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November 18, 1949 

Page 18, lines 6 and 8 below table: Reference 3 should be reference 2. 

Page 19 , line 10: Reference 3 should be reference 2. 

Page 105: Reference 1 (both in key and legend below figure 54) should 
be reference 2. 

Page 106: In key, reference 3 should be reference 2 and in legend below 
figure, reference 1 should be reference 2. 
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LOW-SPEED PRESSURE-DISTRIBUTION AND FLOW INVESTIGATION FOR A 

LARGE PITCH AND YAW RANGE OF THREE LOW-ASPECT-RATIO 

POINTED WINGS HAVING LEADING EDGE SWEPT BACK 600 

AND BICONVEX SECTIONS 

By Ralph W. May, Jr., and John G. Hawes 

SUMMA.RY 

• 

Pressure distributions and flow characteristics were investigated 
at low speed through a yaw range from 00 to 350 and an ~gle-of-attack 
range through the stall for three small-scale low-aspect-ratio pointed 
wings haVin§ 10-percent-thick biconvex sections, 600 sweptback leading 
edge, and 0 , 300 , and -300 trailing-edge sweep. 

An effort was made to correlate the pressure distributions with the 
strong conical vortex flow observed. At zero yaw, separation vortices, 
emanating in the region of the wing apexes, increased in size and were 
swept back farther from the leading edge along the span as the angle of 
attack was increased. Flow observations showed that the center of 
vortex rotation coincided with the maximum depth of a region of turbulent 
separated flow and with a negative pressure peak. Behind the center of 
vortex rotation a negative-pressure dip occurred as the depth of the 
turbulent region diminished rather rapidly. With increasing angle of 
yaw the separation vortices along the leading and trailing semispans 
became more clearly defined as bound and trailing vortices, respectively . 

Section lift coefficients and local centers of pressure at zero yaw 
and spanwise load distributions throughout the yaw range are presented 
and discussed with reference to the flow analysis. Force ana moment 
characteristics of the three wings are compared throughout the large 
yaw range. 

I N T ROD U C T ION 

In the Langley full-scale-tunnel investigations of the German 
delta-wing DM-I glider (reference 1), a remarkable effect of a sharp 
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leading edge was obser ve d. Whereas the flow over the original glider 
with a r ound leading edge was essentially as expected (characterized by 
turbulent separation from the traili ng edge with the separated region 
increasing with angle of attack), the flow over the modified glider 
with a sharp leading edge was characterized by a large vortex on the 
upper surface just behind the leading edge. The vortex remained 
attached up to high angles of attack and provided a considerably higher 
maximum lift coefficient than that of the original configuration. 
Although such upper-surface attached vortices had been reported previously 
for low-aspect-ratio airfoils, only relatively meager information was 
available as to their causes and effects. In view of the likelihood that 
such flows would be encountered frequently on highly swept wings with 
sharp or small-radius leading edges, further efforts to define the flow 
and its effects on the wing characteristics were considered desirable. 

The project herein reported represents one of the first steps in this 
direction. Three related small-scale low-aspect-ratio pointed wings, 
liberally equipped with pressure orifices, were constructed and studied 
at low speeds in the entrance cone of the Langley full-scale tunnel. 
The wings had 10-percent-thick biconvex sections parallel to the air 
stream, 600 sweptback leading edge, and 00 , 300 , and -300 sweep of the 
trailing edge. Pressure distributions were obtained for a ran§e of 
angles of attack through the stall and for yaw angles up to 35. Exten
sive tuft and smoke studies were made to help clarify the flow and to 
correlate its characteristics with the measured pressure distributions. 

A number of independent but related studies, all for unyawed wings, 
exist: References 2 and 3 describe force and limited flow studies of 
delta wings with sharp leading edges; and references 4 to 6 give pressure
distribution and flow studies of delta wings with sharp and round 
leading edges of different relative radii of curvature. Reference 7 
describes a pressure-distribution and flow study through a yaw range 
of a wing with 47.50 of leading-edge sweep and with a sharp leading 
edge . Pressure distributions on a two-dimensional 6-percent-thick 
biconvex airfoil are given in reference 8 . 

S Y M B 0 L S 

CJnventional NACA coefficients, reduced from pressure-distribution 
data neglecting chord force, are referred to the standard stability axes. 
The Z-axis is in the plane of symmetry and perpendicular to the relative 
Wind, the X-axis is in the plane of symmetry and perpendicular to the 
Z-axis, and the Y-axis is perpendicular to the plane of symmetry at the 
quarter chord of the mean aerodynamic chord. 
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p 

p 

section normal-force coefficient (ll.0 p a(~~ 

section lift coefficient (cn cos a) 

section pitching-moment coefficient about Y-axis (cn ' ~c/4) 

section lift-curve slope at cl = 0, per degree 

pressure coefficient 
(

p q- Po) 

wing normal-force coefficient ( J1.0 
\~ -1.0 

wing lift coefficient (CN cos a) 
maximum wing lift coefficient 

wing lift-curve slope, per degree 

angle of attack for CLmax' degrees 

wing pitching-moment ~oefficient (:;vJ 1.0 cm(c:J d(~y 
-1.0 1 

~b/2)) ",ing ( f LO c c 
rolling-moment coefficient l ~ -l-

4 Cay b/2 
-1.0 

local static pressure, pounds per square foot 

f ree-stream static pressure, pounds per square foot 
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reference dynamic pressure at pitot-tube location (fig. 1.), 

pounds per square foot (PV22) 

local dynamic pressure, pounds per square foot (P-V2/) 

velocity at pitot-tube location (fig. 1), feet per 
second 

local velocity, feet per second 

mass density of· air, slugs per cubic foot 

kinematic viscosity, square feet per second 

wing area, square feet 

wing span, feet 

local wing chord, feet 

average wing chord, feet (sib) 

mean aerodynamic chord, M.A.C., reet (~lb/2 C
2dy) 

aspect ratiO, (b2/S) 
angle of att ack, degrees 

angle of yaw, degrees 

Reynolds number ( V ~ c) 
distance along chord from leading edge, feet 
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xc/4 

XC/4 
y 

5 

distance from local center of pressure to c/4 in percent 
of local chord, positive when c/4 is behind 

, (l.0 
J 0 P(0025 

c 

distance along chord from c/4 to c/4, feet 

distance along span from root chord, positive direction 
to the right, feet 

MODELS 

The geometric characteristics and principal dimensions of the three 
low-aspect-ratio pointed wings with 600 sweptback leading edge and varying 
trailing-edge sweep are given in figure 2. The wings, designated 
hereinafter respectively as wings 1, 2, and 3, had 300, 00, and -300 
trailing-edge sweep. All of the wings had 10-percent-thick biconvex 
sections parallel to the plane of symmetry. The aspect ratios 
were 3.46, 2.31, and 1.73, and the angles of sweep of the quarter-chord 
line were 55.20, 52.40 , and 49.10 for wings 1, 2, and 3, respectively. 
A close-up photograph of wing 1 is shown as figure 3(a) and a photograph 
showing wing 3 mounted in the entrance cone is given as figure 3(b). 

