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WJUT 

Results are presented of an investigation of the maximum-lift 
characteristics of a wing with the leading-edge sweepback decreasing 
from 450 at the root to 200 at the tip and havingan aspect ratio 
of.4.12 and NACA 64AOO9 airfoil sections. The investigation was made 
for conditions of leading edge smooth and leading edge rough for the 
basic wing and for the wing with split flaps, leading-edge flaps, out-
board slats, and combinations of these high-lift devices at Reynolds 

numbers from 2.14 x 106 to 6.0 x 106 . The maximum lift coeffiien1-. Pf. 

a Reynolds number of 1.81 x lo6 is 0.86 for the basic wing, 1.30 with 
split flaps installed, 1.24 with full-span leading-edge flaps installed, 
and 1.66 for the combination of full-span leading-edge flaps and split 
flaps. .A large amount of static longitudinal stability near maximum 
lift is indicated for all configurations except those with full-span 
leading-edge flaps where the stability is marginal. The full-span 
leading-edge flaps provide a considerable increase in the lift-drag 
ratio at high angles of attack. The results obtained for the subject' 
wing are comparable to those obtained for conventional sweptback wings 
of moderate sweepback.

INTRODUCTION 

Some, consideration has been given to a sweptback wing 'with the 
sweep decreasing from root to tip as a means of alleviating the poor 
low-speed characteristics of sweptback wings. The selection of this 
particular plan form is based on the premise that the smaller angle of
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sweepback in the outboard wing panels would diminish the inherent early 
tip—stalling tendencies and thus iniprove the low—speed stability and 
control characteristics. Testsat low scale of this type of sweptback 
wing (reference 1) show, for low—speed conditions, a linear variation 
of pitching—moment coefficient with lift coefficient to stall with a 
stable break at the stall, and increments in lift due to plain—flap 
deflection which are considerably higher than those measured for 
conventional sweptback wings. In view of these favorable results at 
low sale, a general investigation has been conducted in the Langley 
full—scale tunnel on a full—scale wing with the leading—edge sweepback 
decreased from I5° at the root to. -300- at the midsemispan and to 20 0 at 
the tip. The wing has an aspect ratio of I .12, a taper ratio of 0.36, 
and NACA 6 1i-A009 airfoil. sections: parallel to the plane of symmetry. 
The investigation included tests to determine the maximum—lift and 
stalling characteristics, the .chordwiseandspanwise pressure distri-
butions, and the lateral stability characteristics of the wing for 
several flapped configurations. 

Results are presented herein at low Mach numbers and high Reynolds 
numbers of the maximum—lift characteristics of the basic wing and of 
the wing with split flaps., .leading—edge flaps, outboard slats, and 
combinations of thesehigh—lift devices. The effectsof leading—edge 
roughness were investigated, and the scale effect on the . aerodynamic 
characterist .ics . Was determined for a range of Reynolds number from 

about 2.4 X 106 to 6.0 x 106 

COEFFICIENTS AND SYMBOLS	 . . 

The data are referred to the wind axes with the origin at the 
quarter chord of the mean aerodynamic chord The data have been reduced 
to standard NACA nondimerisional coefficients which ar& defined as 
follows 

CL	 lift coeffiint (Lift	 . ....	 . 
\qSJ, 

CD	 drag coefficient (Drag 
\qS/ 

Cm	 pitching—moment coefficient dims—C) 
R	 Reynolds number (f!)
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C	 maximum lift coefficient 

dc 

CL'Cav
	 span loading coefficient 

CL'	 lift coefficient as determined from pressure distributions 

C l 	 section lift coefficient 

angle of attack, degrees 

angle of attack for maximum lift, degrees 

ci	 free—stream dynamic pressure 

S	 wing area (190.24 sq ft) 

P	 mass density of air 

M	 pitching moment 

V	 freetream velocity 

coefficient of viscosity 

mean aerodynamic chord measured parallel to plane of 

symmetry (7.28 ft) 
/ 

f b/2 c2dy 
c	 chord, parallel to plane of sy mmetry 

Ca	 average chord (.
) 

b	 wing span 

y	 spanwise coordinate 

bf	 split—flap deflection, degrees 

taper ratio
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A	 angle of sweepback at leading edge, degrees 

A	 aspect ratio

MODEL 

• The geometric characteristics of the wing and the arrangement of 
the high-lift devices are given in figures 1 and 2. Photographs of the 
wing mounted in the Langley full-scale tunnel are given as figure 3. 
The airfoil section of the wing Is the NACA 64A009 parallel to the 
plane of symmetry. The wing-tip shape is one-half of a body of 
revolution of the airfoil section. The wing has no geometric dihedral 
or twist. 

