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NATIONAL ADVISORY COMMIT'lEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

INVESTIGATION IN THE AMES 12-F00T FRESSURE WIND TUNNEL OF A 

MODEL HORIZONTAL TAIL OF ASPECT RATIO 3 AND TAPER RATIO 

0.5 HAVING THE QUARTER-CHORD LINE SWEPr BA.CK 450 

By Carl D. Kolbe and Angelo Bandettini 

SUMMARY 

An investiga~ion has been made to evaluate the effect of Reynolds 
number and Mach number on the aerodynamic characteristics of a horizon
tal tail of aspect ratio 3 equipped with a plain, sealed, full-span 
elevator. The line joining the quarter-chord points of the airfoil sec
tions was swept back 450 and the sections perpendicular to this line were 
the NACA 64AOIO. 

Increasing the Reynolds number from 2,000,000 to 18,000,000 at a 
Mach number of 0.25 resulted in a sizable reduction in the drag coeffi
cient at moderate to high lift coefficients. Within this range of 
Reynolds numbers the lift characteristics of the horizontal tail were 
little affected by dynamic scale, but the hinge-moment and pitching
moment characteristics of the tail were affected by changes in the 
Reynolds number, especially at the higher angles of attack or elevator 
deflections • 

Increasing the Mach number from 0.25 to 0.94 for constant Reynolds 
numbers of 2,000,000 and 4,000,000 caused an increase in the lift-curve 
s]ope and in the elevator effectiveness. In general, the hinge-moment 
coefficient resulting from either angle of attack or elevator deflection 
increased in magnitude with increasing Mach number. The Mach number at 
which rapid changes in the elevator hinge-moment coefficient occurred was 
dependent upon the angle of attack and the elevator deflection. 

INTRODUCTION 

A systematic investigation has been undertaken at the Ames Aero
nautical Laboratory to determine the effects of plan form on the 
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control-effectiveness and the hinge-moment parameters of horizontal tails 
having full-span trailing-edge flaps. References 1 through 7 present 
results of wind-tunnel tests of both swept and unswept horizontal tails 
of several aspect ratios, all having the same taper ratio and airfoil 
section as the subject model. 

As a part of this investigation the tests reported herein were con
ducted to evaluate the effects of compressibility and of Reynolds number 
on the control-surface characteristics of a horizontal tail having 450 of 
sweepback. Since this model also represents a wing with a full-span 
flap, drag and pitching-moment data are included in addition to the lift 
and hinge-moment data. 
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NOTATION 

aspect ratio ( bS2 ) 

semispan, measured perpendicular to the plane of symmetry, 
feet 

drag coefficient ( 
drag 

qS ) 
(

elevator hinge moment ) 
elevator hinge-moment coefficient 

2q MA 

lift coefficient (l~~t) 

pitching-moment coefficient about the quarter point of the mean 

(
pi tching moment ) aerodynamic chord 

qSc 

chord, measured parallel to the plane of symmetry, feet 

mean aerodynamic chord (f~~~/~/:_C_2_d_y ___ ) feet 

fo c dy 

chord of elevator behind the hinge line measured perpendicular 
to the hinge line, feet 

maximum lift-to-drag ratio 

Mach number 
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q 

R 

s 

y 

a. 

first moment about the hinge line of the elevator area behind 
the hinge line, feet cubed 

pressure coefficient across the elevator-nose seal (pressure 
below the seal minus the pressure above the seal divided by 
the free-stream dynamic pressure) 

free-stream dynamic pressure, pounds per square foot 

Reynolds number, based on the mean aerodynamic chord 

horizontal-tail area, square feet 

lateral distance perpendicular to the plane of symmetry, feet 

corrected angle of attack} degrees 

au angle of attack, uncorrected for tunnel-wall interference and 
angle-of-attack counter correction, degrees 

I3A reduced aspect ratio (j l~ A) 

elevator deflection (positive to increase lift) measured in a 
plane normal to the elevator hinge line, degrees 

3 



4 NACA RM A5lD02 

The subscripts after the parentheses represent the factors held constant 
during the measurement of the parameters. 