Wings 2 and 3 were made of ~-inch sheet brass attached with flush 
32 

rivets to a rigid steel inner structure. Wing 1 was cast of a tin
bismuth alloy with a steel insert for added strength. Approximately 
200 orifices were located on the left semispan of each wing at 7 stations, 
hereinafter designated as stations 1, 2, 3, 4, 5, 6, and 7, which were 
located at 0, 16.7, 33.3, 50.0, 66.7, 83.3, and 91.6 percent of the 
semispan from the plane of symmetry, respectively. The chordwise 
location of the orifices on each wing is given in table I. The wing 
support sting, which served as a conduit for the pressure tubes, was set 
off center on the right semispan and was faired smoothly into the bottom 
surface near the trailing edge, leaving the upper surface clear of any , 
protuberance. 
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T EST S 

The over-all arrangement of the testing apparatus as located just 
inside the entrance cone of the Langley full-scale tunnel is sketched 
in figure 1 and is shown in part by the photograph of figure 3 (b) . The 
wings assumed a wide range of positions in the air stream with varying 
pitch and yaw because the pitch and yaw axes were located 5.3 feet behind 
the wing apexes at * = 0° and ~ = 0°. 

The air - stream angularity and the distribution of q in the entrance 
cone were surveyed with a six-prong yaw-pitch head in a vertical plane 
located 7 inches behind the apexes of the wings at ~ = 0° and V = 00. 
The survey was made in l-foot vertical increments from 5 feet to 10 feet 

1 above the tunnel floor, and in 2 -foot horizontal increments through a 

distance of 4 feet on each side of the wing center lines. 

Orifice pressures over the left semispan were recorded through an 
extensive angle-of-attack range from _10° to well through the stall angle 
for yaw angles of 0°, ±2°, ±4°, ±6°, ±8°, ±100, ±15°, ±200, ±25°, ±300, 
and ±35°. All wings were tested at an approximate airspeed of 55 miles 
per hour or a Mach number of 0.07 and a Reynolds number of 0.57 X 106 for 
wing 1, 0.85 X 106 for wing 2, and 1.14 X 106 for wing 3. Wing 2 was also 
tested for the zero-yaw condition at an airspeed of apprgximately 95 miles 
per hour corresponding to a Reynolds number of 1.42 X lOb in order to 
obtain an indication of the scale effect. Surface-tuft studies were made 
on the three wings at several angles of attack for yaw angles of 00, 10°, 
20°, and 35° and tuft-probing studies were made on wing 2 at zero yaw. 
Extensive smoke studies were made on each wing at yaw angles of 0° and 20° 
to observe the vortex flow. 

RED U C T ION 0 FDA T A 

AIR-STREAM FLOW ANALYSIS 

Resul t s of the entrance-cone survey show that the q7./q ratio 
(ratio of dynamic pressure in the surveyed plane to the reference dynamic 
pressure at the pi tot tube used throughout the tests (fig . 1)) over the 
region occupied by the left semispan of the wings varied throughout the 
yaw and angle-of-attack range from about 0. 87 t o 0.90 (fig . 4). These 
r atios were low primarily because the reference pitot tube wa s in a 
relatively high velocity field; hOHever, the over-all variation in dynamic 
pres sure was of about the same magnitude as reported in reference 9 for 

.' I 

j 
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the test section of the Langley full-scale tunnel. The pitch angularity 
of the air stream in the region of the left semispan did not vary 
materially throughout the angle-of-attack range (fig. 5(a)) although it 
did vary from about 10 at ~ = 350 to 30 at W = -350 • The air-stream 
yaw angularity varied about 1.50 in the area occupied by the left semi
span (fig. 5(b)). The air-stream pitch angle and the local dynamic 
pressure fluctuated noticeably in the lower region of the survey plane. 

The extent to which the indicated asymmetric air flow influenced the 
Wing-pressure data cannot be ascertained reliably. The survey must be 
considered only as an indication of general effect for the survey Was 
taken in just one plane located 7 inches behind the apexes of the wings 
when ~ = 00 and a = 00 , or approximately 0.2c ahead of the mean 
aerodynamic chord of wing 2. A comparison of the pressure distributions 
along the centrally located station I at equal positive and negative 
yaw angles might be expected to give an indication of the magnitude of 
the flow irregularity, especially since station 1 was located on a ridge 
(sp~tion A-A of fig. 2(b)) where the local pressures were sensitive to 
cross-flow velocity components. Because, however, these pressures also 
were very sensitive to minor construction irregularities along the ridge, 
especially to slight asymmetries in the location of the orifices along 
the ridge, such a procedure Was not considered trustworthy. 

CORRECTIONS TO DATA 

A constant stream-angle correction, determined by the zero-lift 
condition at zero yaw, was used throughout the yaw range. Corrections 
for support-sting interference and for tunnel-boundary effects were 
assumed to be negligible for the tests. At ±200 and ±350 yaw, however, 
the pressure data of the SO-percent and 90-percent chord orifices of 
station I on the bottom surface were not used because of noticeable 
support-sting interference. 

The contribution of chord force to the lift and pitching-moment 
coefficients was considered to be small enough to neglect. A represen
tative calculation made for wing 2 at zero yaw and at 24.10 angle of 
attack showed that the greatest increment in the section lift coefficient 
due to chord force was 2.4 percent at station 2, while the over-all wing
lift-coefficient increment was only 1.1 percent. 

The pressure data for all yaw angles were plotted and analyzed, but 
only the results of representative yaw angles are presented in this 
paper. 

j 
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RE S U L T SAN D DIS C U S S ION 

CHORDWI SE PRESSURE DI STRI BUTIONS ~~ FLOW CHARACTERISTICS 

Pressure Distri bu t i ons and Flow Characteristics at Zero Yaw 

Presentation of data .- The zero -yaw chordwise pressure distributions 
of the three wings i nvestigated are plotted in rectangular Cartesian 
coordinates in figures 6 to 11 and in oblique Cartesian coordinates on 
isometric views of the wing plan forms i n part (a) of figures 12 to 26. 
The zero -yaw flow characteristic s as observed by surface tufts are shown 
in part (a ) of figures 27 t o 29 . 

