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B RESEARCH MEMORANDUM

AN INVESTIGATION AT LOW SPEED OF A LARGE—SCALE TRIANGUIAR
\ WING OF ASPECT RATIO TWO.— III. CHARACTERISTICS OF
WING WITH BODY AND VERTICAL TAIL

By Adrien E. Anderson

| SUMMARY

\ An investigation has been made to determine the aerodynamic
characteristics in sideslip of a triangular wing of aspect ratio 2.04

‘ in combination with a body of fineness ratio 12.5 and a vertical tail
surface, The airfoil section was a modified symmetrical double wedge

\ with a maximum thickness of 4.76 percent. TForce and moment data were
obtained at several angles of sideslip for various deflections of

J constant—chord split flaps, semispan split—flap—type ailerons, and a

constant—chord rudder. The Reynolds number, as based on the mean aero—

dynamic chord, was approximately 15.4% x 10° and the Mach number O} 3121

The results of this investigation show that the body combined with
/ the triangular plan—form wing caused no sizable changes in the 1lift
characteristics of the wing and caused only a l—percent decrease in the
{ static margin. Flap 1ift and pitching—moment effectiveness decreased
proportional to the decrease in flap area caused by the addition of the
‘ body. The wing with body and vertical tail exhibited positive dihedral
| effect throughout the 1lift range. Directional stability, however,
decreased with increasing lift and the model became directionally
( unstable at high 1ift coefficients. In contrast, rudder effectiveness
remained nearly constant throughout the 1ift range. The contribution
‘ of the vertical tail to the directional stability and the rudder yawing
J effectiveness could be predicted with reasonable accuracy at zero wing
11PE,

INTRODUCTION

A general study of triangular—plan—form wings has been undertaken
‘ in the Ames 40— by 80—foot wind tunnel to determine their character—
istics at low speed and large scale. The study of such a plan form
| having a symmetrical double—wedge airfoil section was reported in
. reference 1. An investigation into the effects on the longitudinal
characteristics of airfoil-section modifications was carried out and
‘ reported in reference 2, This report, the third of the series, contains
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the results of the investigation into the effects of sideslip on the
characteristics of the wing alone, the wing plus body, and the wing plus
body and vertical tail.

NOTATION

The standard NACA coefficients and symbols used within this report

are defined as follows and in figure 1:

ol

CL

Cp

aspect ratio < >

wing span, feet
wing chord, measured parallel to air stream, feet

mean aerodynamic chord, measured parallel to air stream

fb/a
b/ feet
2

1ift coefficient lift
qS

drag coefficient <dr:g>
a

(Drag, as used herein, is defined as the component of the
resultant force acting along the X axis, fig. 1.)

increment of drag coefficient due to wind—tunnel—wall inter—
ference

side—force coefficient <fidquorc€>

(side force, as used herein, is defined as the component of
the resultant force acting along the Y axis, fig. 1.)

. pitching moment
pitching—moment coefficient < >

qSc

rolling—moment coefficient <f0111n§bmoment>
q

yawing-moment coefficient (yawing moment )

gSb
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» Cy rate of change of rolling—moment coefficient with sideslip,

B per degree
§ CnB rate of change of yawing—moment coefficient with sideslip,
per degree
CnB rate of change with sideslip of yawing—moment coefficient
t contributed by the vertical tail, per degree
CYB rate of change of side—force coefficient with sideslip, per
degree
CNat rate of change of tail normal~force coefficient with tail
angle of attack, per degree
F ratio of exposed rudder area to total rudder ares
] tail length, feet
L/D lift—drag ratio
q free—stream dynamic pressure, pounds per square foot
i dt dynamic pressure at tail surface, pounds per square foot
S S wing area, square feet
St vertical taill area to the body center line, square feet
v free—stream velocity, feet per second
Vv velocity component at tail due to separation vortices, feet
per second
VR resultant velocity at tail, feet per second
Yy spanwise distance, outboard from wing center line, feet
a free—stream angle of attack, degrees
Qi increment of angle of attack due to wind-tunnel—wall inter—
ference, degrees
ag angle of attack of vertical tail surface, degrees
B angle of sideslip, degrees
’ Og, split—flap—-type aileron deflection, measured perpendicular to

hinge line, degrees

(Subscripts L and R designate left and right aileron,
respectively.)
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of split—flap deflection, measured perpendicular to hinge line,
degrees