The wing construction consisted of a simple framework of -inch 

steel channel sjars and ribs covered with a i -inch skin of aluminum 

sheet rolled. to the correct airfoil contour. The juncture in the region 
of the wing leading edge where two panels of different sweepbaàk inter-
sected was filled and rounded slightly and the entire wing surface was 
smooth and fair. The wing construction was rigid and it is believed 
that deflections of the wing were negligible during the tests. The 
split flaps were made of sheet metal attac1ed to the wing under surface 
for flap deflections of 300 , 1150 , and 600 measured from the wing chord 
line as shown In figure 2(b). The leading-edge flaps were made of sheet 
metal welded to a 1.5-inch--diameter steel tube, and flap spans of 35, 
70, and 100 percent of the wing span measured from the wing tip were 
provided. (See fig. 2(a).) The design of the slat (fig. 2(c)) was 
determined from the results of two-dimensional tests reported in refer-
ence 2. Inasmuch as the slat is not retractable into the wing leading 
edge, it therefore does not represent a true slat installation; however, 
it is felt that the data are representative of the effects of the slat 
on the aerodynamic characteristics of the wing. 

For the tests with the leading edge rough, No. 60 (0.011-inch mesh) 
carborunduni grains were applied to a thin layer of shellac over a 
surface length of 8 percent chord measured from the leading edge 
parallel to the plane of symmetry on both upper and lower wing surfaces. 
The grains covered 5 to 10 percent of the affected area. For the tests 
with the leading-edge flaps installed, the roughness was applied only 
to the upper surface of the flap and around the flap leading edge.



NACA P14 L5OAO1a

PESTS 

All tests were made through an angle-of-attack range from about -.20 
through stall in increments of 20 except near maximum lift, where 
10 increments were used. Force measurements were made to determine the 
lift, the drag, and the pitching moment for conditions of leading edge 
smooth and leading edge rough of the basic wing and of the wing with 
split flaps, leading-edge flaps, outboard slats, and for, combinations 
of these high-lift devices. The scale 'effect on the aerodynamic charac-
tristics of the wing was determined from tests made at various tunnel 

airspeeds to give a Reynolds number range of from about 2.4 X 106 

to 6.o x io6. The highest Mach number obtained In the ' tests was 0.13 

at a Reynolds number of 6.0 x 106 

The stalling characteristics were determined from visual obser-
vation and from niotidn-picture records of the action of wool tufts 
attached to the upper wing surface. These tuft studies were made at 

Reynolds numbers of about 3.5 x 106 and .8 x 1o6 , both for conditions 
of leading edge smooth and leading edge rough. 

Preliminary tests were made to determine the effect of a change in 
gap between the slat and the wing leading edge from the position shown 
In figure 2(c) to a position in which the slat was moved forward 
5/8 inch parallel to the wing chord line. Although this change in slat 
gap produced no appreciable change in the longitudinal characteristics 
of the wing, the flow in the region of the slat was unsteady, and for 
this reason all slat tests were made with the slat as shown in 
figure 2(c).

PRESENTATION OF DATA 

The data have been corrected for the stream alinement, the blocking 
effects, and the jet-boundary effects which were calculated on the basis 
of an unswept wing. No tests were made to determine the support tare 
and interference effects on the longitudinal characteristics; however, 
all investigations of wings made recently on the same wing supports 
have shown these effects to be negligible.
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fig. 15(a).) Except for rough flow, the flow over the tip sections has 
not greatly changed from that for the previous angle of attack, and the 
lift of the tip sections is maintained; however, as shown in figure 17, 
there Is a loss in loading at the mi.dsemispan panel and a rearward 
shift in the local center of pressure. As shown by the stall diagrams 
and loading curves, these effects continue with increasing angle of 
attack and, together with the rearward shift in local center of pressure 
at the inidsemispan panel caused by leading-edge separation. 
(at a = 111.•70), produce increasingly negative, pitching moments through 
the angle of attack for maximum lift (a,= 15.70). Accordingly, the 
pitching-moment curves show a large amount of. static longitudinal 
stability at maximum lift for the center of gravity selected. (See. 
fig. 4(b).)