Concept of correlation bet ween pressure distributions and flow.
Each wing semispan di splayed a r egion of relatively high negative 
pressure over the upper surface that was confined to a narrow strip at 
the leading edge f or t he lowest angles of attack. With increasing angles 
of attack the r egion outboard along the semispan progressively swept back 
from the leading edge and inward toward the plane of symmetry; that is, 
the region progressively fanned out over a greater chordwise length . Imme
diately downstream from the high negative pressures was a lower negative
pressure region , whi ch was well defined over the inboard sta tions but which 
spread increasingly ever the outboard se ctions. As substantiated by smoke
flow and tuft -probing studies , these high and low ne gative-pressure regions 
were a ssociated with conical separation vortices. The three-dimensional 
vortices , rotating with the bottom tangential component of velocity toward 
the leading edge , are illustrated schematically in figures 30(a ) and 30(b) 
as observed over wing 2 . The sections outboard along the semispan 
effectively operated at progressively higher resultant angles of attack 
and the resulting higher leading-edge negative pressures at the wing tips 
caused a strong spanwise flow of the low- energy boundary-layer air. 
Observations from a direction parallel to the wing leading edge of a 
narrow jet of smoke issued close to the leading edge gave a representative 
visual interpretation of the chordwise flow such as is sketched in 
figure 30(c) for wing 2 at a = 24.10

• The short-dash line represents 
a stream line at the boundary of the region of rotating turbulent flow. 
The boundary was distinct over the forward part of the turbulent region 
but became less defined farther back. The tuft probing and smoke stUdies 
indicated that the center of vortex rotation and the maximum depth of the 
turbulent region occurred at the chordwise position corresponding to the 
ne gative -pressure peak . Behind the point of maximum thickness, the depth 
of the turbulent flow diminished rather rapidly; and, as the boundary of 
the turbulent region bent toward the wing surface, the value of the 
negative pressure coefficient decreased sharply and approached more 
nearly the free - stream static pressure at the approximate chordwise point 
of contact of the boundary with the wing surface. The position of the 
pressure dip could be defined reliably by tufts when the vortex was strong 
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by establishing a narrow chordwise band where tufts at the wing surface 
were in a state of transition between the undisturbed rearward flow and 
the strong spanwise flow in the separated region of lower pressure. 

Generally the same type of pressure distributions were reported in 
reference 8 for a two-dimensional investigation of a 6-percent-thick 
biconvex section; however, the pressure change following the peak 
negative pressure was not as great as observed in the present three
dimensional investigation. Unpublished data for the two-dimensional 
airfoil (investigated in reference 8) indicate a standing region of 
turbulent separated flow having its greatest depth at approximately the 
position of maximum negative pressure and decreasing in depth farther 
back chordwise where the reduction in negative pressure occurred. 
Measured velocity profiles indicated that the boundary of the separated 
region had the same general contour as the boundary streamline sketched 
in figure 30(c) for wing 2 of the present investigation. yor the two
dimensional airfoil the pressure dip seemed to be just behind the chord
wise location where surface tufts indicated intermittent forward and 
rearward flow. 

Pressure distributions and flow characteristics of wing 2 at zero 
yaw.- In light of the general concepts given in the foregoing remarks, 
the pressure distributions and flow characteristics of wing 2, which are 
typical for all three wings, are discussed in detail. At an angle of 
attack of 4.10 a region of relatively high negative pressure close to 
the leading edge was followed by a region of lower pressure, which 
indicated the presence of a separation vortex along most of the semi span. 
The tip sections at this low angle of attack were more highly loaded 
than the inboard stations. One apparent reason for the higher outboard 
loading was the increasing induced angle of attack along the semispan 
such as would be expected from considerations of potential flow over a 
triangular wing. The areas of relatively high and low negative pressures 
at the short outboard chords were poorly defined (fig. 8). Two possible 
explanations for the characteristic decreasing chordwise pressure change 
outboard from station 4, caused primarily by the weakening of the 
negative-pressure dip behind the vortex, could be (a) an equalization of 
pressure throughout the thickened tip boundary layer and (b) a more 
gradual return of the f10w abGve the turbulent vortex region to the wing 
surface. This gradual return could be caused by the vortex trying to 
sweep back from the leading edge as it does for higher angles of attack. 

With the angle of attack increased to 8.10 , the vortex swept back 
on the wing and became stronger and thus gave sharper distinction between 
the negative-pressure peaks and dips on the wing. The pressure distri
butions of figure 8 indicate that the vortex was approximately at 4, 10, 
15, 30, and 65 percent of the chord of stations 2, 3, 4, 5, and 6, 
respectively. The vortex vas increasingly hard to locate by the pressure 
distributions outboard from station 4 because as the vortex grew larger 
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and as the boundary layer thickened, a less defined peak-negative
pressure region resulted. The pressure distributions indicate station 7 
to be stalled, apparently from leading-edge separation since the vortex 
was behind station 7 at ~ = 8 .10

• Surface tufts, however, showed only 
the usual strong spanwise flow with no visible indication of stall 
(fig. 28 (a)). This same characteristic tuft behavior was noted at all 
angles of attack for the wing area ahead of the vortex. 

Increasing the angle of attack to 14.10 and to 24.10 continued the 
trends of increasing the vortex size and strength and of sweeping it 
back farther from the wing leading edge and inward toward the plane of 
symmetry . The separation vortex at ~ = 24.10 caused a negative
pressure peak at the center station 1. The difference in the pressure 
coefficient from - 3 .0 to -0.4 between the 10-percent and 30-percent 
chordwise orifices of station 2 (0.167 b!2) indicates that the vortex 
was very strong. A pressure coefficient of -2.1 was measured at the 20-
percent chord of station 3 in the peak-negative-pressure region, but at 
station 4 the vortex was relatively parallel to the air stream and too 
large t o influence the att ainment of an outstanding peak-negative-pressure 
coefficient. At a = 24 .10 the vortex at the tip swept inward enough 
toward the plane of symmetry so as not to be behind stations 6 and 7. As 
expected, figure 8(b) shows that these two stations remained stalled; 
however, the negative pressures on the upper surface were considerably 
increased over those at ~ = 14.10

, with the net result that the stations 
developed more lift at a = 24.10 • At ~ = 24.1°, but not at 14.10 , 

surface tufts at stations 6 and 7 indicated decisive stall (fig. 28(a)) 
such as noted for the wing tips of the original- DM-l glider configuration 
with rounded nose in reference 1 and the round-nose delta wings of refer
ence 7, all of which had trailing-edge separation. 