MODEL 

The model used in this investigation represented a horizontal tail 
of aspect ratio 3 and taper ratio 0.5. The geometric properties of the 
model are shown in figure 1. The airfoil section was the NACA 64A010 
(table I) in planes inclined 450 to the plane of symmetry. The line 
joining the quarter-chord points of the airfoil sections was swept back 
450 • This line was at 29.63 percent of the chord parallel to the plane 
of symmetry (table II). The tip of the model horizontal tail was formed 
by a half body having a diameter equal to the corresponding thickness of 
the tip section. 

The stabilizer of the model was constructed of a tin-bismuth com
pound bonded to a laminated steel spar. The model was equipped with a 
full-span, radius-nose, sealed elevator machined from solid steel. The 
chord of the elevator was 30 percent of the NACA 64A010 section chord. 
The ratio of the elevator area behind the hinge line to the total area of 
the model was 0.253. The model was mounted vertically with the tunnel 
floor serving as a reflection plane as shown in figure 2. The gap 
between the elevator and the tunnel floor was approximately 0.02 inch 
when the elevator was undeflected. The juncture between the stabilizer 
and the tunnel floor was sealed with a rubber gasket. The elevator was 
attached to the stabilizer by three hinges . One hinge was located 6.4 
percent of the semispan below the plane of symmetry, while the othe"r two 
were at 50.2 and 90.6 percent of the semispan above the plane of symmetry. 
The latter two hinges and a close-fitting block at the plane of symmetry 
divided the balance chamber into three separate sections. The gap 
between the elevator nose and the stabilizer was sealed with a rubber 
dlaphram. This balance chamber seal was closely fitted to the ends of 
each chamber to reduce leakage to a minimum. Details of the balance 
chamber are shown in figure 1. The turntable, to which the model was 
attached, was directly connected to the force-measuring apparatus. The 
elevator hinge moments were measured by means of a resistance-type 
electric strain gage located immediately under the lower elevator hinge. 
The elevator was positioned while the tunnel was in operation by a 
remotely controlled electric drive motor mounted below the tunnel floor. 

TESTS 

Tests of the model horizontal tail were conducted in two different 
sequences. In the first series of tests, the elevator deflection was 
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maintained at constant values and the angle of attack was varied from 
-100 to 300 • For the second series of tests, the angle of attack was 
maintained at 00 and the elevator deflection was varied from -160 to 160 • 

These angle ranges were reduced at the higher Mach numbers and Reynolds 
numbers where wind-tunnel power limitations prevented testing at the 
higher angles. The aeroelastic effects on the model due to angle of 
attack or elevator deflection are believed to be small. The elevator 
deflections referred to in this report were measured in a plane perpen
dicular to the elevator-hinge line. The following equation relates 
these elevator deflections to the deflection in streamwise planes: 

cos Ah tan 01. 
where 

01 I elevator deflection measured in the streamwise direction 

Ah sweep angle of the elevator hinge line, 38.660 

Tests to Evaluate the Effects of Reynolds Number 

The effects of Reynolds number on the lift, drag, pitching moment, 
and elevator hinge moment were measured at a Mach number of 0.25 for 
Reynolds numbers of 2,000,000, 4,000,000, 8,000,000, 12,000,000, and 
18,000,000. At higher Mach numbers, data were obtained at Reynolds 
~umbers of 2,000,000 and 4,000,000. The scope of the investigation that 
was made to study the effects of Reynolds number on the subject model is 
presented in the following table: 

Coefficients M R au ° 
CL,Ch,Cm,CD 0.25 2,000,000 -100 to 30

0 00 ±200, ±300 

to 18,000,000 
, 

CL,Ch,Cm .25 
2,000,000 

00 -160 to 160 
to 18,000,000 

CL,Ch ,Cm,CD 
0.60, 0.80, 2,000,000 _100 to 300 00 

0·90, 0.94 and 4,000,000 

CL,Ch,C!Il 
0.60, 0.80, 2,000,000 

00 -160 to 160 
0.90, 0.94 and 4,000,000 
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Tests to Evaluate the Effects of Mach Number 

The effects of compressibility on the lift, drag, pitching moment, 
hinge moment, and the pressure difference across the elevator-nose seal 
were measured at a Reynolds number of 4,000,000 at Mach numbers of 0.25, 
0.60, 0.80, 0. 85, 0.90, 0. 92, and 0. 94 . The scope of this phase of the 
investigation is indicated in the following table: 

Coefficients M au 0 

0.25 -100 to 300 60 to -300 

.60 -100 to 300 60 to - 300 

.80 -100 to 180 60 to -30° 
CL, Ch , cm' 

