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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 


RESEARCH MEMORANDUM 

LOW-SPEED STATIC LATERAL STABILITY CHARACTERISTICS 

OF A CANARD MODEL HAVING A 60° TRIANGULAR 

WING AND HORIZONTAL TAIL 

By William R. Bates 

SUMMARY 

An investigation of the low-speed, power-off static lateral 
stability characteristics of a canard model with a triangular wing and 
horizontal tail has been conducted in the Langley free-flight tunnel. 
When the angle of attack of the fuselage was greater than 12 0 and the 
incidence of the horizontal tail was greater than 150, the horizontal 
tail produced a strong sidewash which caused the model to be directionally 
stable with the vertical tail off. At small angles of yaw a vertical 
tail located on the fuselage was in the sidewash field of the horizontal 
tail. In this case, the sidewash caused the vertical tail to become 
less effective and, at angles of attack above 270, caused the vertical 
tail to produce a destabilizing moment. The sidewash field from the 
horizontal tail did not cause twin vertical tails mounted. on the wing 
to produce a similar destabilizing effect because these vertical tails 
were outside the sidewash field. When compared at a given lift coeffi-
cient in trimmed flight conditions, the directional stability of the 
canard model with the horizontal tail fixed or tail free was generally 
higher than that of the model without the horizontal tail over the 
entire lift range.

INTRODUCTION 

The National Advisory Committee for Aeronautics has been making a 
study of canard configurations for high-speed airplanes. Previous 
results of some force tests in the Langley free-flight tunnel ona 
canard model similar to that discussed in reference 1 showed that the 
forward horizontal tail can cause an increase in the directional stability 
of an airplane at high angles of attack. Because of this characteristic, 
it was thought that a forward hqrizontal tail might be used to improve 
the low directional stability generally associated with triangular-wing 
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airplanes at high angles of attack. An investigation of the low-speed, 
power-off stability and control characteristics of a canard model with 
a triangular wing has been made, therefore, by means of force tests in 
the Langley free-flight tunnel. The results of the longitudinal investi-
gation for this model have been presented in reference 2. 

The model used in the investigation had a 60 0 triangular wing and 
horizontal tail. This model was chosen in order to determine whether 
a canard arrangement would improve the low directional stability at 
high angles of attack which the model had exhibited in previous investi-
gations without the horizontal tail. Two vertical-tail arrangements 
were tested: One, a triangular fin mounted on the fuselage; the other, 
constant-chord twin fins mounted on the wing. 

SYMBOLS 

All forces and moments were referred to the stability axes which 
are defined in figure 1. The symbols and coefficients 'used in the 
present paper are: 

S	 total wing area, square feet 

wing mean aerodynamic chord, feet 

b	 wing span, feet 

q	 dynamic pressure, pounds per square foot (v2)
2 P 

V	 airspeed, feet per second 

P	 air density, slugs per cubic foot 

CL	 angle of attack of fuselage center line, degrees 

13	 angle of sideslip, degrees	 - 

angle of yaw, degrees 

it angle of incidence of the horizontal tail with respect 
to the fuselage center line, degrees 

angle of attack of the horizontal tail, degrees 

bt horizontal-tail tab deflection, degrees 

CL lift coefficient (Lift/qS)
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C	 yawing-moment coefficient (Yawing moinent/qSb) 

C	 rolling-moment coefficient (Rolling moment/qSb) 

CY	 lateral-force coefficient (Lateral force/qS) 

C	 rate of change of yawing-moment coefficient with angle of 
sideslip in degrees (C/3) 

C 1	 rate of change of rolling-moment coefficient with angle of 
sideslip in degrees (c1/p) 

CY	 rate of change of lateral force coefficient with angle of 
sideslip in degrees (Cy/3) 

APPARATUS AND TESTS 

A three-view drawing of the model used in the present investigation 
is presented In figure 2. The physical characteristics of the model are 
given in table I. Two horizontal tails having an area of 8 percent 
and 16 percent of the area of the wing were used in the investigation.. 
The results obtained with the flat-plate airfoil sections used on the 
model are approximately the same as would have been obtained with a 
conventional section, because the aerodynamic characteristics of 
untwisted delta wings are virtually independent of the airfoil section 
at low scale. This characteristic has been established by comparison 
of the aerodynamic characteristics of some flat-plate delta wings from 
reference 3 with some German data on delta wings (reference ti.) having 
NACA 0012 airfoil sections and-with the results of some NACA tests on 
a 600 delta wing with an NACA 0015_64 airfoil section. 

