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LIFT, DRAG, AND PITCHING MOMENT OF LOW-ASPECT-RATIO WINGS
AT SUBSONIC AND SUPERSONIC SPEEDS — PIANE TAPERED
WING OF ASPECT RATIO 3.1 WITH 3—PERCENT-THICK,
BICONVEX SECTION

By David E. Reese and E. Ray Phelps

SUMMARY

A wing-body combination having a plane tapered wing of aspect ratio
3.1 and 3—percent—thick, biconvex sections in streamwise planes has been
investigated at both subsonic and supersonic Mach numbers. The 1lift,
drag, and pitching moment of the model are presented for Mach numbers
from 0.60 to 0.925 and 1.20 to 1.90 at a Reynolds number of 2.4 million.
Results are also presented for Mach numbers from 0.60 to 0.925 and 1.20
to 1.50 at Reynolds numbers of 1.5 million and 3.8 million.

INTRODUCTION

A research program is in progress at the Ames Aeronautical Iabora—
tory to ascertain experimentally at subsonic and supersonic Mach numbers
the characteristics of wings of interest in the design of high-speed
fighter airplanes. Variations in plan form, twist, camber, and thick—
ness are being investigated. This report is one of a series pertaining
to this program and presents results of tests of a wing—body combination
having a plane tapered wing of aspect ratio 3.1 and 3—percent—thick,
biconvex sections in streamwise planes. Results of other investigations
in this program are presented in references 1 to 6. As in these refer—
ences, the data herein are presented without analysis to expedite publi-—
cation.

NOTATION

b wing span, feet
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e
d
mean aerodynamic chord ——7f————— , feet

c d?)/

length of body including portion removed to accommodate sting,
inches

local wing chord, feet

lift—drag ratio

maximum 1ift—drag ratio

Mach number

free—stream dynamic pressure, pounds per square foot
Reynolds number based on the mean aerodynamic chord
radius of body, inches

maximum body radius, inches

total wing area, including area formed by extending leading
and trailing edges to plane of symmetry, square feet

longitudinal distance from nose of body, inches
distance perpendicular to plane of symmetry, feet

angle of attack of body axis, degrees

drag coefficient Kdrag)
117t coefficient [ Lift
\ a5
pitching—moment coefficient referred to quarter point of mean

pitching moment
asStT

aerodynamic chord <:
slope of the lift curve measured at zero lift, per degree

slope of the pitching—moment curve measured at zero 1lift
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APPARATUS

Wind Tunnel and Equipment

The experimental investigation was conducted in the Ames 6— by
6—foot supersonic wind tunnel. In this wind tunnel, the Mach number can
be varied continuously and the stagnation pressure can be regulated to
maintain a given test Reynolds number. The air is dried to prevent form-
ation of condensation shocks. Further information on this wind tunnel
is presented in reference 7.

The model was sting mounted in the tunnel, the diameter of the
sting being about 82 percent of the diameter of the body base. The
pitch plane of the model support was horizontal. A balance mounted on
the sting support and enclosed within the body of the model was used to
measure the aerodynamic forces and moments on the model. The balance
was the 4—inch, four—component strain—gage balance described in refer—
ence 8.

R Model

A photograph of the model mounted in the Ames 6— by 6—foot wind
tunnel is shown in figure 1. Plan and front views of the model and
certain model dimensions are given in figure 2. Other important geo—
metric characteristics of the model are as follows:

Wing
AE pe et Rt O I e e e S i S il
Taper ratio . . . ol e N oo e O 39
Airfoil section (streamw1se) " 3—percent—thick biconvex
Total area, S, square feet . . ER R Sy
Mean aerodynamic chord, ¢, Pact Wt v T 0.944
DihedraliSdegrees I TEENENETE T e R 0
BEMEIR 5 5 5 0 0 6 06 b O d 8 o 50 hn s asd 6o o EEE
LAl BIERYEEE 5 5 g 0 0 o oG o o0 s o e A g o . o)
Incidence, degrees . « o« » o » A s o 0]
Distance, wing—chord plane to body axis,  Teekui et i 0
Body
Fineness ratio (based upon length 1; fig. 2) . . . 12.5
¥ Cross—section shape . . . . . Sl s sl el e e o e C eVl Si

Maximum cross—sectional area, square Fee bl S o o it s ORIl s)
Ratio of maximum cross—sectional area to wing area . 0.0509
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The wing was constructed of solid steel. The body spar was also g
steel and covered with aluminum to form the body contours. The surfaces
of the wing and body were polished smooth.