6° to - 30° 
and .6.p 

.85 -100 to 140 

CD' q .90 -100 to 120 60 to -300 

.92 -100 to 120 6° to - 300 

.94 -80 to 8° 6° to -250 

0.25,0.60, 
CL, Ch , Cm 0.80,0.90, 00 16° to _160 

and 0.94 

Tests to Evaluate the Effects of Standard Roughness and of 
the Ele~ator-Nose Seal 

Tests were also made to evaluate the separate effects of standard 
leading-edge roughness (reference 8) and of removing the elevator-nose 
seal on the lift, drag, pitching-moment, and elevator hinge-moment 
characteristics. Data were obtained at a Reynolds number of 4,000,000 
over the angle-of-attack range at Mach numbers up to 0.94 and over the 
elevator deflection range at 0° angle of attack for Mach numbers of 0.25, 
0.60, 0. 80, 0.90, and 0.94. 

CORRECTIONS TO DATA 

The data were corrected for the effects of tunnel-wall interference 
resulting from lift on the model by the method of reference 9, using the 
theoretical span loading calculated by the methods of reference 10. The 
corrections that were added to the angle of attack and the drag coeffi
cient were: 
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2 
~D = 0.0109 CL 

7 

No attempt was made to separate the tunnel-wall-interference effects 
resulting from lift due to elevator deflection from those resulting from 
lift due to angle of attack. No corrections were applied to the hinge
mo:roont or the pitching-moment data, but the effects of tunnel-wall inter
ference on these data are believed to be small. 

Certain data in this report are presented for values of uncorrected 
angle of attack au. The relation between the corrected and uncorrected 
angle of attack is as follows: 

a. = 0.99 au + 6.0. 

The constant 0.99 is the ratio between the geometric angle of attack and 
the uncorrected reading of the angle-of-attack counter, and the factor 
6.0. i s the correction for the tunnel-wall interference. The uncorrected 
angle of attack does not differ from the corrected value by more than 0.80 

for any of the test data presented. 

The constriction effects due to the presence of the tunnel walls 
were evaluated by the method of reference 11 and were not modified to 
allow for the effect of sweep. The following table shows the magnitude 
of these corrections: 

Corrected Uncorrected qcorrected 
Mach number Mach number quncorrected 

0.250 0.250 1.003 
.600 .599 1.004 
.800 .795 1.008 
.850 .843 1.010 
.900 .888 1.014 
.920 .905 1.018 
.940 .920 1.022 

Pressures measured at orifices in the wind-tunnel walls were used to 
determine the test conditions at which wind-tunnel choking may have 
influenced the data. The pOSitions of the tunnel-wall pressure orifices 
relative to the model are shown in figure 3. It was noted that a local 
Mach number of unity WaS attained at the wind-tunnel wall at a free-stream 
Mach number considerably less than the maximum free-stream Mach number 
that could be obtained. This suggests that partial choking of the tunnel 
existed at Mach numbers below that for which a normal shock wave extended 

I 

~ 
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across the test section. Some of the data were obtained at test condi
tions for which the local Mach number at the ~ind-tunnel wall exceeded 
unity. These data are included in the figures but are faired with 
dotted curves to indicate that they may have been influenced by wind
tunnel choking. 

A~proximate corrections to the drag were made to compensate for the 
drag force on the exposed turntable. These corrections were determined 
from tests with the model removed from the turntable. The corrections 
are presented in the following table: 

R x 10-6 M CDt 
2.0 0.25 0.0028 
2.0 .60 .0030 
2.0 .80 .0033 
2.0 .90 .0036 
2.0 .94 .0038 
4.0 .25 .0028 
4.0 .60 .0030 
4.0 .80 .0033 
4.0 .85 .0034 
4.0 .90 .0036 
4.0 .92 .0037 
4.0 .94 .0038 
8.0 .25 .0024 

12.0 .25 .0023 
18.0 .25 .0022 

No attempt was made to evaluate tares due to possible interference 
between the model and the turntable. 

RESULTS AND DISCUSSION 

The effects of Reynolds number on the low-speed aerodynamic charac
teristics of the model are shown in figures 4 through 8 and arB summarized 
in figures 9 and 10. The effects of increasing the Reynolds number from 
2,000,000 to 4,000,000 at Mach numbers up to 0.94 are shown in figures 11 
and 12. The results of tests conducted to evaluate the effects of Mach 
number at a Reynolds number of 4,000,000 are presented in figures 13 
through 21 and are summarized in figures 22 -and 23. 