The pressure distributions, smoke-flow observations, and tuft 
studies showed that further increases in the angle of attack merely con
tinued the trends of increasing the size and sweepback of the vortex and 
of increasing the area of outboard stall until at a = 44.10 practically 
the complete wing was stalled. The progression of the regions of rela
tively high and low negative pressure over wing 2 is shown very 
effectively by the pressure distributions plotted over an isometric view 
of the wing in part (a) of figures 17 to 21. 

The pressure distributions, as previously described for a Reynolds 

number of about 0 . 85 X 106 , were essentially unaffected by increasing the 

Reynolds number to 1.42 x 106• The cha~ge in vortex location was 
negli gible as indicated by the pressures; however, the peak pressure 
coeffic i ents were generally higher and small changes in the area of the 
pressure-distribution curves occurred with the increased Reynolds 
number. 
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Comparison of pressure distributions and flow characteristics of 
wings I, 21 and 3 at zero yaw.- The zero-yaw pressure distributions of 
w:Lngs 1 and 3 were quite similar in nature to those of wing 2, although 
three primary differences were evident. First, at comparable stations 
and angles of attack the widths of the negative-pressure peaks and dips, 
measured in percent of chord, increased with aspect ratio with the 
greater successive difference being between wings 1 and 2. For example, 
at ~ = 14.10 the peak-negative pressure in the re gion of the separation 
vortex was at about 12, 8, and 6 percent of the chord of station 2 for 
wings 1, 2, and 3, respectively. Thus at equal angles of attack the 
vortex at any specified station was generally about the same absolute 
distance from the leading edge of each wing. Second, the maximum 
negative pressure coefficient increased with decreased wing aspect ratio. 
As shown in figures 6, 9, and 11, the highest measured pressure cpeffi
cient at station 2 (0.167 b/2) was -2.25 at ~ = 24.10 for wing 1, 
-3.13 at ~ = 34.10 for wing 2, and -3.50 at a = 34.10 for wing 3. 
Third, the extent of tip stall was progressively greater for the wings 
of higher aspect ratio although the boundary-layer-flow tuft diagrams 
of figures 27(a), 28(a), and 29(a) indicate that the flow direction was 
similar for each wing. The pressure distributions of figures 6 to 26 
show the same trend. 

Comparison of theoretical and experimental pressure distributions 
at zero yaw.- Theoretical two-dimensional pressure distributions 
(calculated at equal cI by use of reference 10) are compared with the 
measured distributions for each station at ~ = 4.10 in figures 6, 8 , 
and 10 for wings 1, 2, and 3, respectively. Station 1 for all wings had 
a favorable pressure gradient extending well behind midchord, as is 
predicted by the theory of reference 11. With the exception of the vortex 
region at the leading edge, station 2 exhibited the same tendency to a 
lesser degree. Because the leading edge was swept back, the measured 
stagnation pressures were much less than 1.Oq. For an infinitely long 
600 -sweptback airfOil, the stagnation pressure corresponding to the 
velocity normal to the leading edge should be 0.25q, which may be 
compared with the values of 0.15q to 0.42q measured for the present 
~ngs at ~ = 4.10 • 

Pressure Distributions and Flow Characteristics in Yaw 

Presentation of data.- The effects of yaw angles of 100 , 200, and 350 

on the pressure distributions of the three related wings are presented 
in figures 12 to 26, and the effects on the boundary-layer flow as 
indicated by surface tufts are shown in figures 27 to 29. The pressure 
coefficients for positive wing yaw shown over the isometric view of the 
right semispan in figures 12 to 26 were actually measured over the left 
semispan with the wings at equal negative yaw angles • 

. _ ~~ ______ J 
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Concept of correlation between pressure distributions and flow.-
As observed by smoke-flow studies, the vortex increased in size on the 
trailing semispan but became obscure on the leading semispan as the wings 
were yawed at moderate and high angles of attack. As for zero yaw, the 
pressure distributions on the trailing semispan had negative-pressure 
peaks and dips up to yaw angles of about 200 , which indicated that the 
vortex had the characteristics of the separation vortex as discussed 
for V = 00 • Nevertheless, increasing the sweep of the leading edge in 
yaw gradually transformed the trailing semispan vortex into more of a 
trailing vortex of approximately constant cross-sectional area. Thus 
a t V = 350 there was little evidence of negative-pressure peaks or dips 
on the upper surface of the trailing semispan, which indicated that the 
nature of the vortex was different from that at zero yaw. 

Apparently as the leading edge of the leading semispan was losing 
sweep with increased yaw, the vortex became more clearly defined as 
merely part of the bound (or lifting) vortex system. However, earlier 
tip stall of the leading semispan also occurred in yaw with the result 
that visible indications of the vortex, as evidenced by the smoke-flow 
studies and the pressure distributions, became unnoticeable over the 
outboard sections. 

Pressure distributions and flow characteristics of wing 2 in yaw.
As evidenced by the negative-pressure peaks and dips, the pressure 
distributions for the low angle of attack of 4.10 (fig. 17) indicate 
that the vortex generally moved increasingly forward on the leading 
semispan and rearward on the trailing semispan as the yaw angle increased. 
The pressure distributions over the leading semispan at the highest yaw 
angles approached those indicated by two-dimensional theory for low 
angles of attack. (See fig . 8 for a = 4.10 at V = 00 .) The extreme 
outboard stations of the left semispan were even more highly loaded than 
at zero yaw. The loading on the leading semispan increased and that on 
the trailing semispan decreased in yaw. The airfoil sections parallel 
to the air stream changed with increasing yaw so tha t a t 350 of yaw the 
left semispan leading edge with only 250 of sweep was the leading edge 
of the entire wing, and the region of greatest lift over the· forward 
part of these altered airfoil sections was mostly on the leading semi
span. With increasing sweep of the right semispan in yaw, the peak
ne gative-pressure region at the leading edge became smaller and did not 
exist in the extreme case of V = 350 when the l eading edge had 950 of 
sweep. 

In a reverse manner than that at a = 4.10 , the vortex moved rear
ward on the leading semispan and slightly forward on the traili ng semi
span as the angle of attack was increased to 14.10 (fig . 18 ). (Data 
not presented indicated that at a = 8 .10 the yaw range inves t i gated had 
practically no effect on the vortex location.) An increase in the angle 
of yaw to 100 or more caused tip stall of t he leading semispan a s shown 
by the boundary- layer - flow diagrams of figure 28 . 