Op rudder deflection, measured perpendicular to hinge line,
degrees

day,

rate of change of angle of attack of the vertical tail with
ddr rudder deflection for constant tail normal—force coefficient
o increment of tail angle of attack above that due to the angle
of sideslip, produced by sidewash at the tail, degrees

EQUIPMENT

The principal dimensions of the model are given in figure 2(a) and
table I. The airfoil section of the wing, taken in the streamwise direc—
tion, was developed from a symmetrical double—~wedge airfoil section as
described in figure 2(b). Coordinates for the body of fineness ratio
12.5 used in this investigation are presented in table II. The vertical
tail had a symmetrical double—wedge airfoil section with a maximum
thickness of 5—percent chord at 50-percent chord., Split—flap—-type
control surfaces were used on the wing, negative flap deflections being
obtained by placing the flaps on the upper surface of the wing. A gap
was produced in the span of the flaps by the presence of the tail boom
used with the wing—alone model.

The photographs of figure 3 show the model as mounted in the Ames
Lo— by 80—foot wind tunnel.

TESTS AND CORRECTIONS TO DATA

Force and moment data were obtained through the angle—of—attack
range at various angles of sideslip for the wing alone, wing plus body,
and wing plus body and vertical—tail configurations as outlined in
table IITI. The investigation was conducted at a dynamic pressure of
25 pounds per square foot, which corresponds to a Mach number of approxi—
mately 0.13 and a Reynolds number of approximately 15.4 X 10° based on
the mean aerodynamic chord.

The force and moment data are presented with reference to the
stability axes with the origin located at the half—chord station of the
root chord of the modified wing. The latter point corresponds to the
same longitudinal station as the quarter—chord station of the mean aero—
dynamic chord.

All of the force data have been corrected for air—stream inclination
and for wind—tunnel-wall effect, the latter correction being that for a
wing of the same span having elliptic loading but with an unswept plan
form. The following corrections were applied:
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Qp = 0.719 CL
Cpp = 0.01255 C12

Drag and pitching-moment tares resulting from strut interference,
based on tares obtained with a rectangular wing, were applied to the
data,

RESULTS AND DISCUSSION

The basic results are presented in figures 4 to 19 and are summa—
rized in figures 20 to 28.

The discontinuities which will be noted in the force and moment
curves for the wing—alone model (figs. 4 to 6) correspond to those which
were a characteristic of the model with the double—wedge airfoil section
(reference 1), Discussion of these discontinuities and of the flow over
triangular wings will be found in references 1, 2, and 3.

Longitudinal Characteristics

Lift.— The body added to the triangular wing supported a lift equal
to the 1lift normally carried by the wing area it covered, That this was
the case can be seen by a comparison of the 1lift curve for the flaps—
undeflected condition of the wing alone (fig. 4(a)) with the 1lift curve
for the flaps—undeflected condition of the wing plus body (fig. 7(a)).
The lift—curve slope through zero 1lift in each case was 0.039 per degree.
The value of Clpsx for the wing-elone model was 1.34. 1Interference of
the body nose with the top of the wind—tumnel test section made it
impossible to reach the angle of attack for C of the wing—body
model. However, the near coincidence of the two fift curves up to within
29 or 3° of the angle for maximum 1ift (of the wing alone) makes it
appear likely that there was little or no change in the value of CLmax
when the body was added.

