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As part of an NACA transonic research program, a series of wing-
fuselage combinations varying chiefly in wing plan form is being inves-
tigated. In the part of the investigation reported herein, three repre-
sentative model wings of the series were tested at Mach numbers up to 
0.94 in the Ames 16-foot high-speed wind tunnel. All these model wings 
had NACA 65AO06 sections parallel to the plane of symmetry. 

Force and pitching-moment data and tabulated pressure measurements 
are presented for the wing-fuselage combinations and for the fuselage 
alone. Downwash angles and dynamic-pressure characteristics measured 
at probable horizontal-tail locations are shown. Also presented are 
tuft studies of the wing-fuselage combinations, approximate effects of 
wing elasticity on lift and pitching moment, and a comparison of data 
from this investigation with theory and with results from investiga-
tions in the Langley high-speed 7- by 10-foot wind tunnel utilizing the 
transonic-bump technique. 

Results show that lift-curve slopes for all the wings investigated 
increased with Mach number. Compressibility effects on drag were gener-
ally small. More abrupt changes in stability occurred at lower lift 
coefficients for the wing with 11.7 0 of sweepback and an aspect ratio of 6 
than for the other wing-fuselage combinations. Slight increases in 
static longitudinal stability were observed at the higher Mach numbers 
for all the wings investigated. 

A comparison of data from this investigation with that from inves-
tigations of similar models on the transonic bump in the Langley high-
speed 7- by 10-foot wind tunnel generally shows poor correlation quan-
titatively; agreement qualitatively is fair, rossible reasons for this 
lack of agreement are suggested.



2	 NACA EM A5OJ26a 

Results of this investigation indicate large effects of aeroelastic 
deformation on the lift-curve slopes and on the longitudinal stability 
of the models. The wing with 450 of sweepback and an.aspect ratio of 6 
indicated, a maximum decrease in lift-curve slope of approximately 30 per-
cent and a forward shift in neutral point of approximately 10 percent. 
Smaller aeroelastic effects were observed for the other wing-fuselage 
combinations.

INTRODUCTION 

A coordinated transonic research program has been, established by a 
special NACA transonic subcommittee. An objective of this program is t 
investigate the relative importance of various wing-plan-form variables 
and to provide experimental data for a wide range of wing plan forms, 
particularly at transonic speeds. An extensive investigation of these 
variables has been made in the Langley high-speed 7- by 10-foot wind 
tunnel utilizing the transonic 'bump, which provides a method of testing 
models at Mach numbers near unity. 

In order to obtain data at higher Reynolds numbers than were attain-
able in the Langley high-speed 7- by 10-foot wind-tunnel investigations, 
three representative model wings of the series tested in that wind tunnel 
were tested in the Ames 16-foot high-speed wind tunnel at Mach nunmers 
up to 0.94 and Reynolds numbers which varied between 2.6 and 5.1 million. 
The wings were tested in combination with a fuselage similar to the one 
used in the 7- by 10-foot wind-tunnel investigations. The results are 
reported herein and are compared with results for three similar model 
wings tested on the transonic bump (references 1, 2, and 3). 

NOTATION 

The coefficients and symbols used in this report are defined as 
follows: 

CD drag' coefficient (drag\ 

(iftl 
CL lift coefficient	

) 

Cm pitching moment about the quarter chord of the wing mean aerodynamic 

chord (pitching mcment' 

\	 qSE
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A	 aspect ratio 0) 
M	 Mach number 

P	 pressure coefficient (0 

S	 wing area, square feet 

V	 velocity, feet per second 

a.c. aerodynamic center 

b	 wing span, feet 

c	 wing chord parallel to the free stream, feet 

(1b /2c2dy\ 
wing mean aerodynamic chord (

	

	 - , feet 
fb/2 dy) 

p	 static pressure, pounds per square foot 

q	 dynamic pressure(. pv2), pounds per square foot 

y	 lateral distance from the model plane of symmetry, feet 

a.	 angle of attack of wing—root chord line, degrees 

€	 downwash angle relative to the free stream, degrees 

0	 angle of twist of wing chord relative to the wing—root chord, 
positive with trailing edge up, degrees 

Ot' angle of twist at the wing tip for an equivalent linear spanwise 
distribution of twist, degrees 

A	 angle of sweepback of the wing quarter.-chord line, degrees 

taper ratio (ct/cr) 

P	 mass density of air, slugs per cubic foot 

Subscripts 

0	 free—stream conditions
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r	 wing root 

t	 wing tip 

u	 uncorrected for tunnel-wall effects 

MODEL AND APPARATUS 

One of the model wing-fuselage combinations mounted in the Ames 
16-oot high-speed wind tunnel is shown in figure 1. Dimensions and 
details of the various models tested are given in figures 2 and 3. 

