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WITH NACA 0005-03 SECTION 

By John C. Heitmeyer and Jack D. Stephenson 

SUMMARY 

A wing-body combination having a plane triangular wing of aspect 
ratio 4 and NACA 0005-63 sections in streamwise planes has been inves
tigated at both subsonic and supersonic Mach numbers. The lift, drag, 
and pitching moment of the model are presented for Mach numbers from 
0.25 to 0.96 and 1.20 to 1.70 at a Reynolds number of 1.5 million. The 
variations of the characteristics with Reynolds number are also shown 
for severa l Mach numbers. 

INTRODUCTION 

A research program is in progress at the Ames Aeronautical Labora
tory to ascertain experimentally at subsonic and supersonic Mach numbers 
the characteristics of wings of interest in the design of high-speed 
fighter airplanes. Variations in plan form, tWist, camber, and thick
ness are being investigated. This report is one of a series pertaining 
to this program and presents results of tests of a wing-body combination 
having a plane triangular wing of aspect ratio 4 and NACA 0005-03 
sections in streamwise planes. Results of other investigations in this 
program are presented in references 1 and 2. As in these references, 
the data herein are presented without analysis to expedite publication. 

NOTATION 

b wing span, feet 
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mean aerodynamic chord (~~~: :2 d:~ , feet 

local wing chord, feet a ~ 
length of body including portion removed to accommodate sting, 

inches 

liftr-drag ratio 

maximum lift-drag ratio 

Mach number 

free-stream dynamic pressure, pounds per square foot 

Reynolds number based on the mean aerodynamic chord 

radius of body, inches 

maximum body radius, inches 

total wing area, including area formed by extending leading 
and trailing edges to plane of symmetry, square feet 

longitudinal distance from nose of body, inches 

distance perpendicular to plane of symmetry, feet 

angle of attack of body axis, degrees 

( drqSag) drag coefficient \ 

lift coefficient (l!~t) 

pitching-moment coefficient referred to quarter point of mean 

d i h d 
(

pitching moment) aero ynam c c or 
qSc 

slope of the lift curve measured at zero lift, per degree 

slope of the pitching-moment curve measured at zero lift 
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APPARATUS 

Wind Tunnel and Equipment 

The experimental investigation was conducted in the Ames 12-foot 
pressure wind tunnel and in the Ames 6- by 6-foot supersonic wind tunnel. 
In each wind tunnel the Mach number can be varied continuously and the 
stagnation pressure can be regulated to maintain a given test Reynolds 
number. The air in these tunnels is dried to prevent formation of con
densation shocks. Further information on these wind tunnels is pre
sented in references 3 and 4. 

The model was sting mounted in each tunnel, the diameter of the 
sting being about 82 percent of the diameter of the body base. The 
pitch plane of the model support was vertical in the 12-foot wind tunnel 
and horizontal in the 6- by 6-foot wind tunnel. A balance mounted on 
the sting support and enclosed within the body of the model was used to 
measure the aerodynamic forces and moments on the model. The balance 
was a 2-1/2-inch, four-component, strain-gage balance of the type 
described in reference 5. 

Model 

A photograph of the model mounted in the Ames 12-foot pressure wind 
tunnel is shown in figure 1. A plan view of the model and certain model 
dimensions are given in figure 2. Other important geometric character
istics of the model are as follows: 

Wing 

Aspect ratio • • • • • • • • • 
Taper ratio • • • • • • • • • • • • • • • 
Airfoil section (streamwise) ••••••• 
Total area, S, s~uare feet 

. . . . . 4 
• • • •• 0 

• NACA 0005-03 
2.007 

Mean aerodynamic chord, c, feet • 
Dihedral, degrees • • • • • • • • 

• • • • •• 0.944 
o 

Camber •••••• • • • • • • • • • • • None 
Twist, degrees •••••• 
Incidence, degrees ••••••• • ••• 
Distance, wing-chord plane to body aXiS, feet ••• 

o 
o 
o 
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Body 

Fineness ratio (based upon length 2; fig. 2) ••• 12.5 
Cross-section shape • • . • . • . • • • • • • • • • Circular 
Maximum cross-sectional area~ square feet.. • • 0.1026 
Ratio of maximum cross-sectional area to wing area • • 0.0509 

The wing was constructed of solid steel. The body spar was also 
steel and covered with aluminum to form the body contours. The surfaces 
of the wing and body were polished smooth. 

TESTS .AND PROCEDURE 

Range of Test Variables 

The characteristics of the model (as a function of angle of attack) 
were investigated for a range of Mach numbers from 0.25 to 0.96 in the 
Ames 12-foot pressure wind tunnel and from 0.60 to 0.93 and from 1.20 
to 1.70 in the Ames 6- by 6-foot supersonic wind tunnel. The major 
portion of the data was obta ined at a Reynolds number of 1.5 million. 
Data were also obtained for Reynolds numbers up to 8.0 million at a Mach 
number of 0.25 and up to a Reynolds number of 3.0 million at supersonic 
Mach numbers. 

Reduction of Data 

The test data have been reduced to standard NACA coefficient form. 
Factors which could affect the accuracy of these results and the 
corrections applied are discussed in the following paragraphs. 