Pitching moment.~ The addition of the body to the wing caused only
a slight forward shift of the aerodynamic-center location. The slopes
of the pitching-moment curves (slopes taken over the lift—coefficient
range between O and O.4 in figs. U4(c) and 7(c)) indicate a shift of the
aerodynamic center from 38.5 to 37.2 percent of the mean aerodynamic
chord. This shift is about one—quarter the amount computed by adding
body~alone data, obtained in the Ames 40— by 80~foot wind tummel, to
the wing—alone data.

Split—flap effectiveness.— In general, the flaps produced 20 per—
cent less 1lift with the body on than with the body off. It is of
interest to note that the decrease in flap effectiveness was in pro—
portion to the decrease in flap area (20 percent) rather than to the
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decrease in wing area influenced by the flap (a 32—percent decrease).

It has been noted also, from the data in reference 4, that a decrease
occurred in flap lift effectiveness proportional to the decrease in flap
area for a plain flap on a wing of triangular plan form.

It is believed that there was no carry—over of flap 1lift effective—
ness across the body. The incremental span load distribution due to
deflecting a plain flap was found, from an investigation conducted in
the Ames 40— by 80—foot wind tunnel, to be nearly elliptic in form for a
wing—elone model. The portion of the loading for that region of the
wing which would be occupied by the body was removed from the loading
diagram. The change in the load was found to be very nearly 20 percent
of the total load. This agrees with the change found by the force test
reported herein and would indicate little or no carry—over of lift due
to flap deflection.

It should also be noted that, as reported in reference 1, the varia—
tion of 1lift with flap deflection was nonlinear, and the variation was
found to be dependent upon the flow conditions over the wing; for
example, whether the angle of attack was above or below the angle for
the break in the 1ift curve. (In fig. 20, the angles of attack of 0°
and 8° represent values below the break while the angles of 19° and 24°
represent those above.)

It appears from the lift curves of figure h(a) that split flaps are
of little or no value as a means of increasing Clmax' Large flap
deflections resulted in a reduced value of Clmax

The pitching—moment effectiveness of the flaps is represented in
figure 21 by the increments of pitching-moment coefficient due to a
given flap deflection for the same angles of attack at which the 1ift
increments were presented in figure 20. The change in the increment of
pitching moment, due to the addition of the body, was also found to be
nearly proportional to the change in flap area.

Lift—drag ratios.— Adding the body to the wing reduced the
(L/D)max Value from 11 to 8.5. (See fig. 22(a).) At the same time the
1ift coefficient for (L/D)max Wwas raised from 0.15 to 0.20. Both these
effects would be expected due to the added drag of the body. The effect
of flap deflection on the L/D values for the wing plus body model is
presented in figure 22(b). With the controls deflected up, as needed
for trim, there was an appreciable loss in L/D throughout the entire
1ift range.

Lateral and Directional Characteristics

Iateral and directional stability.— The stability derivatives pre—
sented in figure 23 represent the slope through zero angle of sideslip
of the curves of (i3, Cn, and Cy as functions of (C1, constant). It
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was pointed out in reference 1 that the variation of these coefficients
with sideslip was not always linear for the triangular wing with the
sharp leading edge, particularly at the higher 1ift coefficients. Sample
curves of Cj3. Cpn, and Cy versus sideslip angle for the models reported
herein are presented in figure 24. While some nonlinearities exist,

they are not as severe as for the wing with sharp leading edge.

All three model configurations had a positive dihedral effect as
will be seen from figure 23. When the body was added, C;, became more
negative, particularly at the higher values of Cy,. On the other hand,
Ci1p Dbecame more negative at the lower values of Cp, with the addition
of the vertical tail.

The wing alone was directionally stable up to the stall and the
addition of the vertical tail overcame, up to a C1 of 0.7, the direo—
tional instability caused by the body. Between a Cp, of 0.7 and 1.1,
however, the directional stability of the model with body and tail
decreased to zero and, by the time wing stall was reached, was consider—
ably negative, This loss in directional stability is traceable to the
increments of yawing—moment coefficient contributed by the vertical tail.
Above a Cy, of 0.7 these increments decreased to nearly zero at a rate
which increased with angle of sideslip. (See fig. 25.) Such a loss in
directional stability is apparently connected with the effect on the
vertical tail of the separation—vortex type of flow which exists over
this wing. (Consult reference 3 for a description of the separation
vortices.) That it was not connected with a loss in dynamic pressure
at the tail is indicated by the rudder—effectiveness data as will be
discussed later.