Data from tests conducted to evaluate the separate effects of 
leading-edge roughness and of the elevator-nose seal are presented in 
figures 24 and 25 and are summarized in figure 26. 

I 
~ 
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Effect of Reynolds Number 

Mach number 0.25.- The effects of increasing the Reynolds number 
from 2,000,000 to 18,000,000 at a Mach number of 0.25 on the lift, drag, 
pitching-moment, and elevator hinge-moment characteristics are presented 
in figures 4 through 8. In general, the effects of Reynolds number on 
the aerodynamic characteristics of the model were small. At the higher 
angles of attack or elevator deflections, increasing the Reynolds number 
delayed the onset of separation on the wing to higher values of lift 
coefficient as evidenced by the drag data of figure 7. This same effect. 
of Reynolds number is noted in the hinge-moment data of figure 5. 

The effects of Reynolds number on the lift and moment parameters of 
the horizontal tail are summarized in figure 9. These parameters, which 
are measured at zero lift, are further evidence of the lack of dynamic
scale effect on the characteristics of this model at low lift coeffi
cients. The effect of Reynolds number on the drag of the model is sunr
marized in figure 10. These data show that, at moderate to high lift 
coeffiCients, increasing the Reynolds number resulted in sizable reduc
tions in the drag coefficient. 

Mach numbers 0.60, 0.80, 0.90, 0.94.- The effects of an increase in 
Reynolds number from 2,000,000 to 4,000,000 at Mach numbers up to 0.94 on 
the aerodynamic characteristics of the model with the elevator undeflected 
are presented in figure 11. The effects of increasing Reynolds number on 
lift, hinge-moment, and pitching-moment coefficients as functions of 
elevator deflection for 00 angle of attack are presented in figure 12. 
In general, the increase in Reynolds number from 2,000,000 to 4,000,000 
caused only small changes in the aerodynamic characteristics of the model. 

Effect of Mach Number 

The aerodynamic characteristics of the horizontal tail at a Reynolds 
number of 4,000,000 are presented in figures 13 through 21 for Mach num
bers from 0.25 to 0.94. The effects of Mach number on the lift, hinge
moment, pitching-moment, and drag characteristics are summarized in 
figures 22 and 23. 

Lift.- The variation of lift coefficient with angle of attack for 
various elevator deflections is presented in figure 13. These data show 
that the elevator was effective in producing changes in lift throughout 
the elevator-deflection and angle-of-attack range. 

-----------
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The variation of lift coefficient with elevator deflection at an 
angle of attack of 00 is presented in figure 14. The range of elevator 
deflection over which the elevator effectiveness remained constant 
decreased with increasing Mach number. 

The variations of the parameters Cta and CLQ with Mach number 
are compared with values predicted from theory in figure 22. The theo
retical variation of C~ with Mach number has been calculated by the 
method of reference 10 and CLQ has been calculated by the method 
described in appendix A. The nethods are based on a simplified lifting
surface concept and are modified to account for the effects of compressi
bility by the Prandtl-<11auert relationship. Being subject to these two 
limitations, the theoretical values are terminated at a Mach number of 
0.85 beyond which Mach number the theory is not believed applicable for 
an airfoil having as low an aspect ratio as the subject model. The 
stabilizer effectiveness parameter Cta increased from 0.049 per degree 
at a Mach number of 0.25 to a value of 0.067 per degree at a Mach number 
of 0.94. The theoretical values of CLa are in good agreement with the 
experimental values at Mach numbers up to 0.85. 

At a Mach number of 0.94, the elevator effectiveness parameter CL5 
had increased approximately 20 percent over the value obtained at a Mach 
number of 0.25. The variation of CL5 with Mach number was predicted by 
means of method 2, reference 12, and was modified to account for the 
effects of compressibility through the application of the Prandtl-<1lauert 
rule. The agreement between the theoretical curve and the experimental 
data in figure 22 is considered good. An explanation of the application 
of the Prandtl-<1lauert rule to the prediction of Cr..o, Clla. and Ch5 is 
given in appendix A. 