The fuselage was a body of revolution with a fineness ratio of 12 
modified to accommodate a sting-type model support by removing the rear 
one-sixth of the body and increasing the diameter slightly at the rear 
end. The increased diameter was faired forward with straight-line 
elements to the points of tangency with the basic shape (fig. 2(a)). 
These changes resulted in a fuselage fineness ratio of 10. The model 
fuselage was constructed of steel and aluminum sections machined to 
shape. Ninety pressure orifices were placed along the right side of 
the fuselage at fifteen transverse sections as shown in figure 2(b). 

The wings were constructed with a thin layer of a tin-bismuth alloy 
over steel spars and were approximately 30 percent as rigid as solid 
steel wings of the same dimensions. One hundred pressure orifices were 
installed inthe right half of each wing at five sections parallel to 
the air stream (fig. 3(b)). 

A sting-type model-support system was used with a wire-resistance 
strain-gage balance enclosed in the fuselage to measure lift, drag, and 
pitching moment. Tubes from the pressure orifices in the models were 
led through the model-support system to multiple manometers where the 
pressure data were recorded photographically. The angle of attack was 
indicated by means of a pendulum-operated selsyn transmitter, also 
enclosed. in the fuselage. Wing-tip angles were measured visually with 
a protractor attached to one of the wind-tunnel windows. 

A survey rake used to measure downwash angles and dynamic pres-
sures was clamped to the support sting just behind the fuselage. The 
rake was equipped with 10 calibrated pitch heads for determining down-
wash angles. Static-pressure orifices on each pitch head and 20 total-
pressure tubes were provided for the dynamic-pressure survey. Figures 1 
and 2(a) show the survey rake in place behind the model and figure 
presents dimensions and details of the rake.
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TESTS

Test Conditions 

Force and pressure measurements were made on the fuselage alone 
and on the three wing-fuselage combinations. Angles of attack of the 
wing tips were measured to determine the degree of twist of the wings 
under the aerodynamic loads. Downwash angles and dynamic pressures 
were measured at probable horizontal-tail locations. Tuft studies 
were made of the flow over the wing-'fuselage combinations. 

The tests covered a Mach number range from 0.110 to 0.914. The 
Reynolds number varied from approximately 3.2 million to 5.1 milliOn 

based on the mean aerodynamic chord of the wing with an aspect ratio 
of 4. The Reynolds number for the wings with an aspect ratio of 6 
varied from approximately 2.6 million to 4.2 million. The angle-of-
attack range was from -40 to the highest positive angles attainable 
within the structural limits of the model wings. 

Test Mach numbers were maintained within ±0.5 percent of the indi-
cated values. It is estimated that angle-of-attack measurements were 
accurate to ±0.10 and wing-tip angles were read to ±0.20. Downwash 
angles are estimated to be accurate to within ±0.20 of the values shown. 

Corrections 

Induced tunnel-wall effects.- Corrections for the effects of the 
tunnel walls on the induced flow angles were computed by the method of 
reference 14• The corrections added to the angle of attack and to the 
drag coefficient were as follows:

0. 302 CL 

LCD = 0.00526 CL2 

No corrections have been made to the downwash data for induced 
tunnel-wall effects, but it is estimated that the magnitude of such 
corrections would be approximately one and one-half times the correc-
tion shown for angle of attack. No corrections have been applied to 
the pressure data for induced tunnel-wall effects.
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Constriction.- Constriction effects were calculated by the method 
of reference 5. The magnitude of the corrections is shown below: 

Corrected Uncorrected 
Mach number Mach number 

o.400 o.400 
.600 .600 
.700 .698 
.750 
.800 .797 
.820 .816 
.84o .833 
.860 .852 
.880 .871 
.900 .888 
. 920 .907 
.940 .922 

No account was taken of the sweepback angle of the wings in com-
puting either the induced wind-tunnel--wall effects or the constriction 
corrections. 

Sting interference.- In order to correct partially the drag data 
for sting interference, static pressures were measured at the base of 
the model fuselage. The difference between these measured base pres-
sures and the free-stream static pressure was used in conjunction with 
the fuselage cross-sectional area at the base of the model to calculate 
increments that would correct the drag coefficients approximately to 
what they would be with free-stream static pressure at the base of the 
model. The following increments, calculated In this manner ., were added 
to the measured drag coefficients: 

Corrected 
Mach number 

0.400
__ 

0.0007 
.600 .0011 
.700 .0011 
.750 .0011 
.800 .0011 
.820 .0011 
.84o .0012 
.860 .0012 
.880 .0013 
.900 . .0016 
.920 .0017 
.940 .0020
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The corrections were unaffected by variation of angle of attack. The 
effect of the wind-tunnel longitudinal pressure gradient on drag was 
negligible. 