Effects of Split-Flap Deflection 

The increment in lift coefficient due to split-flap deflection at 
zero angle of attack is 0.58 at 5f = 60°, and the corresponding 
increment In maxiitwm lift coefficient is 0.43. (See fig. 5(a).) As 
the maximum lift coefficie4t of the wing is the same for the split-flap' 
deflections of 45 and 600, the deflection of 11.50 is considered optimum 
because of the smaller drag. However, this result was not apparent from 
the preliminary studies of the wing; therefore, all subsequent data were 
obtained with a split-flap deflection of 600. 

Except for the usual change in trim, split-flap deflection caused 
no appreciable change in the variation of pitching-moment coefficient 
with lift coefficient as compared with the basic wing; however, the 
destabilizing tendency prior to maximum lift is more pronounced for a 
flap deflection of 600. (See fig. 5(c).) As is shown subsequently, 
however, this effect is modified with increasing Reynolds number. The 
indicated satisfactory low-speed static longitudinal stability of the 
wing with split flaps deflected is also significant, for the results of 
references 5 and 6 show that the instability at the stall for wings 
of 1420 and 311.0 sweepback and of about the same aspect ratio is 
Intensified, by the add1tionof split flaps. 

The stall diagrams for the wing with split flaps deflected 600 
show about the same stall progression as was noted for the basic-wing 
configuration. (See figs. 16(a) and 15(a).) 

Effects of Leading-Edge Flaps 

Lift characteristics.- The effects of varying the leading-edge-
flap.span on the maximum-lift characteristics presented in figure 18(a) 
were obtained from the data of figures 7 to 12. These results show
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that the major portion of the total increase In maximum lift obtained 
with full-span leading-edge flaps Installed Is contributed by the 
extension of the flaps over the mnidsemispan panel. The maximum lift 
coefficient of the wing with full-span leading-edge flaps installed Is 
Increased to 1.24 with split flaps removed and to 1.66 with split flaps 
Installed at a Reynolds number of about 4.80 x 106. (See fig. 18(a).) 
These values of maximum lift coefficient are from 0.36 to 0.38 higher 
than those obtained for the corresponding wing configurations without 
leading-edge flaps Installed. These Increases are due not only to a 
delay of the stalling to higher angles of attack as compared with the 
wing without leading-edge flaps installed, but also to an increase In 
wing area, which has not been taken into account In the calculation of 
the wing coefficients. 

The stall diagrams of the wing with the full-span leading-edge 
flaps installed alone (fig. 15(b)) show that rough flow Initially occurs 
at the wing trailing edge In the outer semn.Ispan at a comparatively high 
angle of attack, as compared with the initial rough flow at the leading 
edge for the basic wing. A spanwlse flow of the boundary-layer air 
begins at the wing trailing edge at an angle of attack .of 18.4 0 , and 
for a further increase in angle of attack of only 10 the unsteady type 
of flow described prevlouály for the basic wing Is shown over a large 
portion of the wing. The circular-flow pattern occurs in the outboard 
spanwise sections at the angle of attack for maximum lift and then 
shifts slightly inboard after the stall. The addition of split flaps 
to the full-span leading-edge-flap configuration results In an abrupt 
stall. (See fig. 16(b).) At an angle of attack of 17.80 only a small 
amount of roughness is indicated at the junctures between panels of 
different sweepback, and maximum lift Is obtained at this point. For 
an increase in angle of attack of only 10 the flow becomes rough and 
unsteady over about 75 percent of the span and there is a sharp drop In 
lift. A stall progression of this type is considered undesirable for 
It would give no stall warning, and a slight asymmetry near stall may 
lead to serious rolling instability. 

It should be noted that these full-span leading-edge-flap config-
urations were sensitive to local discontinuities at the flap leading 
edge and at the juncture of the flap and wing which resulted In 
asymmetric stalling; therefore, the force measurements were made only 
after tuft studies had revealed a symmetrical stall. 

Pitching-moment characteristics.- The effect of varying the 
leading-edge-flap span on the variations of pitching-moment coefficient 
with lift coefficient given in figure 18(b) shows no significant change 
in the static longitudinal stability as compared with the basic wing 
until the flap span increases beyond 0.70b/2. At lift coefficients 
below the stall, the progression of flow separation from the trailing 
edge forward (fig. 15(b)), combined with the added wing area at the
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leading edge, causes a forward shift in the wing aerodynamic center such 
that only a slight amount of longitudinal stability is indicated for the 
wing with full-span leading-edge flaps installed alone. (See fig. 18(b).) 
The occurrence of the previously mentioned unsteady flow at maximum lift 
results in marginal stability through the stall. With split flaps 
installed the pitching-moment curves indicate a fair degree of static 
longitudinal stability for the combinations 'of both the 0.70b/2 leading-
edge flaps and split flaps and the full--span leading-edge flaps and 
split flaps (fig. 18(b)). The stability is marginal at the stall for 
both configurations. 