Hinge moment.- The variation of elevator hin~oment coefficient 

with angle of attack for various elevator deflections is presented in 
figure 15. Figure 16 presents the variation of elevator hinge-moment 
coefficient with elevator deflection for 00 angle of attack. These two 
figures show that the variation of elevator hinge-moment coefficient was 
approximately linear through 00 angle of attack and 00 elevator deflec
tion for all Mach numbers. Increasing the Mach number to 0.94 resulted 
in an increase in the absolute values of the slopes of the hinge-moment 
curves and a reduction in the angular range over which the hinge-moment 
characteristics were linear. 

The Mach number at which rapid changes occurred in the elevator 
hinge-moment coefficients was dependent upon the elevator deflection and 
angle of attack. This is illustrated in figure l7(a) which presents the 
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variation of elevator hinge-moment coefficient with Mach number for 
several uncorrected angles of attack at 00 elevator deflection and in 
figure 17(b) which presents the variation of elevator hinge-moment coef
ficient with Mach number for several elevator deflections at an uncor
rected angle of attack of 00 • 

The hinge-moment parameters Cba and ChB are presented as a 
function of Mach number in figure 22. The low-speed value of Cba was 
approximately -0.0030 and was little affected by compressibility up to a 
Mach number of 0.90. With further increase in Mach number the value of 
Cha changed rapidly, attaining a value of -0.0040 at a Mach number of 
0.94. At low Mach numbers, the value of Cho was approximately -0.0070. 
The value of Cho became more negative with increasing Mach number, 
particularly above 0.90, and at a Mach number of 0.94 had attained a 
value of -0.0095. Method 2 of reference 12, modified to account for the 
effects of compressibility, was used to predict the variations of Cba 
and Clm with Mach number. These data are presented as dashed curves in 
figure 22. The agreement of the theoretical values of Cba with the 
experimental data is excellent. The theory predicts a value of ChB 
which is less negative than the experimental value, but the predicted 
variation of Cho with Mach number is in good agreement with the 
experimental data. 

Pressure difference across the elevator-nose seal.- Figure 18 shows 
the effects of elevator deflection and angle of attack on the pressure 
difference across the elevator-nose seal at various Mach numbers. The 
differences in balancing pressure at the various spanwise stations are 
believed to be the result of the spanwise distribution of loading, 
leakage around the ends of the seals at the hinges, and imperfections in 
the alinement of the balance-chamber cover plates. 

Inspection of the data in figure 18 shows that the rate of change of 
the pressure coefficient across the elevator-nose seal with elevator 
deflection decreased at large angles of attack or elevator deflections. 
Increasing the Mach number decreased the range of angles at which 
increases in balancing pressures accompanied increases in deflection. 
These data indicate that, if the elevator were equipped with a sealed 
internal nose balance, the resulting hinge-moment characteristics of the 
balanced elevator would be nonlinear at the higher Mach numbers and that 
only a small amount of balancing effectiveness would exist at elevator 
deflections greater than about 60 or 80 at Mach numbers above 0.90. 

Pitching moment.- The pitching-moment coefficients about the quarter 
point of the wing mean aerodynamic chord are presented in figure 19 as 
functions of lift coefficient. The variation of pitching-moment coeffi
cient with elevator deflection at 00 angle of attack is presented in 
figure 20. 
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The data presented in figures 19 and 20 are summarized in figure 22 
where CmcL and Cmo are presented as functions of Mach number. Since 

the subject model has neither camber nor twist, the values of CmcL 

presented in figure 22 are indicative of the chordwise position of the 
aerodynamic center. As the Mach number was increased above 0.25, the 
aerodynamic center moved rearward, the rate of rearward movement increas
ing rapidly as the Mach number was increased above 0.80. Calculations by 
the method of reference 10 indicate a value of C

mcL 
which is zero for a 

Mach number of zero with a slight increase to a positive value as the 
Mach number is increased. This theory considers only the effect of com
pressibility on the spanwise location of the center of pressure. The 
disparity between the theoretical and experimental values of C

mcL 
may 

be due to differences between the theoretical and the experimental span
wise location of the center of pressure or to the fact that the theory 
does not take into account the effects of compressibility on the chord
wise location of the wing center of pressure. 

The pitching-moment effectiveness parameter CIDB changed from 

-0.0073 at a ~ch number of 0.25 to -0.0127 at a Mach number of 0. 94. 
The values of Crne predicted by the method described in appendix Bare 

shown in figure 22. The agreement between theory and experiment is good
at the lower Mach numbers, but the measured effects of compressibility 
are greater than those predicted by the theory. 

