edge flap . 
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Figure 30.- Variation of hinge-moment coefficient with t rim-tab 
deflection measured at a = 0° . NACA 65-009 airfoil, A = 3.07, 
A = 35°, Cf = 0 .24c, gap sealed, bevelled-t railing-edge flap, 
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