A survey of the flow around the model was made with streamers of 
string attached to the fuselage and horizontal tail. Visual observations 
of these streamers were made to determine the nature of the flow over 
the model at various angles of - attack and angles of yaw. 

Force tests to determine the aerodynamic characteristics of the 
model were made on the six-component balance In the Langley free-flight 
tunnel. The facilities are described in references 5 and 6. All the 
force tests were made at a dynamic pressure of 3.0 pounds per square 
foot which corresponds to a Reynolds number of approximately 483,000 
based on the wing mean aerodynamic chord. 

Tests were made to determine the static lateral stability and 
control characteristics of the model with the horizontal tail fixed at 
various angles of Incidence and floating freely at various tab 
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deflections. The lateral stability characteristics were determined in 
two ways. A general impression of the variation of the lateral stability 
characteristics with angle of attack was obtained by determining , the 
static lateral-stability derivatives from the difference between the force 
and moment coefficients measured in tests at 50 and _50 yaw. The lateral 
stability coefficients were also determined from tests over a range of 
yaw angles from 200 to _200 for various angles of attack. For the case 
for which the variation of lateral coefficients with angle of yaw are 
nonlinear, the plots of lateral coefficients against angle of yaw give a 
better indication of the lateral stability of the model than the plots 
of the lateral-stability derivatives against angle of attack. 

RESULTS AND DISCUSSION 

The results of the preliminary flow survey showed that the flow 
around the model was normal at low angles of attack, but that at high 
angles of attack (a> 120) with 150 or 200 tail incidence, the side-
wash from the horizontal tail caused an effective reversal of the angle 
of sideslip of the fuselage, that is, when the model sideslipped to the 
right the fuselage was effectively in a left sideslip. 

• The effects of this change in flow are illustrated clearly in 
figure 3 which presents the results of tests made to determine the direc-
tional stability of the model and of various combinations of its compo-
nent parts. The configurations were identified by the following letters: 
W for wing, F for fuselage, and so forth. These letters are used in 
combinations to indicate combined arrangements of various parts. These 
data show that, although the horizontal tail alone or the wing-fuselage 
alone were unstable at all angles of attack, the wing-fuselage-horizontal 
tail combination was directionally stable at angles of-attack above 120 
and was very stable at high angles of attack. With the horizontal tail 
off, the vertièal-tail effectiveness decreased at the high angles of 
attack, but the vertical tail produced stabilizing moments even at the 
highest angles of attack. (See configurations WF and Wry1.) With the 
horizontal tail on, however, the vertical tail became ineffective at 270 
angle of attack and actually produced destabilizing moments at higher 
angles of attack. (See configurations WFH and WFHV1 .) These results 
indicate that at the highest angles of attack there is a decrease in 
the vertical-tail effectiveness produced by the interference from the 
wing-fuselage combination and that a further reduction in effectiveness 
which causes the vertical tail to become destabilizing is apparently 
produced by the sidewash from the horizontal tail. The data of refer-
ence 7 show that with the horizontal tail off the effectiveness of twin 
vertical tails also decreases with increase in angle of attack although, 
with the horizontal tail on, the twin vertical tails were stabilizing at 
all angles of attack, (See configurations WFH and '2•) The difference 
in the effectiveness of the two vertical-tail arrangements (WFIIV 1 and WFfIV2) 
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at high angles of attack is apparently caused by the sidewash from the 
horizontal tail which passes over the center tail at high angles of 
attack but does not extend out far enough to materially affect the twin 
tails at the small angles of yaw (50 and -.5) for which these data were 
obtained. The difference in the directional stability contributed by 
the center and twin tails at 00 angle of attack is caused by differences 
in size and tail length.