.Aeroelasticity.- The model wings investigated deformed elastically 
under the aerodynamic loads to which they were subjected. These defor-
mations, for the most part, appeared as wing bending which, for the swept 
wings, caused a relative rotation of the streamwise chords, resulting in 
an effective twist along the spans of the wings. In the interest of 
making the results of the present investigation more convenient for the 
design of wings of different stiffnesses and hence subject to different 
aeroelastic effects, It would be desirable to correct the present 
results for aeroelasticity and to thereby reduce them to rigid-wing 
characteristics that could be adjusted then for the aeroelastic effects 
of actual wings of any stiffness; or alternatively, to describe the 
elastic deformation of the test wings so that their deformed shapes 
could be used as the starting point from which to adjust for-the aero-
elastic effects of any actual wing. Unfortunately, It has been impos-
sible to do either with any degree of exactness. However, an approxi-
mation of the aeroelastic twist of the test wings and their effects on 
the slopes of the lift curves and the pitching-moment curves for the 
model wings used in this investigation are shown in figures 5 and 6. 

The spanwise variations of twist shown by the solid lines in 
figure 5(a) were calculated on the basis of the elastic properties of 
the model wing structures, assuming linear spanwise distribution of 
lift. Figure 5(a) also shows an assumed linear twist distribution for 
the wings tested. It was found by the method of reference 6 (weissinger) 
that the linear twist distribution shown is approximately equivalent to 
the calculated twist distributions In its effect on the aerodynamic 
characteristics of the wings. This linear distribution was used in 
conjunction with the measured wing-tip deflection angles, the measured 
lift on the wings, and the free-stream dynamic pressure to calculate 
the equivalent wing-tip twist per unit lift coefficient shown in figure 
5(b) for various Mach numbers. It is to be noted that the resulting 
values of equivalent wing-tip twist shown in figure 5(b) are approxi-
mately 20 percent larger than the measured values. 

To obtain a measure of the effect of the elasticity of the model 
wings on the lift and moment characteristics, the computed character-
istics of rigid wings are compared with the observed characteristics 
of the elastic models. The starting point was the elastic wing at a 
lift coefficient of 0.2 for which (i) the angle of attack and pitching-
moment coefficients were known from the present experimental investi-
gation, and (2) the magnitude of the equivalent tip twist was determined 
from figure 5(b). Next, for a rigid wing having this twist, the angle 
of attack and the pitching-moment coefficient for zero lift were calcu-
lated by means of the charts of reference 6. The lift-curve and the
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pitching-moment-curve slopes for the rigid wing were then computed from 
the following relations: 

( dCL \	 =	 0.2 

)rigi	 CL02 - CL 

CICM	

( )	

= MO. - Cm 

d.CL rigid	 0.2 

where the subscripts refer to the lift coefficients at which the values 
were taken. These rigid-wing values were then compared with the meas-
ured elastic-wing values for zero lift. The comparisons are shown in 
figure 6 as the ratios of rigid-wing to elastic-wing lift-curve slopes, 
and as the difference between rigid-wing and elastic-wing pitching-
moment-curve slopes. 

The results in figure 6 include such viscous effects as appeared 
in the elastic-wing data over the lift interval used in the computation 
of the rigid-wing characteristics (lift coefficient 0 to 0.2). The 
results of figure 6 are believed to be applicable-at moderately higher 
lift coefficients as long as the wing lift and pitching-moment charac-
teristics remain approximately linear. However, these results will not 
apply when the wing characteristics depart from linearity since this is 
an indication of an appreciable change in viscous effects. 

No corrections have been made to the drag data for the deformat:.on 
of the model wings under the air loads. 

Balance interaction.- No corrections were made for interaction of 
lift and pitching moment on the balance drag readings since the degree 
of interaction varied during the investigation. In general, this effect 
was small and caused the drag readings to be slightly high at the higher 
lift coefficients. Interaction between the other balance components 
was negligible. While the precision of the force. and moment data is not 
indicated, the data presented herein, with the exception of a few points 
at high lift coefficients, are plotted within the accuracy of the strain-
gage balance. 

Tares.- Corrections were made throughout the angle-of-attack range 
to account for the static tares due to the weight of the model.
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RESULTS AND DISCUSSION 

Pressure Measurements 

The pressures measured on the fuselage and on the three wing-
fuselage combinations are presented in coefficient form in tables I to 
VII. Each table shows the pressure coefficients at various stations on 
the wings or the fuselage for various Mach numbers and angles of attack. 
The designations of the wing and fuselage stations used in the tables 
are shown in figures 2(b) and 3(b). Table I shows the pressure coef-
ficients measured on the fuselage alone. Tables II, III, and IV show 
pressure coefficients on the fuselage when in combination with the three 
different wings. Tables V, VI, and VII show pressure coefficients on 
the three different wings in combination with the fuselage. 

To expedite publication of these results, the pressure data have 
not been analyzed. However, typical plots of pressure coefficients 
measured at 75 percent of the semispan on the wing having )4.50 of sweep-
back and an aspect ratio of 14 are shown in figure 7 for several Mach 
numbers.