-- .~ - - -- --- ---~----



NACA RM L9J07 13 

The same trends in vortex flow shown for ~ = 14.10 were prevalent 
at ~ = 24.10 • The negative-pressure peaks and dips over the leading 
semispan became less pronounced in yaw so that at ~ = 200 they were not 
evident. As discussed in the previous section, two apparent reasons are 
the transformation of the separation vortex to a bound vortex and the 
large extent of outboard stall. A schematic sketch of the vortex flow as 
observed by smoke studies at ~ = 200 and ~ = 200 is given as 
figures 30(d) and 30(e). The smoke studies revealed considerable flow of 
air around the leading edge from the under surface of the trailing semi
span into the top of the large vortex and, therefo~e, indicated that the 
trailing semispan vortex was transfOrming into a trailing vortex. This 
leading-edge flow apparently accounts for the negative values of P on 
the lower surface of the trailing semispan in the leading-edge region 
(fig. 19). When the angle of attack was increased to 34.10 for yaw 
angles of 100 or greater, there was no indication of a vortex on the 
stalled leading semispan as evidenced by the pressure distributions and 
the smoke-flow studies. The large trailing-semispan vortex had the 
chRracteristics of a trailing vortex with essentially a constant cross
seLt ional area along the wing leading edge. There was a very strong flow 
of air around the leading edge into the vortex as mentioned in the 
previous paragraph for ~ = 24.10 • At ~ = 44.10 , visible indications 
of the separation vortex had dissipated and the flow over the wing was 
completely stalled or unsteady for all yaw angles investigated. 

Comparison of pressure distributions and flow characteristics of 
wings 1, 2 and 3 in yaw.- The effects of yaw on wings 1 and 3 were 
quite simiiar to the effects on wing 2. The three principal differences 
among the pressure distributions and flow characteristics of the related 
wings noted at zero yaw generally prevailed throughout the yaw range 
tested. First, for identical stations and equal angles of attack and 
yaw, the vortex was farther back in percent of the shorter chords of the 
wings of higher aspect ratio. Second, the highest negative values of 
the pressure coefficient increased with decreased wing aspect ratio and 
also were higher at moderate yaw angle s than at V = 00 • Thus for 
station 2 of the trailing semispan at ~ = 100 and ~ = 34.1°, pressure 
coefficients of -3.45, -4.l0, and -4.22 were measured for wings 1, 2, 
and 3, respectively. Third, the characteristic more pronounced tip stall 
with increasing wing aspect ratio observed at zero yaw was also evident 
for the leading-semispan tip in yaw (figs. 27, 28, and 29). Peculiarities 
were noted at ~ = 14.1° where wing 3 had more tip stall than wing 2 
for ~ = 200 and as much or more tip stall than both wings 1 and 2 
for ~ = 350 • Contrary to the usual case, station 6 of the leading 
semispan of wing 1 actually unstalled in going from ~ = 200 to ~ 35° 
at ~ = 14.1°. 

Effects of vortex flow on airplane stability and control.- A thorough 
understanding of the flow about a highly swept wing has special 
significance. In parti.cular, if controls were located in the field of 
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influence of a vortex, the growth and development of the vortex flow, a s 
on the triangular wings reported herein, would be expected to have first
order effects on the stability and control of an airplane and also on the 
effectiveness of the controls . As found recently in a low-speed investi
gation of a small - scale wing having NACA 65-006.5 sections (reference 12), 
serious discontinuities in the lift, pitching-moment, and damping coeffi
cient curves occurred for particular installations of outboard vertical 
fins. The significance of these particular results as applied to the 
full-scale wing is not clear at this time due to inadeQuacy of l arge-scale 
information, but evidently the presence of a vortex on a large-scale 
wing, as has been observed for wings having sharp-edge sections, would 
be expected to influence largely the low- speed characteristics of wings 
having outboard fins, nacelles, or other similar protuberances. The 

o 
recent investigation of reference 7 for a wing with 47~ leading-edge 

sweep and with 10-percent-thick biconvex sections has shown the same 
characteristic pressure distributions as described in this paper. 
Although the flow was not investigated in detail on the large-scale wing, 
the presence of a strong vortex was immediately evident in explorations 
of smaller models of the same plan form. 

SECTION LIFT CHARACTERISTICS AT ZERO YAW 

As the angle of attack was increased) the spanwise position of 
maximum c1 and the extent of reduced tip effectiveness moved inboard 

on each wing at a rate increasing with increased aspect ratio 
(figs. 31 to 33). The relatively high tip loading is shown for a = 4.10 , 

as previously discussed, but at a = 8 .10 the tips of each wing incurred 
loss of lift, with the loss being much more severe for the high aspect 
r atio wing 1. 

As shown again effectively in the curves of cl against a of 

figures 34 to 36, this loss of lift accompanying the collapse or move
ment off the wing of the negative-pressure peak occurred more r apidly with 
increased distance from the plane of symmetry of each wing and, as already 
noted, more rapidly for the wings of higher aspect ratio where t he vortex 
swept behind the wing tips sooner. As noted in the section entitled 
"Pressure Distributions and Flow Characteristics at Zero Yaw," t his 
primary tip stall occurred apparently from leading-edge separation but 
did not alter ·the strong spanwise boundary-layer flow as could be 
determined visibly by surface tufts. However, with increa sed wing 
angle of attack the cl values for the outboard stations increased 

again even though the sections became visibly stalled a s evidenced by 
surface tufts. 

- - - - --- -- - - --~- -- ~ -- --~-~ 
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The effect of the flow on the over-all lift characteristics of the 
wings is illustrated by the increased section lift-curve slopes and the 
nonlinearity of the slopes along the span of each wing as given in the 
following table for a = 00 : 

Wing 1 Wing 2 Wing 3 

y 

Station b/2 
R X 106 R X 106 106 

(percent) c7,a c7,a R X cra 

1 0 0.86 0.028 1.28 0.023 1.71 0.014 
2 16.7 .71 .030 1.06 .026 1.43 .015 
3 33.3 . 57 .034 . 85 .027 1.14 .016 
4 50.0 .43 .044 .64 .028 .86 .017 
5 66 .7 .39 .056 .43 .049 .57 .038 
6 83.3 .14 .094 .21 .081 .29 .071 
7 91.6 .07 .120 .11 .103 .14 .090 

The scatter of the data and the insufficiency of low angle-of-attack 
data, except for wing 2, make the fairing of the curves of c7, against 
a in figures 34 to 36 and the determination of Cz values somewhat 

a 
questionable near zero lift. Nevertheless, the data of the preceding 
table are sufficiently reliable to show the trends of increased CIa with 

increased aspect ratio of the related wings. Nonlinear lift curves would 
be expected from considerations of the varying three-dimensional vortex 
and boundary-layer flow. 

