
NO	 RM L9T21a 

NACA 

RESEARCH MEMORANDUM 
EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF 

ROOT RESTRAINT ON THE FLUTTER OF A SWEPTBACK,


UNIFORM, CANTILEVER WING WITH A VARIABLY 

LOCATED CONCENTRATED MASS 

By John E. Tomassoni and Herbert C. Nelson 	 I 
Langley Aeronautical LabQp4tqry

M FILES Langley Air Force Base, Va. 
NAT	

''MM(T	 o'-

- AL !) 
A

k 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

WASHINGTON 
March 31, 1950	 I



NACA RM L9J21a 

NATIONAL ADVISORY CONMITTEE FOR AERONAUTICS


RESEARCH MEMORANDUM 

EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF 

ROOT RESTRAINT ON THE FLUTTER OF A SWEPTBACK, 

Ifl1IFORM, CANTILEVER WING WITH A VARIABLY 

LOCATED CONCENTRATED MASS 

By John E. Tomassoni and. B:erbert C. Nelson 

Data from 129 flutter tests conducted in the Langley 4.5--foot 
flutter research tunnel have been compiled and are reported. The 
investigation was carried out to obtain information which would test 
the validity of the assumption of root restraint used commonly in the 
flutter analyses of swept wings. This investigation was made with 
wings of 1450 and 600 angles of sweepback each having two different 
lengths. Each configuration included a'concentrated mass located at 
various spanwise positions and at two chordwise positions. 

The data obtained provided results which indicate that the assump-
tion of root restraint is fairly well Justified, at least for swept 
wings hating length—to—chord ratios of the order of 4 .5. However, none 
of the wings tested with the roots perpendicular to the leading edge 
showed exactly the same flutter trends over a range of spanwise weight 
positions as those obtained with the corresponding wing having the root 
parallel to the stream direction. 

uuts)iI1siwO)l 

The boundary conditions at the root of a sweptback wing make the 
problem of an exact structural analysis very complicated. In order to 
circumvent this difficulty, the following simplifying assumptions are 
sometimes made: that (i) the root is rigidly restrained normal to the 
elastic axis, and (2) the elastic axis is a straight line. With these 
assumptions and with the air forces, modified for sweep by the method 
of reference 1, a flutter analysis of a sweptback wing can be made.
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The purpose of this paper is to present experimental data on the 
flutter characteristics of weighted sweptback wings clamped, at the 
root to approximate the conditions of the previously mentioned. assump-
tions. The models used in the investigation are similar to the swept 
models of reference 2 but are modified by root—stiffening plates and 
change of length. The lengths of the models were measured along the 
elastic axis which was located at the midchord. 

By approximating the simplifying assumptions of theory in regard to 
root restraint and elastic axis, the data presented provide a means of 
evaluating the sufficiency of theory regarding structural representation 
and air—force evaluation. 

w	 weight of wing section, pounds per inch 

WW	 weight of concentrated weight, pounds 

'1	 length of midchord line, feet 

b	 half chord of wing section measured perpendicular to 
the ntidchord line, feet 

t	 thickness of wing section, inches 

A	 sweep angle measured from an axis perpendicular to 
air stream in plane of wing to elastic axis, degrees, 
positive for sweepback 

x	 distance from elastic axis to center of gravity of wing 
section, referred to half chord, positive rearward 

ew	 distanbe from elastic axis of wing section to center of 
gravity of weight, referred to half chord, negative 
for forward weight location 

ICG	 mass moment of inertia of wing section about its center 

of gravity, inch—pound--second2 per inch 

I	 mass moment of inertia of wing section about its elastic 

axis, inch—pound—second2 per inch



NACA RM L9J21a	 3 

IW	 mass moment of inertia of weight about its center of 

gravity, inch-pound--second.2 

El	 bending rigidity of wing section, pound-inch2 

(]J	 torsional rigidity of wing section, pound-inch2 

rn	 mass of wing per unit length, slugs per foot 

r.	 nandimensional radius of gyration of wing section 

CEA 
about its elastic axis I 

1  

qf	 dynamic pressure at flutter, pounds per square foot 

P	 air density at flutter, pounds per square foot 

Vf	 stream velocity at flutter, feet per second 

wing mass-density ratio at flutter ',t b 

gh, g	 structural damping coefficient in bending and torsional 
degree of freedom, respectively 