The influence of the separation vortices on the angle of attack of
the vertical tail may very well account for the loss in tail effective—
ness. The pattern of the separation vortices over the wing in sideslip
is shown in figure 26(a). The apparent point of origin of the separa—
tion vortices moves inboard with angle of attack. In side view, the
vortices form an angle with respect to the chord plane of the wing. The
magnitude of this angle is approximately one—third of the angle of
attack of the wing, Thus, in the view looking upstream (fig. 26(b))
the vertical displacement of the vortices, back at the tail, increases
with increase in wing angle of attack. The vortex on the right side
moves closer to the plane of the vertical tail than does the vortex on
the left, for the model is in positive sideslip and hence the vortices
are under the influence of the free—stream air flow from the right.

The effective angle of attack on the upstream panel of a triangular
plan~form wing in sideslip is greater than that on the downstream panel.
Consequently, the strength of the vortex on the right in figure 26(b)
will be greater than that of the one on the left for a given wing angle
of attack. Above the core of the vortices and in the plane of the
vertical tail, then, there will be a velocity component to the left
which is the resultant of the velocity vectors from the two vortex flows.
Below the core of the vortices there will be a velocity component to

the right.
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Consideration is now given to the velocity vectors on two sectioms
of the vertical tail: one near the top of the tail (fig. 26(c)) and
one near the base (fig. 26(d)). The angle of attack of the section near
the top of the tail increases with increases in the angle of attack of
the wing. It is quite likely, therefore, that this section stalls, if
it were not stalled initially. (It was shown in reference 3 that the
tips of triangular plan—form wings stall at a very low angle of attack.)
On the section near the base of the tail, the component of velocity
contributed by the vortices reverses direction with increase in angle of
attack of the wing. As a result the angle of attack of this section of
the tail decreases with a consequent loss in side force produced by the
tail. The influence of the separation vortices appears, therefore, to
account for the loss in tail effectiveness with increasing 1ift coeffi-—
cient,

Rudder effectiveness.— The increments of Cj, Cp, and Cy per
degree of rudder deflection were found, on the basis of a 10° rudder
deflection, to be essentially independent of sideslip up to a Cy, of
0.7 (fig. 27). Above this value of Cy, the curves for constant values
of the sideslip angle are no longer coincident, particularly at the
larger angles of gideslip. It is of interest to note that there was no
loss in rudder effectiveness. This is in contrast to the loss of
effectivenegs of the vertical tail when the model was at high 1ift coef—
ficients and would indicate that there was apparently no serious loss
in dynamic pressure at the tail.

Aileron effectiveness.— Although adding the body to the wing
reduced the flap area considerablv, the moment of the flap area about
the fuselage center line decreased only negligibly. Thus, the increment
of rolling moment per degree of aileron travel was nearly the same for
the wing plus body as for the wing alone. (See fig. 28.) 1In both cases
the ailerons were deflected approximately equal amounts in the direction
to give positive roll. Rolling effectiveness decreased with both
increasing Cy, and p. The yawing—moment curves of the same figure
indicate the existence of a small amount of adverse yawing moment which
increased with 1ift coefficient, but was little affected by sideslip
below 0.9 Cy,. Certain of the curves of figure 28 exhibit nonlinearities
near the stall, a characteristic similar to that reported in reference 1.

Estimation of Tail and Rudder Effectivenesses

It has already been pointed out that the tail on this model did not
provide directional stability at high 1lift coefficients. It is of
interest, however, to determine if the directional stability and rudder
effectiveness can be predicted when the model is at zero 1lift.