Drag.- The drag data of figure 21 are summarized in figure 23 where 

the drag coefficient for constant lift coefficients, maximum lift-to-drag 
ratiO, and the lift coefficient at which the maximum lift-drag ratio 
occurred are presented as functions of Mach number for 00 elevator 
deflection. The Mach number for drag divergence, defined as the Mach 
number at which dCD/dM = 0.10, was 0.93 for a lift coefficient of 0.2. 
A maximum lift-to-drag ratiO of 18 .0 was obtained at Mach numbers up to 
0. 60. The value of the maximum lift-to-drag ratio decreased with 
further increase in Mach number to a value of approximately 12 at a Mach 
number of 0.94. The lift coefficient for maximum lift-to-drag ratio was 
approximately 0.2 throughout the Mach number range. 

Effects of Leading-Edge Roughness and Elevator-Nose Seal 

The independent effects of leading-edge roughness and removal of 
the elevator-nose seal are presented in figures 24 and 25 . ThE; data 
presented in these figures are summarized in figure 26 . The results of 
tests without leading-edge roughness and ~ith the elevator nose sealed 
are presented i n all these figures for purposes of comparison. 
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The addition of leading-edge roughness resulted in a slight reduc
tion in the lift-curve slope near zero lift and in a reduction in maximum 
lift coefficient (fig. 24(a)). The elevator effectiveness was reduced 
(fig. 25(a)) when roughness was applied to the leading edge. The largest 
reduction in the stabilizer and elevator effectiveness occurred at a Mach 
number of 0.94 where cta and CLo were reduced by 0.009 per degree and 
0.006 per degree, respectively (fig. 26(a)). It can be seen in 
figure 26(a) that leading-edge roughness caused a reduction in the 
absolute value of both Cha and Cho. The magnitude of this reduction 
increased with increasing Mach number. 

The effects of leading-edge roughness on the pitching-moment effec
tiveness of the elevator Crne and on the pitching-moment-curve slope 

CmcL are presented in figure 26(b). Leading-edge roughness caused a 

reduction in the effectiveness of the elevator in producing pitching 
moment; the magnitude of this reduction increased with increasing Mach 
number. The effect of compressibility on the pitching-moment-curve slope 
at zero lift was reduced by the addition of leading-edge roughness to the 
modAl. As would be expected, application of leading-edge roughness 
resulted in an increase in drag. Figures 24(d) and 26(b) show that the 
increase of minimum drag coefficient due to leading-edge roughness at 
a = 00 and CL = 0 was about 0.0040 at low speed and about 0.0030 at 

a Mach number of 0.94. 

It can be seen in figure 26(a) that unsealing the elevator nose 
caused slight reductions in C~ and CLa but had no important effects 
on the hinge-moment-curve slopes (fig. 26). Figure 26(b) shows that 
unsealing the elevator nose had little effect on the pitching-momnt 
characteristics of the horizontal tailor on the minimum drag. 

CONCLUDING REMARKS 

The results of wind-tunnel tests conducted to eV8.1uate the inde
pendent effects of Reynolds number and Mach number on the aerodynamic 
characteristics of a horizontal tail of aspect ratio 3.0 with the 
quarter-chord line swept back 450 have been presented. 

Increasing the Reynolds number from 2,000,000 to 18,000,000 at a 
Mach number of 0.25 resulted in a sizable reduction in the drag coeffi
cient at moderate to high lift coefficients. The lift characteristics of 
the horizontal tail were little affected by this change in Reynolds 
number, but the hinge-moment and pitching-moment characteristics of the 
tail were affected by changes in Reynolds number, especially at the 
higher angles of attack or elevator deflections. 
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As the Mach number was increased from 0.25 to 0.94 the lift~urve 
slope increased 36 percent, the lift effectiveness of the elevator 
increased 20 percent, the pitching-moment effectiveness of the elevator 
increased 74 percent, and the absolute magnitude of the variation of 
elevator hinge-moment coefficient with either angle of attack or elevator 
deflection increased about 35 percent. These increases were measured 
through 00 angle of attack and 00 elevator deflection. The Mach number 
at which compressibility effects resulted in large changes in the 
elevator hinge-moment coefficient was dependent upon the angle of attack 
and the elevator deflection. Increasing the Mach number from 0.25 to 
0.94 also caused a reduction in the maximum lift-to-drag ratio of from 
18 to 12 and a small rearward movement of the aerodynamic center. 