Drag characteristics.- As shown by the variations of CL with CD 
given in figure 19, the ftLll-opanleading-edge flaps provide a 
considerable increase in the lift-drag ratio of the wing at the high 
angles of attack both with split flaps installed and removed. 

Effects of Leading-Edge Slats 

The function of the slats is to maintain unstalled flow over the 
tip sections up to angles of!attack greater than the stall angle for the 
basic wing, and, as shown by the stall diagrams of figures 15(c) and 16(c), 
this effect is obtained with the slats. The improved flow over the tip 
sections with 0.35b/2 slats installed, however, (figs. 13(â) and lli.(a)) 
results in only small increases in maximum lift coefficient because of 
flow breakdown induced at the inboard end of the slats. The Increases 
in maximum lift coefficient-of less than 0.10 are of the same magnitude 
as those obtained with the 35--percent-- .span leading--edge -flaps installed. 
(See fig. 18(a).) In general, the pitching-moment characteristics are 
similar to those obtained for the basic wins and the wing with split 
flaps installed. (See figs. 13(b)and 14(b).) 

Effects of Reynolds Number and Roughness 

Maximum lift.- The maximum lift coefficient is increased only 
slightly for all wing configurations with increase in Reynolds number 

from about 2.4 x io6 to 5.9 x 106 . ( See fig. 20.) Leading-edge roughness 
causes no appreciable change in maximum lift coefficient, at the lowest 
Reynolds numbers but decreases the maximum lift coefficient by about 0.10 
at the highest Reynolds numbers investigated for all configurations. 
(See fig. 20.) Tuft observations showed that leading-edge roughness had 
no appreciable effect on the stall progression of the wing for all 
configurations investigated except that the initial change from 
undisturbed flow occurred at somewhat lower angles of attack than for 
the smooth leading-edge condition.
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Pitching moment.- In general, the effect of increasing Reynolds 
number on the pitching-moment characteristics is to delay the slight 
destabilizing tendency obtained at moderate lift coefficients to higher 
lift coefficients and to provide a more uniform variation of Cm 

with CL. (See figs. li. (b), 6(b), 9(b), and 12(b).) For the combination 

of the full-span leading-edge flap and split flaps (fig. 12(b)) the 
adverse break in the pitching-moment curve at stall at a Reynolds number 

of 3)7 x 10  is alleviated at a Reynolds number of 1.69 x 106. The 
effect of leading-edge roughness is to alleviate the destabilizing 
tendency obtained at moderate lift coefficients for the basic wing and 
wing with split flaps deflected 60 0 , especially at 'the high Reynolds 
numbers. With full-span leading 'edge flaps and split flaps installed, 
roughness caused nose-up pitching moments even at the highest Reynolds 
number. (See fig. 12(b).) 

Drag.- The effect of leading-edge roughness on the drag coefficient, 
of the basic wing (fig. li. (c)) and wing with split flaps installed 
(fig. 6(c)) is to decrease the angle of attack above which a rapid drag 
rise occurs by about 50 at the highest Reynolds numbers Investigated; 
however, this effect is not shown at the lowest Reynolds number. With 
full-span leading-edge flaps installed, leading-edge roughness produced 
no increase in drag at the higher angles of attack up to stall, both with 
split flaps removed and installed. (See figs. 9(c) and 12(c).) The 
improvement in lift-drag ratio provided by the leading-edge flap shown 
in figure 19, therefore, will not be appreciably changed by leading-edge 
roughness. 

Comparison of Results with Those for Conventional Sweptback Wings 

An evaluation of the low-speed characteristics of the subject wing 
must be based primarily on the experience gained from tests of numerous 
sweptback-wing configurations since no truly comparable data are 
available. The maximum lift coefficient of the basic wing of 0.86 
at R = 4.84 x 106 is of about the correct magnitude when compared with 
the data' for wings 'of aspect ratio 14 .5 and NACA 64AO10 airfoil sections 
which show maximum lift coefficients of 0.92 and 0.88; respectively, for 
an increase in sweepback from 11 . 80 to 38.00 (references 7 and 8). 