Tunnel-wall interference.- Corrections to the subsonic results for 
the induced effects of the tunnel walls resulting from lift on the model 
were made according to the methods of reference 6. The numerical values 
of these corrections (which were added to the uncorrected data) were, 
for the results from the 12-foot wind tunnel: 

.. 
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and, for the results from the 6- by 6-foot wind tunnel: 

ffi = 0.47 CL 

~D = 0.0081 ~2 

No correc~ions were made to the pitching-moment coefficients. 

5 

The effects of constriction of the flow at subsonic speeds by the 
tunnel walls were taken into account by the me~L~d of reference 7. This 
correction was calculated for conditions at zero angle of attack and was 
applied throughout the angle-of-attack range. A~ a Mach number of 0.96 
in the 12-foot wind tunnel, this correction amounted to a I-percent 
increase in the Mach number over that determined from a calibration of 
the wind tunnel without a model in place. In the 6- by 6-foot wind 
tunnel at a Mach number of 0.93, the similar correction was 3 percent. 

For the tests at supersonic speeds, the reflection from the tunnel 
walls of the Mach wave originating at the nose of the body did not cross 
the model. No corrections were required, therefore, for tunnel-wall 
effects. 

stream variations.- Calibration of the l2-foot wind tunnel h~s 
shown that in the test region the stream inclination determined from 
tests of a wing spanning the tunnel, with the support system at 00 angle 
of attack, is less than 0.080 • The variation of static pressure is less 
than 0.2 percent of the dynamic pressure. No correction for the effect 
of these stream variations was made. 

Tests at subsonic speeds in the 6- by 6-foot supersonic wind tunnel 
of the present symmetrical model in both the normal and the inverted 
positions have indicated no stream curvature or inclination in the pitch 
plane of the model. No measurements have been made, however, of the 
stream curvature in the yaw plane. At subsonic speeds, the longitudinal 
variation of static pressure in the region of the model is not known 
accurately at present, but a preliminary survey has indicated that it is 
less than 2 percent of the dynamic pressure. No correction for this 
effect was made. 

A survey of the air stream in the 6- by 6-foot wind tunnel at super
sonic speeds (reference 4) has shown a stream curvature only in the yaw 
plane of the model. The effects of this curvature on the measured char
acteristics of the present model are not known, but are believed to be 
small as judged by the results of reference 8. The survey also indicated 
that there is a static-pressure variation in the test section of suffi
cient magnitude to affect the drag results. A correction was added to 
the measured drag coefficient, therefore, to account for the longitudinal 
buoyancy caused by this static-pressure variation. This correction 
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varied from as much as -0.0016 at a Mach number of 1.20 to +0.0016 at a 
Mach number of 1.70. 

Support interference.- At subsonic speeds, the effects of support 
interference on the aerodynamic characteristics of the model are not 
known. For the present tailless model, it is believed that such effects 
consisted primarily of a change in the pressure at the base of the model. 
In an effort to correct at least partially for this support interference, 
the base pressure was measured and the drag data were adjusted to corre
spond to a base pressure equal to the static pressure of the free stream. 

At supersonic speeds, the effects of support interference of a 
body-sting configuration similar to that of the present model are shown 
by reference 9 to be confined to a change in base pressure. The pre
viously mentioned adjustment of the drag for base pressure, therefore, 
was applied at supersonic speeds. 

Errors introduced by support system.- Clearances between moving 
parts in the support system in the 6- by 6-foot supersonic wind tunnel 
un~er certain conditions permitted the angle of attack to vary as much 
as 0.30 with no change in the angle-of-attack indicator. The clearances 
were discovered after inspection of the data herein showed that the drag 
coefficients were not the same at positive and negative lift coeffi
cients. However, calibration of the angle-of-attack indicator had been 
made in such a manner that the angles of attack and thus the lift and 
drag results were correct at positive lift coefficients. Further proof 
of this fact was· obtained from re-runs at several Mach numbers made in a 
manner to eliminate altogether the effects of the excessive clearance. 
The drag data from these tests (symmetrical about zero lift) agreed with 
those of the former tests at positive lift coefficient, as did the angle 
of attack and lift and pitchi~-moment coefficients. 

Balance.- As the model is pitched in the vertical plane in the 
12-foot wind tunnel, the weight of the model produces a change in the 
measured forces and moments, which for the present tests was significant 
only for the chord-force measurements. The measured chord-force tare 
had a small discontinuity when the chord force reversed direction. 
Since the same discontinuity was present in the uncorrected drag data, 
these data were corrected for this inherent characteristic of the meas
uring system. 

RESULTS 

The results are presented in this report without analysis in order 
to expedite publicati~n. Figure 3 shows the variation 0l lift coeffi
cient with angle of attack and the variation of drag coeffiCient, 



NACA RM A50K24 7 

pitching-moment ccefficient, and lift-drag ratio with lift coefficient 
at a Reynolds number of 1.5 million and at Mach numbers from 0.25 to 
1.70. The effect of Reynolds number on the aerodynamic characteristics 
at Mach numbers of 0.25, 1.20, and 1.53 is shown in figure 4. The 
results presented in figure 3 have been summarized in figure 5 to show 
some important parameters as functions of Mach number. The slope param
eters in this figure have been measured at zero lift. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif. 
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Figure 1.- The model mounted in the 12-root pressure wind tunnel. 
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