SPANWISE-LOAD DISTRIBUTIONS 

At low angles of attack where the separated-flow region near the 
leading edge was small and sharp along the entire span, the lift over 
the wings was close to the theoretical lift and the spanwise-load 
distributions were approximately elliptical for the three wings. How
ever, with increased angle of attack the distributions deviated from 
elliptical curves as an outboard dip and a hump farther inboa~d developed. 
The humps occurred at the spanwise locations where the region of separated 
flow covered a large extent of the chord and effectively gave the airfoil 
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larger camber, thereby producing a higher loadir.g . Farther outboard where 
the separated region covered the entire chord and the boundary layer 
thickened, the sections effectively became stalled, thereby causing the 
aforementioned dip in the span-loading curves. Since the humps and dips 
were a function of the vortex flow, they shifted progressively inboard 
with increased angle of attack . Yawing the wings moved more of the span
wise loading to the leading semispan, especially at low angles of attack 
(figs. 37 to 48). 

The spanwise-loading humps and dips for wing 2 at ~ = 00 are shown 
in figure 41. The spanwise loading at ~ = 4.10 agreed fairly well with 
the Weissinger theoretical loading obtained by use of reference 13, 
although the experimental curve had a hump above the theoretical curve 
outboard from station 4. Study of the basic pressure distributions 
reveals that the hump resulted from the weakening or loss of the negative
chordwise -pressure dip behind the vortex. The humps located at approxi
mately 65 , 60, 30 , 15, 10, and 0 percent of the semispan as the vortex 
swept back at angles of attack of 8 .10

, 14.10
, 24.10

, 32.10
, 36.10

, 

and 44.10 may be attributed mainly to additional camber effects. Yawing 
wing 2 reduced or removed the humps in the loading curves on the t railing 
semispan (figs. 42 to 44) and increased the magnitude of the humps on 
the leading semi span. The loading difference between the two semispans 
was most pronounced for low angles of attack and decreased as the angle 
of a ttack was increased. 

The variation of the spanwise loading with angle of attack and yaw 
followed the same trends for all three wings except that the humps and 
dips tended to be more pronounced for wing 1 than for the other two wings . 
The comparison of the experimental and theoretical loadings for ~ = 4.10 

of wing 3 was much poorer than for the other wings with the experimental 
loading being considerably higher for the center station 1. 

The discrepancy noted between the loading of station 1 in positive 
and negative yaw generally increased with angle of yaw. The increase in 
the pitch angularity of the air stream in the negative-yaw direction, as 
found by the survey, undoubtedly had an appreciable effect in causing 
the loading of station 1 to be generally higher at negative yaw than at 
positive yaw. However, the large discrepancy in the variation among 
wings, especially between wing 3 and the other two wings, seems to indi
cate that the effect of the orifices of station 1 not being located on 
the exact center of the rounded ridge had a greater effect in yaw than 
the flow irregularity as discussed in the section entitled I1Air-Stream 
Flow Analysi s . 11 
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CENTERS OF PRESSURE AT ZERO YAW 

The local center - of -pr essure variatio~ with angle of attack 
(figs . 49 to 51 ) depended primarily upon the change in size, strength, 
and location of the vortex . At a = 4 . 10 the center of pressure was 
generally in the vicinity of the ~uarter chord from station 3 outboard 
except for a slight rearward di splacement from the ~uarter -chord line 
at the outboard spanwise location where the chor dwise negative pressure 
dip behi nd the vortex weakened . Each center -of-pressure curve for higher 
angles cf attack had a rearward displacement with reference to the ~uarter 

chord line, with the most r earward point generally moving inboard as the 
angle of attack was increased. Thi s maximum r earward displacement of 
local center of pressure gener ally occurred at the spanwise location 
where the vortex was on the rear of the section chords. Farther inboard 
for each angle of attack of each wing above 4 . 10 , the local center of 
pressure was closer to or even ahead of the ~uarter -chord line where the 
negative -chordwise-pressure dips behind the vortex were located on the 
rear of the section chords and the negative pressure peaks in the vortex 
region were on the forward part of the chords. The distance from the 
plane of symmetry of the described regions of rearward and forward 
center -of-pressure displacement from the ~uarter -chord line varied 
approximately inversely with the wing aspect ratio . Although its varia
tion with angle of attack was erratic, the center of pressure at 
station 1 was always at a greater percent of the local chord behind the 
leading edge, generally between O. 35c and O.40c, than the center of 
pressure of station 2 . 

At an angle of attack of approximately 40 , as shown in figure 52, 
the l ateral center of pressure of the three wings was about 42 percent 
of the semispan, which is only about 1 percent higher than that predicted 
by the Weissinger theory in reference 13. With increased angle of 
attack there was a gradual inboard movement of the lateral center of 
pressure for each wing as the outboard sections progressively became less 
effective. The distance of the spanwise center of pressure from the 
plane of symmetry varied among the wings basically as an inverse function 
of aspect ratiO, although a greater successive change in position at a 
given angle of attack was noted between wings 1 and 2 than between 
wings 2 and 3 because of the more rapid loss of outboard effectiveness 
for wing 1 as noted in the section entitled "Section Lift Characteristics 
at Zero Yaw." 

j 

J 
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WING FORCE AND MOMENT CHARACTERISTICS 

Lift and Pitching-Moment Characteristics at Zero Yaw 

The lift-curve slopes of the three wings were practically linear 
but increased slightly with aspect ratio below the angle-of-attack range 
of 120 to 140 (fig. 53). At higher angles of attack, however, the slopes 
in contrast decreased with aspect ratio. The values of C

Lmax
' OCLmax' 

and C~ (measured at CL = 0.2) for the three wings and the theoretical 

values of C
La 

(obtained from reference 13 at CL = 0 using the 

Weissinger theory) are presented in the following t able: 

~Imax 
Measured Theoretical 

Wing A CImax CLa, at CL = 0.2 CLa at CL = 0 
( deg) (per deg) (per deg) 

1 3. 46 0.98 34.1 0.043 0.046 
2 2.31 1.16 36.1 .041 .042 
3 1. 73 1.:J,.7 3S . 5 .037 .037 

The experimental values of CL were measured at CL = 0.2 due to 
a. 

insufficient data at zero lift for all three Wings. The experimental 
values agree well with the theoretical values and tend to increase with 
increased wing aspect r atio. A comparison is made in figure 54 of the 
lift of wing 2 at Reynolds numbers of 0.85 X 106 and 1.42 X 106 with 
that of the large-scale wing of reference 3 (identical in plan form and 
section to wing 2) at a Reynolds number of 2.91 X 106. The wing of 
reference 3, which had negligible scale effect from Reynolds numbers of 
2.91 X 106 to 9. 61 X 106, generally had a slightly higher lift-curve 
slope than wing 2 and a more gradual stall at a lower C~ax (1.08) and 

~L 
max 

Consistent with these trends, increasing the Reynolds 

number of wing 2 increased the lift-curve slope except at low angles of 
attack and produced a more gradual stall. The inclusion of the l.l-percent 
increment in CL due to chord force mentioned in the section entitled 

"Corrections to Data" for wing 2 at a. = 24.10 and R = 0. S5 X 106 
would give better agreement than noted in figure 54 . 