A study of the low-speed longitudinal stability boundary of swept-
back wings given in reference 9 shows that for an aspect ratio of 4.12, 
the maximum angle of sweephack to obtain longitudinal stability is 
about 350 . The satisfactory static longitudinal stability of thesubject 
wing, therefore, is, in accord with what would be expected from consider-
ation of wing geometry, since the small part of the wing having sweep
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greater. then 350 would not be expected to have much effect. With the 
present sweep arrangement the aspect ratio could probably be increased 
to 5 and possibly 6. 

The split flaps provide a considerable increase in the lift of'the 
wing throughout the angle-of-attack range, and the values of LCL at 

zero angle of attack and ACItlax are given in the following table along 

with the data ( =. 600) from several sweptback wings for a range of 
sweepback and aspect ratio. 

Wing A 
(deg) X A Airfoil section

Flap 
span, 
b/2  

/CL 

at	 m = 00 

Reference 6 34 o. ACA 0015 root 0.623 0.58 0.5 
NACA 23009 tip 

Reference 10 37.25 .50 6.00 1NACA 641-212 .6 .51 .33 
Unpublished 17.5 .50 1NACA 641A112 ..6 .39 .08 

Unpublished 47.72 .38 5.1 1NACA 64-210 .62 .40 .06 

Reference 6 49 .2 3.6k
1NACA 0015 root

.623 .3 .11 
NACA 23009 tip 

Subject wing 15 to 20 .36 1. .12 NACA 64A009 1	 .65 1	 .8 1	 .43

i-Airfoil sections not parallel to plane of symmetry. 

The results show that the data for the subject wing are more represen-
tative of those obtained for wings of moderate sweepback. As compared 
with an unswept wing of the seine aspect ratio and taper ratio, calculations 
based on the methods of reference 11 show that the increment in lift coef-
ficient at a point 3 0 below stall is only 10 percent greater for the 
unswept wing.

SUIARY OF RESULTS 

The results of an investigation at high Reynolds numbers and low 
Mach numbers in the Langley full-scale tunnel of the maximum-lift charac-
teristics of a wing with the leading-edge sweepback decreasing from 450 
at the root to 200 at the tip are summarized as follows: 

1. The maximum lift coefficient of the basic wing is 0.86 at a 

Reynolds number of 14.84 x 106, and the tuft observations show that the 
lifting capabilities of the basic wing are limited because of the 
occurrence of leading-ede separation. The addition of 65-percent--span 
split flaps deflected 6ou increases the maximum lift coefficient to 1.30. 
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The maximum lift coefficient of the wing with full-span leading-edge 
flaps installed is 1.24, and the addition of the split flaps to this 
configuration increases this value to 1.66. 

2.3 A large amount of static longitudinal stability is indicated, for 
the wing near maximum lift for all configurations except those with the 
full-span leading-edge flaps installed or with the combination of 
the 0.70b/2 ' leading-edge flaps and split flaps where the static longi-
tudinal stability, is marginal. 

3. The full-span leading-edge flaps provide a considerable increase 
in the lift-drag ratio at the high angles of attack, both with split 
flaps installed and removed. 

ii-. Leading-edge roughness decreases the maximum lift coefficient by 
about 0.10 at the highest Reynolds numbers investigated for all configu-
rations but has no significant effect on the pitching-moment charac-
teristics except for the combination of full-span leading-edge flaps and 
65-percent-span split flaps where nose-up moments were obtained at the 
stall.

5. Increasing Reynolds number causes only a slight increase in 
maximum lift coefficient of the smooth wing and has no appreciable effect 
on the pitching-moment characteristics. 

6. The outboard 35-percent-span slat and leading-edge flap both 
provide about the same slight improvement in the longitudinal aerodynamic 
characteristics of the wing. 

7. The results obtained for the subject wing are comparable to those 
obtained for conventional sweptback wings of moderate sweepback. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va.
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(c) Leading-edge slat. 

Figure 2.- Arrangement of high-lift devices investigated.
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(b) Variation of Cm with CL.

Figure 4. - Continued.
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a, deg 

(a) Variation of CL and Cm with a. 

Figure 5.- Effect of split-flap deflection o the aerodynamic
characteristics. B Z 3.5 x lOt.
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Figure 15.- Stall diagrams of wing with several high-lift devices installed. 

Arrows indicate direction of flow; bf = 0 0 ; R Z 3.5 x 106.
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Figure 18.- Summary of effects of varying the leading-edge-flap span. 
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