APPARATUS 

The experimental results presented herein have been obtained in 
the Langley 4.5-foot flutter research tunnel with air used as the 
testing medium under atmospheric conditions. In this investigation 
models B-1 and 3-2 were the same as model B of reference 2 except as 
modified by the root stiffening plates and change of length. Models C-i 
and 0-2 were-of as nearly the same dimensions as model C of reference 2 
as manufactured 0.090-inch aluminum sheet stock would permit and were



14.	 NkCA PM L9J21a 

also modified by root stiffening plates and change of length. The 

accompanying sketch shows how the	 Inch—thick root stiffening plates 

were attached to the models.

tunnel wall 

.root stiffening plate 

midchord

and


elastic axis L)-root torsion gage 
- -root bending gage 
3-tip torsion gage 
- -tip bending gage 

Small changes in the wing length were included to determine if a single 
effective length could be found which would give the seine flutter speeds 
as the corresponding model of reference 2. The following table lists 
the models with their respective lengths and sweep angles:
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Model
2 

(ft)
A 

(deg) 

B (reference 2) 3.00 1 
B-i 2.75 45 
B-2 2.83 j 

C (reference 2) 3.00 1 
C-i 2.75 60 
0-2 3.00 J 

The section properties of the wings are as follows: 

Chord, 2b, feet .......................	 0.667 
Airfoil section 	 .........	 Flat plate


nondimensional ...... 0.01 (approx.) 

nondimensional . 	 .............	 0.005 (approx.) 
t, inches ......................... . 	 0.090 
W, pounds per inch ...... .	 .	 . .	 0.076 
'CG' inch-pound--eecond2 per inch ..............0.000995 

I, inch-pound--second2 per inch .............. 0.000995 

El, pound-inch2	 ...................o.005o6 x 106 
GJ, pound-inch2	 ...................o.008 x 106 
ICcL, nond.imension.a.]..	 ...............	 0.0 

r,2, nondimension.a.]_ 	 ........ .	 ......... .	 0.3314 

i/ic, (standard air density, no concentrated weight)	 .	 . .	 314.1 

Two weights which were essentially the seine were used in the tests. 
One was attached at various positions along the leading edge and the 
other along the inidchord line of each model. The weight properties 
are:

Item Leading-edge 
weight

Midchord 
weight 

Ww, lb 3.12 3.12 

.ew -1.0 0 

I., in.-m--eec2 0.010 0.0098
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Strain gages cemented on the wings used in conjunction with a 
recording osciUo'aph provided a means for obtaining the frequencies 
and phase relationships of the torsional and bending strains at the 
gage locations. The positions at which the strain gages were attached 
to the models are shown in the preceding sketch. The gage traces on 
each of the oscilloaph records in figure 1 are numbered from left to 
right and represent the response of the root-torsion, root-bending, tip-
torsion, and tip-bending gages, respectively. The fifth trace on the 
records is an imposed calibration frequency. The apparatus section of 
reference 2 gives a complete description of the method used to obtain 
the phase angles listed in table I. 

The attenuation marked on each gage trace is a scale number 
obtained by electrical multiplication where the value of the attenua-
tion is inversely proportional to the magnification of response. The 
amplitudes of the traces combine with the attenuation to give relative 
stresses, torques, or moments. These relative values are obtained in 
the following manner, the first two traces of a record being used as 
an example:

Stress (1) - (Attenuation (l)'1(Anrplitude (i) 
Stress (2)	 \Attenuation (2)JAmplitude (2) 