Basic Aerodynamic Characteristics 

Lift, drag, and pitching-moment characteristics of the three swept-
back wings in combination with the fuselage are presented in figures 8, 

9, and 10 without correction for elastic distortion under aerodynamic 
load. The variation of lift coefficient with angle of attack is shown 
in figure 8. Due to structural limitations of the models, maximum lift 
was not reached for any of the models. The variation of pitching moment 
with lift is shown in figure 10. At low Mach numbers, the wing with 450 
of sweepback and an aspect ratio of 6 became very unstable at a lift 
coefficient of approximately O.4-5; .whereas comparable changes in sta-
bility are delayed on the other wings to a lift coefficient of approxi-
mately 0.6. The force and moment data for the fuselage alone are pre-
sented in figure 11. The coefficients are based on the total wing area 
and on the mean aerodynamic chord of the wings having an aspect ratio 
of 6.

Lift-Curve Slopes 

The variations of lift-curve slope with Mach number at a lift coef-
ficient of 0.2 are shown in figure 12 for the three wing-fuselage com-
binations. Measured slopes, measured slopes corrected for aeroelastic
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effects, the transonic-bump data from references 1, 2, and 3, and. the 
theoretical variations of the lift-curve slopes with Mach number are 
shown. The theoretical variations of lift-curve slope with Mach number 
were calculated by the method of reference 7, using an application of 
the Praridtl-G-lauert rule. These theoretical variations were then 
applied to the slopes which were measured. at 0•14.0 Mach number and cor-
rected for aeroelastic effects. 

Lift-curve slopes generally increased with Mach number for all the 
plan forms tested; however, a reversal of this trend is indicated at the 
highest Mach number of the tests. The theoretical variation of lift-
curve slope with Mach number was less than the measured variation cor-
rected for elasticity. 

The data from this investigation show some qualitative agreement 
with the-transonic-bump data of references 1, 2, and 3, but agreement 
is poor quantitatively. It is believed the lack of agreement is due, 
at least in part, to the low Reynolds numbers of the bump tests and to 
the basic limitations of the bump method of testing (reference 7). 

The effects of aeroelastic distortion on the lift-curve slopes 
were large. At the highest Mach number of the test, the model distor-
tion caused a 30-percent reduction in lift-curve slope of the wing with 45  of sweepback and an aspect ratio of 6. Smaller effects were calcu-
lated for the other wings. These results serve to emphasize the impor-
tance of aeroelastic effects on the aerodynamic characteristics of thin 
swept-back wings, not only from the standpcint of obtaining reliable 
data from wind-tunnel tests, but also with regard to the performance of 
the airplane. For example, the structure of the model wing with 450 of 
sweepback, an aspect ratio of 6, and NACA 65A006 sections was such that 
its flexibility was about the same as the flexibility of a geometrically 
similar airplane wing designed for a wing loading of 60 pounds per 
square foot and a load factor of 5. The other two model wings were 
considerably less flexible in comparison with typical airplane construc-
tion. Since the dynamic pressure at the highest Mach number of the 
tests corresponded to a flight altitude of 15,000 feet, it is evident 
that aircraft flying at high subsonic speeds and moderate altitudes may 
be susceptible to large effects of aeroelastic deformations. All the 
performance parameters of the airplane which depend upon the s anwise 
distribution of lift will be affected, including the lift-curve slope, 
longitudinal stability, induced drag, downwash distribution, and wing 
bending moments.

Static-Longitudinal Stability 

The variation of the stability parameter dCm/dCL with Mach number 
is shown for 0.2 lift coefficient in figure 13. Measured data, measured.
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data corrected for aeroelasticity, and data from the transonic-bump 
tests reported in references 1, 2, and 3 are presented. Aeroelastic 
effects were large, causing a maximum increase of pitching-moment--.curve 
slope of 0.097 for the wing with 450 of sweepback and an aspect ratio 
of 6. This increase is equivalent to a forward shift of the neutral 
point of almost 10 percent of the mean aerodynamic chord. In general, 
static longitudinal stability corrected for aeroelasticity increased. 
with Mach number for all the plan forms investigated. The wing with 
115 0 of sweepback and an aspect ratio of II. and the wing with 350 of 
sweepback and an aspect ratio of 6 indicated large stability increases 
at the higher Mach numbers. In general, stability results from this 
investigation are in poor agreement with those from the transonic-bump 
tests. The transonic-bump data indicate large decreases in stability 
beginning at 0.2 to 0.3 lift coefficients for the various plan forms; 
whereas the data presented in figure 10 show instability beginning at 
0• 14 to 0.6 lift coefficients. The probable reasons for these differ-. 
ences have been discussed in the section on lift-curve slope. 