Horizontal Tail Fixed 

The lateral stability characteristics of the model with the 
8-percent and 16-percent horizontal tails fixed at various angles of 
incidence are presented in figures 4 and 5, respectively. Some of the 
curves of figures t and 5 are repeated in figure 6 to-show the effect 
of tail size on the directional stability of the model. Comparison of 
the data for the 8-percent and 16-percent horizontal tails at a given 
lift coefficient shows that increasing the area of the horizontal tail 
did not have any appreciable effect on the static lateral stability 
characteristics of the model between angles of yaw of 50 and _50. It 
appears from these results that the.sidewash field from the 8-percent 
tail probably covers the fuselage at angles of yaw of 50 and -.5, -since 
increasing the extent of the sidewash field by increasing the size of 
the horizontal tail-had little effect on the lateral stability of the 
model. 

The data of figure 5 show that the lateral-stability derivatives 
of the model vary considerably with tail incidence so that the static 
lateral stability of the model in trimmed flight conditions cannot be 
readily determined from the data presented in figure 5. Figure 7 was 
prepared, therefore, to show the lateral stability characteristics of 
the canard model in trimmed conditions with the horizontal tail fixed 
for two center-of-gravity positions. One center-of-gravity position 
was the farthest rearward center-of-gravity location at which the model 
was at least neutrally stable longitudinally over the entire lift-
coefficient range with neutral controls. The other was the most forward 
center-of-gravity location at which the model would trim to the maximum 
lift coefficient of the model without the horizontal tail (CL = 1.0). 
These curves were obtained by interpolation from the lateral data of 
figure 5 and the longitudinal data of reference 2. For comparison, the 
lateral stability characteristics of the tailless model are presented 
for two center-of-gravity positions which correspond to that required 
for neutral static longitudinal stability and that required to give the 
model about 10-percent static margin. The values of the lateral-
stability derivatives for the tailless airplane when trimmed with its 
center of gravity in the more forward location were obtained from unpub-
lished test results of this model and the values for the rearward center-
of-gravity location were obtained from the present investigation. 
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Figure 7 shows that, when compared at a given lift coefficient, the 
directional stability of the canard model with the horizontal tail fixed 
was higher than that of the tailless model for either center-of-gravity. 
location. The difference at low lift coefficients is caused by the 
difference in length of the tail arm of the vertical tail on the canard 
and tailless model which results from the center of gravity of the canard 
model being more forward than that of the tailless model. The additional 
difference at high lift coefficients is partly caused by the favorable 
effect of the horizontal tail on the directional stability of the canard 
model when the tail Incidence is high, and partly caused by the fact 
that the angle of attack corresponding to a given lift coefficient is 
lower for the canard than for the tailless model. Figure 7 also shows 
that the effective dihedral of the canard model is generally slightly 
higher than that of the tailless model and that the lateral force of the 
canard model is lower than that of the tailless model. In fact, the 
variation of the lateral force with sideslip is unstable for the canard 
model at high lift coefficients. 

A comparison of the static-lateral-stability derivatives for the 
model with the single and twin vertical tails is presented in figure 8. 
This figure presents the derivatives -Cy, and -C j as well as the 

derivative Cn which was previously given in figure 3 for the same 

configurations. In order to obtain a more exact picture of the effective-
ness of the vertical tails, the lateral stability coefficients over a 
range of angles of yaw from 200 to -200 are shown in figure 9. Analysis 
of these data shows that the twin vertical tails eliminate the nonlinearity 
associated with the directional stability contributed by the center 
vertical tail at small angles of yaw. This result indicates that the 
single vertical tail was in the sidewash field at small angles of yaw. 