TEST PROCB2JURE 

An investigation at zero airspeed was conducted before each series 
of tests to obtain the first three natural frequencies for each span-
wise weight position. Several spanwise positions of the concentrated 
weight for a constant chordwise station constituted a series for one 
model. During each test the airspeed in the tunnel was increased 
slowly. At the critical flutter speed the tunnel conditions were 
observed, and an osciflograph record of the model vibrations was taken. 
The tunnel airspeed was then reduced iniediately after the critical 
flutter speed was attained in order to prevent the model from being 
destroyed. The models were tested initially without any weight and 
each of the series of tests was accomplished by moving the weight 
progressively spanwise to the tip. After a series of tests was com-
pleted the model was retested without the weight to provide knowledge 
of any possible damage which may have occurred. No difference was fouid 
to exist.
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PRESENTATION AND DISCUSSION OF RESULTS 

This paper presents the experimental data obtained from flutter 
testing 450 and 600 sweptback wings with the roots modified by 
stiffening plates. In all plots the test results are presented as 
functions of the wing length 2. 

The experimental results are compiled in table I. The dynamic 
pressure, flutter speed, Mach number, and the first three natural fre-
quencies for each weight position and the corresponding flutter fre-
quencies are listed. Also the phase relationships of the torsional 
and bending stresses at the gage locations for the second and third 
natural and flutter frequencies are given. The Reynolds number for 
each series of tests is given and the chord length used in its deter-
mination was the length parallel to the air stream. A sketch of each 
model tested is included in table I with its corresponding data. 

The oscillograph records taken at flutter for the various cases 
tested are shown in figure 1. The four traces on the records in the 
top row only, which represent the vibratory motions of the model, are 
numbered, but these numbers pertain in the same order to all records. 
Each is marked with its appropriate attenuation. The unusual type 
of flutter involving two frequencies simultaneously, as reported in 
reference 2, also occurred in a few cases during the present tests. 

The flutter data of figure 2 show the validity of the commonly 
used assumptions regarding root restraint for the models tested. In 
general, -the differences between the data from a given unmodified wing 
and that from the corresponding wing having a modified root are small, 
indicating that the assumptions are fairly well justified. 

The differences in the flutter speed when the concentrated weight 
was on the wing leading edge were small. This indicates that as the 
length of the wing with the modified root was increased (B—i to B-2 
or C—i to 0-2) the flutter speed approached that of the unmodified 
wing (B or C, respectively) for the range of spanwise weight loca-
tions 0 to 11-5 percent 1. From the 65 to about 100 percent spanwise 
weight range an opposite trend is noted. In the range from 45 to 65 per-
cent 1 an irregular variation exists. 

The data for the weight at the midchord line indicate that as the 
length of the wing was increased the flutter speed approached that of 
the unmodified wing over both the 0 to 45 percent and the 65 to 100 per-- 
cent spa.nwise weight ranges while the range from 45 to 65 percent was 
irregular.
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In figure 3 the first three natural and the flutter frequencies 
are plotted against spanwise weight position for each of the series of 
tests. These plots show the relation between the flutter frequency 
and the first three natural frequencies for each of the configurations 
tested.

CONCLUDING REMARKS 

The structural assumptions usually made in the flutter analysis 
of swept wings, that the root is rigidly restrained and the elastic 
axis is a straight line at least for the uniform type of wing tested, 
appear to be fairly well Justified. Exceptions are noted for critical 
ranges of concentrated weight positions where small changes in the 
position of the weight produce relatively large changes in the experi-
mentally determined flutter speed. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va. 

1. Barmby, J. G., Cunningham, H. J., and Garrick, I. E.: Investi-
gation of the Effects of Sweep on the Flutter of Cantilever 
Wings. NACA PM L81130, 198. 

2. Nelson, Herbert C., and Tomassoni, John E.: Experimental Investi-
gation of the Effects of Sweepback on the Flutter of a Uniform 
Cantilever Wing with a Variably Located Concentrated Mass. 
NACA PM L9P2, 1949.
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(b) Model B-1;	 A = 45° e = 
Puns /9-33. 

Figure 1.— Continued.
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(a) A=14.5°, e=—l. 

Figure 2.— Variation of the flutter speeds with weight position for each 

of the models tested. 
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Figure 2.— Concluded. 
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