Drag 

The variations of drag coefficient with Mach number at lift coeffi-
cients of 0 1 0.2, and 0.4 are presented in figure 14 for the three wing-
fuselage combinations. Data from this investigation are compared with 
transonic-bump data from references 1, 2, and 3. In general, Mach 
number effects on the drag coefficients over the speed range of this 
investigation were small; the drag-divergence Mach number was not 
reached for any of the wings. It is believed that the decreases in 
drag coefficient with increasing Mach number shown at the higher lift 
coefficient are partially due to aeroelastic deformation of the wings. 
Drag coefficients from this investigation are considerably lower than 
the values shown in references 1, 2, and 3. The drag data, presented 
herein, on the whole agree more closely with results from other inves-
tigations of similar and nearly similar wing-fuselage configurations 
than do the transonic-bump data (reference 7). 

Downwash and Dynamic Pressure 

•	 Downwash angles and graiients are shown for the wing-fuselage com-
binations in figures 15 and 16. Downwash gradients were maximum near 
the extended plane of the wing chord and decreased with increase in 
distance above this plane. The gradients shown (fig. 16) were measured 
12 inches from the plane of symmetry of the model. Measurements made 6 
inches from the plane of symmetry of the model (fig. 15) show the effect 
of the fuselage on the wing wake.
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The results of the dynamic—pressure surveys are shown in figure 17. 
They indicate that at the higher Mach.numbers the dynamic pressures at 
the center of the wing wake were approximately 10 to 15 percent less 
than free—stream dynamic pressure. The vertical displacement of the 
wake center with increase in angle of attack is apparent. 

Tuft Studies 

Figures 18, 19, and 20 show tufts on the three wing—fuselage com-
binations. The pictures indicate the spanwise boundary—layer flow due 
to sweepback and the stall progression from the tip inward with increase 
in angle of attack. The leading—edge type of separation common to thin 
wings with small leading—edge radii is also indicated. 

CONCLUSIONS 

The results of this investigation indicate the following conclu-
sions:

1. In general, lift—curve slopes for all the wings investigated 
increased, with Mach number. Compressibility effects on drag coeffi-
cients were generally small. More abrupt changes in stability occurred 
at lower lift coefficients for the wing with 15° sweepback and an aspect 
ratio of 6 than for the other wing—fuselage combinations. Slight 
increases in static—longitudinal stability were observed at the higher 
Mach numbers for all the wings investigated. 

2. A comparison of data from this investigation with those from 
investigations of similar models on the transonic bump in the Langley 
high—speed 7- by 10-4'oot wind tunnel showed generally poor correlation 
quantitatively; agreement qualitatively was fair. It is believed that 
the lack of agreement was due, at least in part, to the low Reynolds 
numbers of the bump tests and to inherent limitations of the bump method 
of testing. 

3. Results of this investigation indicate large effects of aero-
elastic deformation on the lift—curve slopes and on the longitudinal 
stability of the models. The wing with 45 0 of sweepback and an aspect 

ratio of 6 underwent a maximum decrease in lift—curve slope of approxi-
mately 30 percent and a forward shift of the neutral point of approxi-
mately 10 percent. Smaller aeroelastic effects were observed for the 
other wing—fuselage combinations. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif.
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TABLE I. - PRESSURE COEFFICIENTS ON THE FUSELAGE ALONE. 
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TABLE I. - CONTINUED 
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TABLE I.-  CONTINUED
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TABLE I. — CONTINUED
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TABLE I. — CONTINUED
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TABLE I. — CONTINUED
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TABLE I. — CONTINUED
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TABLE I. - CONTINUED 
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TABLE I. — CONTINUED
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TABLE I. — COWUINUED
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TABLE I.— CONCLUDED 
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TABLE II.— PRESSURE COEFFICIENTS ON A FUSELAGE IN COMBINATION WITH

A WING HAVING A SWEEPBACK ANGLE OF 450 AND AN ASPECT RATIO OF 4. 
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TABLE II.-  COTI?TJED

(b) M,O.60.

INN

_	 iWIIIr. 

•	 _ 

MMM MM

27 



28 NACA RN A5OJ26a 

TABLE II. — CONTINUED 
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TABLE II. CONTINUED
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TABLE III.— PRESSURE COEFFICIENTS ON A FUSELAGE IN COMBINATION WITH 
A WING RAVING A SWEEPBACK ANGLE OF 350 AND AN ASPECT RATIO OF 6. 
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TABLE IV.— PRESSURE COEFFICIENTS ON A FUSELAGE IN COMBINATION WITH 
A WING RAVING A SWEEPEACK ANGLE OF 45° AND AN ASPECT RATIO OF 6. 

(a) M,O.11-O. 

— MOM 

EEO 

—
- •pflpfl



NACA 1*4 A5OJ26a

TABLE IV. CONTINUE]) 

(b) M,O.60. 

—MESES1 ------ --------
flFIflflFIflfl1FiiFU 

fliFWIFI 

(c) M,O.70. 

• fl FI1I1 
nwinr•nrnn



11.14. NACA RN A5OJ26a 

TABLE IV. — CONTINUED 

(a.) M,0.75. 

man M. mmmmm 

EMEME 

IBM 

(e) M50.80. 