Horizontal Tail Floating Freely 

The lateral stability characteristics of the model with the horizontal 
tail floating freely at various tab deflections are shown in figure 10. 
These data show that, when compared at any given lift coefficient, the 
static lateral stability of the canard model with the tab deflections 
from 00 to 6.10 was about the same as that of the tailless model. At i. 
tab deflection of 10.50 and moderate angles of attack there was a slight 
effect of the horizontal tail on the lateral stability characteristics, 
and with a tab deflection of 16.00 there was a considerable effect on 
the lateral stability, characteristics. The lateral stability charac-
teristics of the model with the horizontal tail free were similar to 
those with the horizontal tail fixed when the angle of incidence of the 
tails relative to the fuselage were the same. The variation of the 
effective angle of incidence with angle of attack for various tab 
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deflections on the free-floating horizontal tail are shown in figure 11. 
The tail-fixed data of figure 5 show that there was little effect on 
the stability characteristics when the angle of incidence and the angle 
of attack were less than about 100 but considerable effect when both the 
angle of incidence and the angle of attack were greater than this value. 
The agreement between the tail-fixed and tail-free characteristics is 
shown by comparison of the data of figures 5 and 10 which shows that no 
effect of horizontal tail should be expected for tab deflections from 00 
to 6.10, a slight effect at moderate angles of attack for a tab deflec-
tion of 10.50, and considerable effect for a tab deflection of 16.00. 
Apparently, at low tab deflections, the loads on the horizontal tail 
are too small to produce a strong sidewash effect so that the horizontal 
tail has virtually no effect on the lateral stability of the model. 

Since the static lateral stability of the model in trimmed flight 
conditions cannot be readily determined from the data presented in 
figure 10, figure 12 was prepared to show the lateral stability charac-
teristics for trimmed conditions. This figure was prepared in the same 
manner as figure 7 except that the lateral data of figure 10 were used. 
Figure 12 shows that the directional stability of the canard model with 
the tail free was generally higher than that of the tailless model 
when compared at a given lift coefficient for the most forward center-
of-gravity positions or for the most rearward center-of-gravity positions. 
These center-of-gravity positions were determined in the same manner that 
they were determined for the tail-fixed case. This figure also shows 
that the effective dihedral and lateral-force characteristics of the 
canard and tailless models are generally similar. 

The static-lateral-stability derivatives for the model with the 
single and twin vertical tails are presented in figure 13. In order to 
present a more exact picture of the effectiveness of the vertical tails, 
the lateral stability coefficients over a range of angles of yaw from 200 
to -200 for the vertical-tail arrangements and with a horizontal-tail 
tab deflection of 10.50 are shown in figure l. As in the.case of the 
horizontal tail fixed, analysis of these data shows that the twin vertical 
tails eliminate the nonlinearity associated with the directional stability 
contributed by the center vertical tail at small. angles of yaw. 

General Consideration of Dynamic Behavior 

Inasmuch as the results of some NACA free-flight-tunnel tests 
showed that the lateral flight characteristics of the tailless model 

- were fairly good, the general flight behavior of the canard model with. 
the horizontal tail fixed or free should. be  expected to be good from 
considerations of the static-stability derivatives C 	 and -C 1 . The 

s1i1ficance of the unstable lateral-force derivative -Cy on the 
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behavior of an airplane, however, is not well understood. It should be 
noted in this connection that the flying-qualities requirements (refer-
ence 8) require that variation of the lateral force with angle of sideslip 
be stable. It should also be pointed out that the sidewash from the 
horizontal tail, which has a pronounced effect on the lateral stability 
of the model, results from the large tip vortices from the horizontal tail 
and may be unsteady enough to cause some unsteadiness in the lateral 
motions of the canard model.

CONCLUSIONS 

The following conclusions were drawn from an investigation in the 
Langley free-flight tunnel on a canard model to determine static 
lateral stability characteristics: 

1. When the angle of attack of the fuselage was greater than 120, 
and the incidence of the horizontal tail was greater than 15, the hori-
zontal tail produced a strong sidewash which caused the model to be 
directionally stable with vertical tail off. 