The contribution of the vertical tail to the directional stability
of the model can be expressed as follows:
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St do \ 9t
Cpn, = Oy, '—= e 80 06 1
e Nd'tSb< ag/ a (1)

The equation to predict rudder effectiveness is

dCn dat -, St 1 9t
— ==2C —= F — = 2

The major problem in applying these two equations is in selecting
the effective area and aspect ratio of the vertical tail. For most
conventional airplane designs the methods of selection have been fairly
well established. These methods do not appear applicable, however, to
designs similar to the type under discussion. For this type, it is
believed that the effective tail area extends to the fuselage center
line. With a complete end—plate effect, as in the case where the wing
trailing edge extends beyond the tail trailing edge, the tail area
covered by the fuselage should be fully effective. This is indicated
by the fact that a similar area of the wing was found to be fully
effective. With the present wing—tail arrangement, this area of the
tail was probably somewhat less fully effective; that is, the effective
aspect ratio was somewhat less than twice the geometric aspect ratio.

The actual value could not be established without recourse to the exper—
imental data., The increment of Cy, due to the tail, expressed in terms
of the tail lift—curve slope and compared with theoretical values for
triangular wings (reference 5), indicates that the effective aspect ratio
was 1.3.

With effective tail area and aspect ratio established, the values
of the other factors in the two equations were then selected. The
value of the tail length 1 1in equation (1) was taken as the distance
from the model moment center to the theoretical center of pressure of
the tail (reference 5); for equation (2) the distance was to the rudder
hinge line, The value of do/dp was assumed zero and qi/q was assumed
to be unity, since the wing was at zero lift and the fuselage effect was
considered negligible. The value of dat/dﬁr was assumed to be the
same as that measured on a triangular wing of aspect ratio 2 (refer—
ence 4), which had the same geometrical relation between flap and wing
as between rudder and tail in the present case. This value was reduced
by the factor F of equation (2) or the ratio of the exposed rudder
area to the total rudder area.
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The following values were thus substituted in the two equations:

0.
CNey, 027
dat .62

ddy

F .845
St/s .218
1/b (equation (1)) 525
1/b (equation (2)) <L
do 0

dg

ay/a 1.00

The computed and experimental values compare as follows:

C dCp/dd
nBt n/ i
Computed 0.0031 —0.0023
Experimental .0032 —.0025

The agreement between the computed and experimental values is thus
satisfactory for zero angle of attack and would probably remain satis—
factory until the angle of attack is reached at which the flow due to
the separation vortices begins to have a strong influence upon the tail
characteristics.

CONCLUDING REMARKS

The results of this investigation show that the body combined with
the triangular plan—form wing caused no changes in the 1ift characteris—
tics of the wing and caused only a l-percent decrease in the static
margin, Flap lift and pitching—moment effectiveness decreased propor—
tional to the decrease in flap area caused by the addition of the body.
The wing with body and vertical tail exhibited positive dihedral effect
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throughout the 1lift range. Directional stability, however, decreased
with increasing 1lift and the model became directionally unstable at high
1ift coefficients. Rudder effectiveness, on the other hand, remained
nearly constant throughout the 1ift range. The contribution of the
vertical tail to the directional stability and the rudder yawing effec—
tiveness could be predicted with reasonable accuracy at zero wing 1lift.

Ames Aeronautical Laboratory,

National Advisory Committee for Aeronautics,
Moffett Field, Calif.
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TABLE I.— GEOMETRIC DATA OF MODEL USED IN THE INVESTIGATION