Lm 

-

ninrIItWIt1 ULIIt1 min
Itw11I 

ININ MIN mm 

lum



NACA RN A5OJ26a

TABLE IV.— CONTINUED 

(f) M,O.82. 

N I. Fr __

(g) M,0.84

15 



NACA RN A5OJ26a 

TABLE IV.— cowrnug

(ii) M,O.86. 

I --.------. 

(i) M,0.88. 

—



NACA PM A5OJ26a

TABLE IV. CONTINUED 

(j) M,0.90. 

I

(k) M,O.92. 



NACA RN A5OJ26a 
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(1) M,O.9l1.. 

- A00].e of attack, degrees  

Sb- -_____ -e  0 

(In.) edlue Upper Lower Upper Lower Upper Lower Upper lower Upper Lower 
surface surface surface surface surface surface surface surface surface surface 

10 8.7 0.129 0.060 0.100 0.060 0.081 0.015 0.061 0.099 0.011 0.103 
12.3 .125 .068 .101 .069 .081 .078 .070 099 .045 099 
70.7 .112 .062 .095 .072 .081 .095 .070 .087 .018 .087 

15 8.7 .082 .030 .068 .030 .012 .010 .028 .060 .010 .061 
12.3 .079 .025 .060 .025 .010 .033 .030 .050 .010 .051 
70.7 .068 .030 .059 .030 .012 .039 .032 .047 .010 043 

20
-

3.7 .040 .009
-

.020 .002 -.009 .002 0 .023 -.019 .025 
42.3 .038 -.010 .018 -.008 0 .001 0 .018 -.018 .018 
71.7 .023 -.010 .010 -.010 0 0 -.002 .015 -.020 015 

25 8.7 .031 -.012 .010 -.012 -.005 -.014 -.005 .015 -.021 .015 
42.3 .020 -.010 .008 -.012 -.010 -.012 -.010 .009 -.027 .010 
70.7 .015 -.010 -.003 -.010 -.010 -.003 1	

-.009 .009 -.027 .009 -- 
8.50 8.7 .040 .009 .018 .005 .013 .013 .009 .031 -.002 .031 

12.3 .032 .012 .005 .005 .012 .012 .009 .029 0 .031 
70.7 .022 .009 .009 0 .009 .009 .009 .019 -.008 .021 

31 . 50 8. .059 .019 .035 .010 .019 .019 .020 .045 .011 .051 
42.3 .055 .020 .030 .011 .030 .030 .022 .044 .012 .044 
10.7 .051 .025 .041 .021 .030 .030 .035 .049 .016 .051 

31.50 5.7 .090 -.008 .065 .018 .035 .035 .019 .065 -.006 .085 
42.3	 - .099 -.005 oC0 .020 .o45 -	 .050 .022 .078 -.004 .093 
70.7 .110 -.009 .092 1	

.030 .055 .059 .022 .097 -.013 .113 

37.50 8.7 .060 -.082 .029 -.050 -.017 -.010 -.050 .034 -.090 .060 
42.3 .050 -.090 .021 -.053 -.029 -.010 -.060 .041 -.112 .070 
70.7 .072 -.103 .041 -.069 -.012 -.220 -.060 .041 .117 .032 

41.50 8.7 .020 -.148 .003 -.091 -.069 -.075 -.110 -.020 -.159 .010 
42.3 .014 -.157 -.010 -.099 -.080 -.083 -.120 -.028 -.171 0 
70.7 .007 -.174 -.019 -.115 -.095 -.090 -.138 -.035 -.190 -.002 - 

4450 8.7 -.026 -.191 -.049 -.141 -.123 -.119 -.168 -.055 -.219 -.029 
42.1 -.030 -.201 -.058 -.149 -.138 -.125 -.178 -.065 -.228 -.038 
70.7 -.049 1	 -.231 -.072 -.170 -.155 -.149 -.198 -.085 -.250 

47.50 8.7 -.028 -.230 -.070 -.230 -.138 -.128 -.195 -.052 -.253 .0t0 
42.3 .019 -.232 -.024 -.210 -.085 -.140 -.130 -.060 -.185 -.045 
70.7 -.042 -.265 -.082 -.219	 1 -.165 -.145 -.218 -.067 -.281 -.059 - 

50.50 8.7 -.021 -.109 -.040 -.049 -.040 -.051 -.081 -.010 -.160 -.009 
42. 3 -.020 -.129 -.033 -.074 -.049 -.048 -.072 -.032 -.150 -. dO 
70.7 -.026 -.098 -.030 -.059 -.035 -.035 -.060 -.029 -.130 -.045 

53.50 8. -.018 ___ -.008 - - - -.018 - - - -.015 - - - -.011 
2.3 0 -.018 -.015 -.018 -.014 -.018 -.019 -.010 -.030 -.012 