Measurements of the pressure difference across the elevator-nose 
seal indicate that, if the elevator were equipped with a sealed internal 
nose balance, the resulting hinge-moment characteristics of the balanced 
elevator would be nonlinear at the higher Mach numbers and that only a 
small amount of balancing effectiveness would exist at elevator deflec
tions greater than about 60 or 80 at Mach numbers above 0.90. 

The addition of leading-edge roughness caused reductions in lift
curve slope, elevator effectiveness, stability, and elevator hinge
moment parameters. The magnitude of these reductions increased witb 
increasing Mach number. 

Removal of the elevator-nose seal caused slight reductions in the 
elevator effectiveness but had no important effects on the lift~urV'e 
slope, stability, drag, or hinge-moment parameters. 

Ames Aeronautical Laboratory 
National AdviSOry Committee for Aeronautics 

Moffett Field, Calif. 
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APPENDIX A 

APPLICATION OF TEE ffiANDTL-GIAOERT FACTOR TO TEE EQUATIONS FOR 

The equations of reference 12, method 2, have been modified through 
the application of the Prandtl-Glauert rule to account for first-order 
compressibility effects. 

The method consists of determining the incompressible-flow charac
teristics of an equivalent wing the lateral dimensions of which are 

reduced in the ratio of ~l - M2 : 1. The aspect ratio is thus reduced 
and the tangent of the sweep angle is increased as the Mach number is 
increased. The incompressible-flow characteristics of the equivalent 
wing thus derived are then modified to account for the effects of com
pressibility through the application of the Prandtl-Glauert rule. The 
following are the equations of reference 12, method 2, as modified to 
account for the effects of compressibility • 

(AI) 

where the subscripts 

i average induced value 

e characteristics of the equivalent wing for incompressible flow 

h hinge line 

c modification to account for the effects of compressibility 

Since the term cos Ah merely relates the elevator deflection in 
streamwise planes to the elevator deflection in planes perpendicular to 
the hinge line, the value of A h used in the equations is that of the 

actual wing rather than that of the equivalent wing. 

cos Ae (A2) 

where the subscripts 
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18 lifting surfaces 

sc induced camber or streamline curvature 

cos Ae cos Ah + 

where 

In the three-dimensional linearized-compressible flow theory used 
herein to account for the effects of compressibility, the actual aspect 
ratio becomes an effective aspect ratio or reduced aspect ratio ~A 

which approaches zero as M approaches 1.0. Analysis of the simplified 
lifting-£urface theory indicates that when ~A becomes less than approx
imately 2 the predicted theoretical values will diverge rapidly from the 
experimental values. For the subject airfoil, the reduced aspect ratio 
becomes 2 at a Mach number of about 0.80. Prediction of the airfoil 
characteristics is not attempted at Mach number above 0.85. The reduce~ 
aspect ratio ~A is discussed in detail in reference 13. 

--------------~ 
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APPENDIX B 

CALCUIATION OF THE FIAP PITCHING--{.10MENT EFFECTIVENESS Cmo 

FOR A SWEPI'-BACK AIRFOIL 

In order to (1etermine the pitching moment caused by the deflec
tion of a flap on a swept-back airfoil, the position of the center of 
pressure must be established. The longitudinal position of the air
foil center of pressure with respect to the quarter point of the mean 
aerodynamic chord is established through the use of section data, 
simple sweep theory, and a correction to the location of the section 
center of pressure for the effects of finite aspect ratio. The span
wise position of the center of pressure with respect to the plane of 
symmetry can be established from consideration of the spanwise dis
tribution of the lift as affected by the deflection of a control 
surface. 

Reference 13 presents a method whereby the spanwise loading due 
to flap deflection can be found for wings having a constant sweep of 
the quarter-chord line. This reference shows that, for a wing having 
a constant-percent chord, full-span control surface, the spanwise 
position of the center of pressure of the lift due to flap deflection 
is cOincident with the spanwise center of pressure due to angle of 
attack. Thus, the spanwise location of the center of pressure, for 
the subject model, may be calculated by the WeisSinger method. 