2. At small angles of yaw a vertical tail located on the fuselage 
was in the sid.ewash field of the horizontal tail. In this case, , the 
sidewash caused the vertical tail to become less effective and, at angles 
of attack above 270, caused the vertical tail to produce a destabilizing 
moment.

3. The sidewash field from the horizontal tail did not cause twin 
vertical tails mounted on the wing to produce a similar destabilizing 
effect because these vertical tails were outside the sidewash field. 

4. When compared at a given lift coefficient in trimmed flight 
conditions, the directional stability of the canard model with the 
horizontal tail fixed or tail free was generally higher than that of the 
model without the horizontal tail over the entire lift range.. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va. 
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TABLE I. - DIMENSIONAL CHARACTERISTICS OF , TEIE CANARD MODEL WITH A


TRIANGULAR WING TESTED IN THE LARGLEY FREE-FLIGHT TUNNEL 

Wing: 
Area, sq ft (total) .........................2.95 
Span, ft	 .............................2.61 
Aspect ratio	 ...........................2.31 

Mean aerodynamic chord, ft ....................1.505 
Sweepback of leading edge, deg ................... 
Dihedral (relative to mean thickness line), deg ........... 0 
Taper ratio (tip chord/root chord) ................o 
Airfoil section ..........................Flat plate 

Elevon: 
Type ...............................Plain 
Area (one), sq ft ..........................0.268 
Span (at trailing edge of wing, one), ft .. ... ........ . l.l1. 

Chord (from hinge line to trailing edge), ft ...........O.251 

Horizontal tail: 
Area, sq ft	 ............................O.72 
Span, ft	 ..............................l.O15 
Aspect ratio ............................2.31 
Sweepback of leading edge, deg ..................... 60 
Tab area, sq ft ..........................0.1062 
Tab chord, ft ............................0.10142 
Airfoil section	 ......................... . . Flat plate 
Distance from c.g. to tail hinge line1 ft ..............1.027 

Single vertical tail: 
Area, sq ft ............................0.527 
Height, ft	 ...............................0.78 
Aspect ratio ............................1.155 
Sweepback of leading edge, deg .................. 60 
Taper ratio (tip chord/root chord) ................ 0 
Rudder area, sq ft	 .........................0.1055 
Rudder chord, ft .........................O.l425 
Airfoil section ..........................Flat plate 
Tail length (distance from c.g. to center of area), ft ........0.830 

Twin vertical tail: 
Area, sq ft .............................0.659 
Height, ft	 ............................0.639 
Aspect ratio	 ...........................1.214 

Sweepback of leading edge, deg 
Taper ratio (tip chord/root chord) .................1.0 
Airfoil section ..........................Flat plate 
Distance from fuselage center line to vertical tail, ft.......0.823 
Tail length (distance from c.g. to center of area), ft ......1.1495 
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Figure 1.- The stability system of axes. Arrows indicate positive 
directions of moments, forces, and control-surface deflections. 
This system of axes is defined as an orthogonal system having the 
origin at Ehe center of gravity and In which the Z-axis is In the 
plane of symmetry and perpendicular to the relative wind, the 
X-axis is In the plane of symmetry and perpendicular to the Z-axis, 
and the Y-axis is perpendicular to the plane of symmetry.
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Figure 2.- Three-view drawing of the model showing the various horizontal-
tail and vertical-tail configurations.
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Figure 3 . - Directional stability characteristics of various combinations

of the component parts of the model. 
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trimmed flight conditions. (Center vertical tail)
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Figure 9.- Effect of angle of attack on the lateral stability coefficients 
of the model over a range of angles of yaw. (16-percent horizontal 
tail fixed with it = 150) 
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Figure 9.- Continued. 
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Figure 9.- Concluded..
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Figure 114.- Effect of angle of attack on the-lateral stability 
coefficients of the model over a range of angles of yaw. 
(16-percent horizontal tail floating freely with b t = 10.5)



(b) Center vertical tall.


Figure 14.- Continued. 
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