70.7 .005 -.005 .005 -.010 -.003 -.005 -.015 1	 -.005 -.020 1	 -.005 

56.50 8.7 -.004 -.025 -.015 -.020 -.025 -.029 -.020 -.020 -.028 .	 -.011 
42.3 -.002 -.013 -.020 -.028 -.018 -.025 -.009 -.018 -.022 -.009 
70.7 .010 0	 1 -.025 -.005	 . .010 -.015 -.001 -.008 -.001 -.008 - 

59.50 8.7 .009 .008 -.009 -.010 -.020 -.020 -.015 -.005 -.015 -.005 
42.3 .001 .001

1
-.010

1
-.010 -.021 -.021 -.015 .005 -.010 -.009 

70.7 .001 0 -.015 -.015 -.010 -.010 -.015 -.015 -.015 -.015
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TABLE V. — PRESSURE COEFFICIENTS ON A WING RAVING A SWEiaBACK ANGLE 

OF 450 AND AN ASPECT RATIO OF 4 IN COMBINATION WITH A FUSELAGE. 

(a) M,O.1U3. 
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TABLE V;. - PRESSURE COEFFICIENTS ON A WING HAVING A SWEEPBACK ANGLE
OF 35 AND AN ASPECT RATIO OF 6 IN COMBINATION WITH A FUSELAGE. 

(a) M,O.1O. 
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TABLE VII PRESSURE COEFFICIENTSON A WING HAVING A SWEEPBACK ANGLE 
OF 450 AND AN ASPECT RATIO OF 6 IN COMBINATION WITH A FUSELAGE. 

(a) M,O.$O. 
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..... ........ ....

(c) M,O.70. 

-



NACA RN A5OJ26a

TABLE VII.- CONTINUE])

(ci) M,0.75. 

---- - 

INN 1111 flF:AE 1HIRIUMIIflINI liii.. IN1t. 
(e) M,O.80.

- ------

II.B LI UI1.1i 
FINNIflIIH milli

IIIIHR1RflNII1fl

67 



Lnej NACA RN A5OJ26a 

TABLE VII. — CONTINUED

(r) M,O.82. 

-- IIIoil IUF 0110 01. 1.1 1: 1UflI.AMANIIUAM1. lU 1111. AflflM1IflflI lUflOflI:OhIflU 
(g) M,0.84.

I;
w 

nnunmmnn IODHRnBnOH tARRIANIMA 
UUUADHOUnUOU



NACA RN A50J26a

TABLE VII.— CONTINUED

(h) M,O.86. 

ann mmnnn 

INflOflfl!HHH 
IUMHMHIAMH IUflflMflmI.AflU IUflAVflflHA 

(1) M,O.88. ----
IInn

INNmnnnn 
IUIIRIIIIRIIMFIIIA 
II: II 11FIR11I1II1



70 NACA EM A5OJ26a 

TABLE VII.— CONTINUED

(j) M,0.90. 

IInnHnnnnnHn 

I,00nnnHnNnH 
oilHMAMN 

ImulHHUHHUMD 
IIBUHNHflHNHH 

(k) M,0.92.. 

EiF 
NUNN 

InnnnnnH 
IUU11N1 
iinnnnnnmnmn 
nnuonnui.



NACA RM A5OJ26a
	

71 

TABLE VII.- CONCLUDED

(1) M,O.911-. 

Per- Angle or attack, degrees  

cent Per-
_________________________ 

_1.
_________	 ___________

-2   0	 2 4 

eve
mord Upper Lover Upper Lover Upper Lover Upper Lover Upper Loser 

span surface sirface surface surface surface surface surface surface surface surface 

12.5 0 --- - - -  -- -  -- -  -- -  -- - ---
5 0.250 --- 0.179 --- 0.046 --- -0.079 --- -0.200 

10 .176 --- .122 --- .022 --- -.079 --- -.153 

20 
30 - - - 

 
.01.1

 -- -  
-0.218

-- -  
.01.0

 -- -  
-0.155

-- - 
-.088

--- 
-0.104

--- 
-.139 -0.024 -.208 o.025 

50 -.014 -.239 -.039 -.180 -.139 -.145 -.182 -.065 -.21.6 -.022 

50 -.068 - - - -.091	 - - - - -.176 - - - -.217 - - - -.260 

60 -.093 -.288 -.120 -.237 -.204 -.209 -.243 -.129 -.299 -.093 

70 -.121 -.308 -.155 -.261 -.21.0 -.241 -.278 -.160 -.330 -.125 

83 -ill -.310 -.11.0 -.269 -.231 -.239 -.279 -.150 -.332 -.120 

90 1	 -.087 -.280 -.105 -.230 -.205 1	 -.080 -.250 1	 -.091 -.310 -.088 

35 0 
5

- - -  
.138

 -- -  
- - - 

 -- -  
.040

 -- - 
- - - 

- - - 
-.110
  -- - 

- - -
  -- -

 
 -.209 - - - -.539 

10 - - - -.358 - - - -.300 - - - -.172 - - - -.030 - - - .050 

20 -.025 -.350 -.292 -.289 -.182 -.203 -.269 -.085 -.350 -.025 

30 -.070 -.362 -.140 -.328 -.229 -.247 -.300 -.140 -.372 -.095 
40 -.1.20 - - - -.180 - - - -.270 - - - -.338 - - - -.402 