. ---~-- -- -- -- ---- --~- ---'---------~~ 
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The longitudinal stability of the three wings increased slightly 
with aspect ratio between lift coefficients of about 0.15 and 0.4; how
ever, above that lift coefficient the longitudinal stability decreased 
with increased wing aspect ratio (fig. 55). Wings 2 and 3 had good 
stability throughout the CL range including a stable break at stall. 

Although wing I had a stable break at the stall, it had a strong 
destabilizing shift in the pitching-moment curve at about CL = 0 . 6, 
where the rapid loss of outboard lift was noted. The excellent agreement 
between the longitudinal stability of wing 2 and that for the comparable 
large-scale wing of reference 3 again illustrates the validity of the 
low Reynolds number data for configurations having sharp-edged sections. 

Lift and moment characteristics in yaw. - The effect of yaw on CL, 
Cm, and Cz of the three wings is given in figures 56 to 58. As is 

the case for convention~.l wings, the decrease in CL with yaw was more 

pronounced as the angle of attack increased. Also the decrease in CL 
with yaw was generally greater for all angles of attack as the wing 
aspect ratio increased. The general effect of yaw on the curves of CL 
against a (figs. 27 to 29) was to decrease t~e lift-curve slope and 
make it less linear and to broaden and lower the curve in the region of 
CLmax' The trends of decreasing CLmax and increasing CLa with 

increased wing aspect ratio noted at zero yaw also generally prevailed 
in yaw. The effect of angle of yaw on Cm was insignificant for all 
wings. The variation of Cz with yaw was erratic, but generally at 
W = 00 it indicated dihedral effect which varied from positive or 
approximately zero values at low angles of attack to strong negative 
values as the angle of attack increased to acLmax' For angles of yaw 

greater than about 100 , the dihedral effect generally increased negatively 
with yaw for all wings in the angle-of-attack range investigated below 
stall. 

SUM MAR Y 0 F RES U L T S 

The significant results of the low-speed pressure-distribution and 
flow investigation of three small-scale low-aspect-ratio pointed wings 
having 10-percent-thick biconvex sections, 600 sweptback leading edge, and 
00 , 300 , and -300 trailing-cdge sweep may be summarized as follows: 

1. At zero yaw each wing had conical separation vortices that 
emanated in the region of the apex and increased in size and were swept 
back farther from the leading edge along the span as the angle of attack 
was increased. Flow observations showed that the center of vortex rota
tion coincided with the maximum depth of a region of turbulent 
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separated flow and with a nega t i ve pr essure peak. Behind the center of 
vortex r otation a negative -pressure dip occurred as the depth of the 
turbulent r egion diminished r ather r ap idly . 

2 . In yaw at moder ate and high angles of attack, the vortex increased 
in size and assumed the characteristics of a trailing vortex on the 
trailing semispan but appar ently transformed into a bound vortex on the 
leading semi span . 

3. The pr essure distribut ions and flow characteristics of the 
three wings were simil ar i n nature except that (a) the regions of 
incr eased and decr ea sed negati ve pr essure extended farther, in percent 
of chor d, at comparable spanwise s t ati ons of the wings with higher aspect 
ratio because the vortex locat ion wa s generally about the same abso~ute 
distance f r om the leading edge of each wing at equal angles of attack 
and yaw, (b) the highest nega t i ve pressure coefficient decreased with 
increasing wing aspect ratio , and (c) the area of decreased tip effective
ness increased with wing aspect ratio. 

4. At low angles of attack and zero yaw, the spanwise-load distri
butions agreed fairly well with those predicted by the Weissinger 
lifting-line theory . With increasing angle of attack, however, the 
center of semispan loa ding shifted inboard because of the increasing 
extent of the stalled area at the tip and because of the development 
of a pronounced hump in the spanwise-loading curve just inboard of the 
stalled area. The inboard movement of the semispan center of pressure 
was generally greater for the wings of higher aspect ratio. 

5. Yawing the wings shifted more of the spanwise loading to the 
leading semi span, especially a t low angles of attack. 

6. The local chordwise center of pressure at zero yaw was 
generally at about 35 to 40 percent of the chord at the plane of 
symmetry. Out wa r d a long t he span from the pla ne of symmetry at each 
angle of attack the center of pres sure was first closer to or even 
ahead of the quarter-chord line where the vor tex was on the for war d part 
of the chord and then finally farther be hind t he quarter-chord l ine near 
the midspan as the vortex moved to t he r ear of the wing. 

7 . The wing l ift-curve slopes i ncreased and the values of maximum 
lift coefficient decreased with increased wing aspect r atio. 

8 . All wings had a s table pitching-moment br eak a t stall , but for 
lift coefficients above 0.4 t he longitudinal stabi l i ty de'creased with 
aspect ratiO, especially for the highest aspect-ra tio wing . 
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9. The lift and pitching moments of the wing with zero-t r ailing
edge sweep agreed remarkably well with those published in NAC A 
RM L8G 05 for a comparable l ar ge - scale wing . 