TESTS AND PROCEDURE

Range of Test Variables

The characteristics of the model (as a function of angle of attack)
were investigated for a range of Mach numbers from 0.60 to 0.925 and
from 1.20 to 1.90. The major portion of the data was obtained at a
Reynolds number of 2.4 million, Data were also obtained for Reynolds
numbers of 1.5 million and 3.8 million at Mach numbers up to 1.50.

Reduction of Data

The test data have been reduced to standard NACA coefficient form. -
Factors which could affect the accuracy of these results and the correc—
tions applied are discussed in the following paragraphs.

Tunnel—-wall interference.— Corrections to the subsonic results for
induced effects of the tunnel walls resulting from lift on the model were
made according to the methods of reference 9. The numerical values of
these corrections (which were added to the uncorrected data) were:

JA'e?

0.57 Cy,

ACpy = 0.0100 Cp?

1l

No corrections were made to the pitching—moment coefficients.

The effects of constriction of the flow at subsonic speeds by the
tunnel walls were taken into account by the method of reference 10. This
correction was calculated for conditions at zero angle of attack and was
applied throughout the angle—of-attack range. At a Mach number of 0.925,
this correction amounted to a 3—percent increase in the Mach number over
that determined from a calibration of the wind tunnel without a model in
place.

For the tests at supersonic speeds, the reflection from the tunnel
walls of the Mach wave originating at the nose of the body did not cross
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the model. No corrections were required, therefore, for tunnel-wall
effects.

Stream variations.— Tests at subsonic speeds in the 6— by 6—foot
supersonic wind tunnel of the present symmetrical model in both the nor—
mal and the inverted positions have indicated no stream curvature or
inclination in the pitch plane of the model. No measurements have been
made, however, of the stream curvature in the yaw plane. At subsonic
speeds, the longitudinal variation of static pressure in the region of
the model is not known accurately at present, but a preliminary survey
has indicated that it is less than 2 percent of the dynamic pressure.

No correction for this effect was made.

A survey of the air stream at supersonic speeds (reference 7) has
shown a stream curvature only in the yaw plane of the model. The effects
of this curvature on the measured characteristics of the present model
are not known, but are believed to be small as judged by the results of
reference 11l. The survey also indicated that there is a static—pressure
variation in the test section of sufficient magnitude to affect the drag
results. A correction was added to the measured drag coefficient, there—
fore, to account for the longitudinal buoyancy caused by this static—
pressure variation. This correction varied from as much as —0.0007 at
a Mach number of 1.30 to +0,0006 at a Mach number of 1.70.

Support interference.— At subsonic speeds, the effects of support
interference on the aerodynamic characteristics of the model are not
known. For the present tailless model, it is believed that such effects
consisted primarily of a change in the pressure at the base of the model.
In an effort to correct at least partially for this support interference,
the base pressure was measured and the drag data were adjusted to corre—
spond to a base pressure equal to the static pressure of the free stream.

At supersonic speeds, the effects of support interference of a body—
sting configuration similar to that of the present model are shown by
reference 12 to be confined to a change in base pressure. The previously
mentioned adjustment of the drag for base pressure, therefore, was applied
at supersonic speeds.

RESULTS

The results are presented in this report without analysis in order
to expedite publication. Figure 3 shows the variation of 1lift coefficient
with angle of attack and the variation of drag coefficient, pitching—
moment coefficient, and lift—drag ratio with 1ift coefficient at a
Reynolds number of 2.4 million and at Mach numbers from 0.60 to 1.90.
Similar characteristics are shown in figures 4 and 5 for Reynolds numbers
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of 1.5 million and 3.8 million, respectively, and Mach numbers from 0.60
to 1.50. The results presented in figure 3 have been summarized in fig—
ure 6 to show some important parameters as functions of Mach number. The
slope parameters in this figure have been measured at zero 1ift.

Ames Aeronautical Laboratory,

National Advisory Committee for Aeronautics,
Moffett Field, Calif.
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Figure 1.— Model in the Ames 6— by 6~foot supersonic wind tunnel.
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Figure 3.— The variation of the aerodynamic characteristics with [lift coefficient at various Mach numbers.

Reynolds number, 2.4 million.
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