50 -.130 -.422 -.150 -.387 -.270 -.285 -.300 -.155 -.450 -.130 
60 -.090 -.372 -.113 -.315 -.161 -.168 -.280 -.105 -.390 -.005 

70 -.062 -158 -.070 -.090 -.070 -.070 -.090 -.060 -.060 611 

80 -.010 -..038 -.020 -.020 -.018 -.003 -.024 -.010 -.050 -.005 

90 .027 - - - .015 - - - .015 - - - .017 --- .015 

55 0 .312 - - - .428 - - - .469 - - - .370 --- .215 

10 - - - -.257 - - - -.362 - - - -.240 - - - -.038 - - - .030 
20 - - - -.408 - - - -.330 - - - -.178 - - - -.070 - - - -.008 
30 - - - -.391 - - - -.273 - - - -.170 - - - -.080 - - - -.o48 
40 -.068 - - - -.100 - - - -.167 - - - -.182 - - - -.332 

50 -.073 - - - -.108 - - - -.150 --- -.180 - - - -.176 
60 -.049 - - - -.079 - - - -.120 - - - -.150 - - - -.157 
70 -.048 -.082 -.065 -.150 -.093 -.100 -.13.5 -.052 -.093 -.01.0 
80 .022 -.016 -.008 -.025 -.028 -.028 -.028 -.008 -.017 .022 

90 .01.7 .030 .038 .038 .021 .021 .030 .038 .022 .048 

75 0 
5

- - -  
.121

 -- -  
- - - 
 --- 
.078

 -- -  
- - - 

 -- - 
-.067
  -- - 

- - -
 ---
 -.253 - - - -.582 

10 - - - -.342 - -- -.260 - - - -.122 - - - .023 - - - .087 
20 - - - -.200	 - --- -.200 - - - -.100 - - - 0 - - - .045 

30 -.025 -.213 -.060 -.190 -.137 -.125 -.213 -.068 -.24o -.025 
40 -.049 -.245 -.084 -.199 -.158 -.157 -.190 -.086 -.231 -.057 
50 -.074 - - - -.096 - - - -.142 - - - -.182 - - - -.215 
60 -.042 -.144 -.063 -.130 -.101 -.102 -.129 -.067 -.157 -.057 
70 -.023 -.068 -.050 -.080 -.075 -.o68 -.080 -.040 -.091 -.050 
80 .020 - - - .018 - - - .003 - - - -.020 - - - -.030 
90 .052 .050 .050 .035 .050 1	 .033 .034 .032 .038 .033 

95 0 .180 - - - .360 - - - .500 - - - .500 - - - .410 

5 .097 - - - .063 - - - -.090 - - - -.302 - - - -.573 
10 .039 -.291 -.018 -.247 -.130 -.130 -.252 -.010 .060 -.385 
20 -.060 -.301 -.129 -.292 -.205 -.227 -.280 -.138 -.317 -.097 

30 
50

- - -  
-.082

 -- -  
-.13.2

 -- - 
-.101
  -- -  

-.110
 -- - 

-.127
  -- - 

-.127
 ---

-.112 -.118 -.108 -.101 

50 -.073 -.090 -.090 -.100 -.095 -.100 -.086 -.082 -.100 -.085 
60 -.035 -.045 -.032 -.060 -.050 -.061 -.042 -.050 -.01.0 -.030 
70 .018 - - - .015 - - - .009 - - - .005 - - - .012 - - - 
80 .095 - - - .067 - - - .067 - - - .073 - - - .071 - - - 
90  --- .107 - - - .100 --- .088 --- .083 --- .078
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Sta 83.38 
Sta 78.75 

S/a 50.00 

257. chord line 

All dimensions
in inches.

S/a 0.00 

MCA RM A50J26a
	 75 

Sting model support 

Basic fuse/age
	 S/a /00.00 

Con/our	 Survey rake 

Note: 
As actually used the basic fuse/age was 

modified to provide sting clearance by increasing 
the radius at sf0 83.38 to 2.25 inches and 
fairing forward with straight-fine elements to the 
points of tangency with the basic shape. 

(a) Dimensions and coordinates. 
Figure 2.-General arrangement of model showing a typical wing -

fuselage combination with survey rake in posit/on and fuselage 
details.
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1.0

Calculated twist

Equivalent 
//near twist .6 

2
	 450, 4,4 
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models under the conditions of test.
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Figure 17.—Continued.
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Figure 17.—Concluded.
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