Langley Aeronautical Labora tory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va. 
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TABLE 1. - LOCATION OF wmJ ORIFICES 

.Orifice location, percent chord 

Wing 1 Wing 2 

Station 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 

~ 0 0.167 0.333 0.500 0 .667 0.833 0.916 0 0.167 0.333 0.500 0.667 0.833 0.916 0 
Surface 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -----
1.25 1.25 ----- ----- ----- ----- ----- 1.25 1.25 ----- ----- ----- ----- ----- 1.25 
2.50 2.50 2 .50 2.50 .! 2.50 ----- ----- 2 .50 2 .50 2.50 2 .50 2.50 ----- ----- 2.50 
3.75 3.75 -----

_____ 1 _____ ----- ----- 3.75 3.75 ----- ----- ----- ----- ----- 3.75 
5.00 5 .00 5 .00 5 ·00 5·00 5 .00 5 .00 5 .00 5.00 5 ·00 5.00 5.00 5·00 5.00 5.00 

----- 6.25 ----- -7~;~ / ===== 
----- ----- 6 . 25 6.25 ----- ----- ----- ----- ----- 6.25 

7 . 50 7.50 7.50 ----- ----- 7.50 7 .50 7. 50 7·50 ----- ----- ----- 7.50 
10.00 10.00 10.00 10.00 I 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10 .00 ----- ----- 10.00 
----- 12.50 12.50 ----- ----- ----- ----- 12. 50 12. 50 12.50 ----- ----- ----- ----- 12.50 

Upper 15.00 15.00 15·00 15 .00 15 ·00 15.00 15.00 15.00 15 .00 15.00 15.00 15.00 15 .00 ----- 15.00 
20.00 20.00 20.00 20 .00 20.00 20.00 20.00 20 .00 20 .00 20.00 20.00 20.00 20.00 20.00 20.00 
30.00 30.00 30 .00 30.00 30 .00 30.00 30 .00 30.00 30.00 30 .00 30.00 30 .00 30.00 ----- 30.00 
40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 
50 .00 50.00 50 .00 50.00 50 .00 50 .00 50 .00 50 ·00 50.00 50.00 50·00 50.00 50.00 ----- 50.00 
60.00 60.00 60.00 60 .00 60 .00 60.00 60.00 60.00 60 .00 60.00 60.00 60.00 60. 00 60.00 60.00 
70 .00 70 .00 70 .00 70.00 70.00 70.00 70 .00 70.00 70 .00 70.00 70.00 70.00 70.00 ----- 70.00 
80 .00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80 .00 80.00 80.00 80.00 80.00 80.00 80.00 
90.00 90.00 90.00 90.00 90.00 90·00 90.00 90·00 90.00 90.00 90.00 90.00 90.00 ----- 90.00 
95.00 95.00 95.00 95 .00 ----- 95.00 95 .00 95.00 95.00 95.00 95.00 95.00 95·00 95.00 95.00 

1.25 1.25 ----- ----- ----- ----- ----- 1.25 1.25 ----- ----- ----- ----- ----- 1.25 
2.50 2.50 2.50 2.50 2.50 ----- ----- 2 .50 2 . 50 2.50 2.50 2.50 ----- ----- 2.50 
3.75 3.75 ----- ----- ----- ----- ----- 3·75 3. 75 ----- ----- ----- ----- ----- 3.75 
5.00 5.00 5 ·00 5.00 5.00 5.00 5.00 5. 00 5.00 5.00 5.00 5.00 5·00 ----- 5.00 

----- 6.25 ----- ----- ----- ----- ----- ----- 6.25 ----- ----- ----- ----- ----- 6.25 
7.50 7.50 7.50 7.50 ----- ----- ----- 7.50 7.50 7.50 7 .50 ----- ----- ----- 7.50 

10.00 10.00 10.00 10.00 10.00 10 .00 10.00 10.00 10.00 10.00 10.00 10.00 .---- 10.00 10.00 
----- 12.50 12.50 ----- ----- .---- ----- 12.50 12.50 12.50 ----- ----- ----- ----- 12.50 

Lover 15.00 15.00 15.00 15 .00 15.00 I 15.00 15. 00 15.00 15.00 15 .00 15.00 15.00 15.00 ----- 15 .00 
20.00 20.00 20 .00 20 .00 20 .00 20.00 20.00 20.00 20.00 20 .00 20.00 20.00 20.00 ----- 20.00 
30.00 30.00 30.00 30 .00 30 .00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 
40.00 40.00 40.00 40.00 40.00 , 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 ----- 40.00 
50.00 50.00 50.00 50 .00 50 .00 150.00 50 .00 50.00 50.00 50 .00 50.00 50 .00 50 .00 50;00 50.00 
60 .00 60.00 60.00 60 .00 60 .00 60 .00 60 .00 60.00 60 .00 60.00 60.00 60.00 60 .00 ----- 60 .00 
70.00 70 .00 70 .00 70 .00 70 .00 70.00 70 .00 70.00 70.00 70.00 70.00 70.00 70 .00 70.00 70.00 
80 .00 80.00 80.00 80.00 80 .00 180 .00 80 .00 80 .00 80.00 80 .00 80.00 80 .00 80 .00 ----- 80 .00 
90.00 90.00 90.00 90.00 90 .00 / 90.00 90.00 90.00 90.00 90.00 90·00 90.00 90.00 90.00 -----

- - - --

Wing 3 

2 3 4 

0.167 0.333 0.500 

----- ----- -----
1.25 ----- -----
2.50 2.50 2.50 
3.75 ----- -----
5 .00 5.00 5·00 
6.25 ----- -----
7.50 7.50 7.50 

10.00 10.00 10.00 
12.50 12.50 -----
15.00 15.00 15.00 
20 .00 20.00 20.00 
30.00 30.00 30 .00 
40 .00 40.00 40 .00 
50.00 50.00 50 .00 
60.00 60.00 60.00 
70.00 70 .00 70.00 
80.00 80 . 00 80.00 
90.00 90.00 90.00 
95.00 95.00 95.00 

1.25 ----- -----
2·50 2.50 2.50 
3.75 ----- -----
5.00 5.00 5.00 
6.25 ----- -.---
7 .50 7.50 7.50 

10.00 10.00 10.00 
12.50 12·50 -----
15·00 15.00 15·00 
20.00 20.00 20.00 
30.00 30.00 30.00 
40.00 40.00 40.00 
50.00 50.00 50.00 
60.00 60.00 60.00 
70.00 70.00 70.00 
80.00 80.00 80.00 
90·00 90.00 90.00 

5 6 7 

0.667 0.833 0.916 

----- ----- -----
----- ----- -----
2.50 ----- -----
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Figure 2.- Geometric characteristics of wingE tested. All dimensions 
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(a) Close-up view of wing 1. 

Figure 3.- Wings and test apparatus. 
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(b) Three-quarter rear view of wing 3 mounted in tunnel; 1\1 = 0°, a. = 10° . 

Figure 3.- Concluded. 
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Figure 19.- Pressure distribution about wing 2 at various angles of yaw; 
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(a) Three -dimensional top view normal 
to plane of chord lines; a: = 20
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(b) Three - dimensional rear view parallel 

to air stream; a=20o
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Figure 30.- Typical vortex flow as observed by smoke-flow and 
tuft-probing studies over wing 2. 
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