Wing with
Item Wing alone body and
vertical tail
Wing
Span, feet 25.00 25.00
Area, square feet 307 307
Area exposed outside of
fuselage, square feet —_—— 211
Mean aerodynamic chord, feet 16.37 16237
Angle of incidence, degrees —-—— 0
Aspect ratio 2.0k4 2.0k4
Body
Length, feet —_— 56.16
Maximum diameter, feet - L, 49
Fineness ratio - — - 12750
Ratio of maximum diameter to
wing span - —— 0.18
Split—flap—type controls
Semispan, feet 10.83 8.70
Total area, square feet 57.80 46,46
Total wing area affected by
control surface, square feet 301.5 20DleD
Vertical tail
Total area to body center line,
square feet - 66.90
Aspect ratio (total) - — - 1.00
Rudder area (exposed), square
feet _—— 11.50
Rudder area (total), square
feet - 13.62
Tail length (c/4 to tail
center of pressure), feet - 13 41
Tail length (c/4 to rudder
hinge line), feet - — = 18.52

‘Z@E@&;F’
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TABLE II.— BODY COORDINATES
[Stations and radii are in percent
of the total length. ]

Station Radius
0 100.00 0
.625 99.375 .26
1.25 98.75 T
2.50 97.50 1)
5.00 95.00 1.15
T+D0 92.50 1.54
10.00 90.00 1.86
& 15.00 85.00 2.4
20.00 80.00 2.86
g 25.00 1500 3.22
30.00 70.00 3.91
35.00 65.00 3.73
40.00 60.00 3.88
45,00 55.00 3.97
50.00 R —— k.00

é
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TABLE III.— SUMMARY OF CONFIGURATIONS INVESTIGATED

Deflection (deg)
Angle of Deflection of Data
Figure sideslip split flaps Left Right Rudder presented
(q._gs) i deg ) aileron aileron
Wing alone
-22.0
0
+ 9+9 21.2 - == === .
bl o p
—eg.o C1, v8 CC}‘Z‘
12.1 ——— —_— A
? 21,2 Cn
k.0 Cy
6 120’2 - 11.7 -11.3 - ==
Wing + body
—20.7
-10.8 -3
T 0.0 0 —_—— - i CL vs Cp
20.4 Cn
45.4
0.0
6.0
8 12.0 Soc Sk SIS =
15.9
0.0
6.0 e
9 12.0 =i - -
5.
5.9 «
0.0 Cp
10 6.0 20.4 S S ——— | cpvalm
12.0 L " cy
15.9 Cn
0.0 Cy
11 lg'g 15,4 == S -
15.9
10.8 (o]
12 0.0 - o°® 0 —_—
0.0 -10.8
13 o o 18.8 —18.8 o
-10.8
1k 12.0 = 0 S =i «
10.8 Cp
-10.8 CL vB g:
15 12.0 === = 0 . :
10.8 cn
Y,
10.8 -10.8
16 12.0 - 0 0 =
Wing + b + vertical tail
0.0
6.0
2 12.0 e -~ Si= 0
' a
15.9 o
0.0 C1, v8 Cm
6.0 C1
18 5, = e e 10 Cn
15.9 Cy
19 o —20.7 S e 10
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Figure 2.~ Geometric details of model investigated
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Arc of circle with cenfer of curvature 0.62c¢c above or
below chord /ine at station 0.23c, basic chord

Points of tangency Maximum thickness of basic section, 0.050c

Nose radius, 0.00250c¢

in terms of basic chord,

0.00254c in terms of
modified chord

Maximum thickness of modified section,
0.0475c in terms of basic chord,
0.0483c in terms of modified chord

Points of tangency
Basic section /.Trai//'ng—edge angle,
} / 3.58°
- . ~ Chord line ~ r
— L& [ i
Station | l
0 076 .0z20/ 150 200 230 .250 .00

Basic chord

. | | | |
piation o| 00254 135 186 216 236 /.0‘0

Modified chord
Leading edge Maximum thickness Trailing edge

(b) Modified double-wedge airfoil section.
Figure 2. Concluded.
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(a) Wing alome.

Figure 3.— Triangular plan—form wing as mounted for investigation in
the Ames 40— by 80-foot wind tumnel.






Figure 3.—

Continued.,

(b) Wing plus body; split flaps deflected 45..4°,
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(a) C; vs c.

Figure 4.- Wing alone at 0.0° angle of sideslip with various flap deflections.
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