The longitudinal position of the wing center of pressure must 
be determined by less direct means. The known characteristics of 
the reference section, the NACA 64A010, measured in planes perpen
dicular to a line swept back 450 are used. This line is the locus 
of the quarter-chord points of the refere-nce sections. The center 
of pressure due to flap deflection ~or an NACA 64A010 airfoil sec
tion having a 0.3O-chord, plain flap is located at 0.40 chord 
(reference 14). When a linear variation of Cm with CL at 
CL = 0 and Cm = 0 is assumed, the moment equation referred to 
the quarter-chord point of the airfoil section is 

17 

(Bl) 

J 
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where the subscript 0 indicates the value for two-dimensional flow. 
For a finite wing, use is made of equation 1 of reference 15 

where 

a ' 
=.sL ( c • p • f ' - O. 25) + O. 25 
au 0 

center of pressure location of incremental lift load 
due to flap deflection, fraction of chord of sec
tions parallel to the plane of symmetry 

center of pressure location, fraction of chord of 
section parallel to the plane of symmetry 

lift-curve slope of sections parallel to the plane of 
symmetry 

theoretical lift-curve slope of the finite wing, 
computed by the method of reference 10 for incom
pressible flow 

(E2) 

The section lift-curve slope of a swept wing of infinite span may 
be estimated, from simple sweep theory, by the following expression 

(B3) 

The geometric relationship between the chordwise center-of-pressure 
position on a tapered swept-back wing expressed as a fraction of a chord 
parallel to the plane of symmetry in terms of a fraction of a chord 
inclined at the angle of sweepback l\. is 



(1 tan2 A-tan A tan T) 
c·p·o + 1 + tan A tan T 

c .P·fo ' = ( tan A tan a-tan2 A) t A( tan A-tan T + tan a-tan A ) 1 - + c . p . an 
1 + tan a tan A 0 1 + tan A tan T 1 + tan a tan A 

(B4) 

where 

a sweep of the leading edge of the finite-span wing with respect to a perpendicular to the 
plane of symmetry, degrees 

A sweep of the locus of the quarter-chord points of the 64AoIO sections, with respect to a 
perpendi cular to the plane of symmetry, degree s 

T sweep of the trailing edge of the finite-span wing with respect to a perpendicular to the 
plane of symmetry, degrees 

By substitution of the values obtained for ao ' and c.P'f' from equations (B3) and (B4), 
o 

respectively, in equation (B2), this equation can then be rewritten as: 

t = C .• P·fl 
ao cos A 

au 

0. 25 

c . • (1 + tan2 A-tan A tan T ') 
POl + tan A tan T 

r;. + tan A tan a-tan
2 

A) + c .p. tan A~ tan A-tan T + 
\ 1 - tan a tan A 0 ' \1 + tan A tan T 

+ 0. 25 

tan a-tan A _\ 
1 + tan a tan lJ 

(B5) 

~ 
~ 
!:rl 
~ 

:x:
\Jl 

t1 
o 
f\) 

~ 
\0 
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Through solution of equation (B5) a constant-percent chord line approxi
mating the locus of the centerf of pressure of sections parallel to the 
plane of symmetry was established. The effect of finite aspect ratio on 
the slope of this line near the root and tip sections is neglected. The 
wing center of pressure is defined as the point of intersection of the 
locus of the section centers of pressure with a chord line (taken paral
lel to the plane of symmetry) that passes through the spanwise center of 
pressure (fig. 27). 

Pitching moments for a wing of finite aspect ratio are referred to 
an axis that passes through the quarter point of the mean aerodynamic 
chord and is perpendicular to the plane of symmetry. Therefore, in 
order to present the pitching moment in terms of a percent of the mean 
aerodynamic chord, it is necessary to consider the change in percent 
local chord that is introduced when the airfoil center of pressure is 
projected to the mean aerodynamic chord (fig. 27). This change in chord
wise position is calculated from the relation 

where 

Yc.p. 

Yc 

x tan W (B6) 

lateral distance to the wing center of pressure measured perpen
dicularly from the plane of symmetry, feet 

lateral distance to the mean aerodynamic chord measured perpen
dicularly from the plane of symmetry, feet 

sweep of the locus of the section centers of pressure due to flap 
deflection with respect to a perpendicular to the plane of 
symmetry, degrees 

x fraction of the mean aerodynamic chord 

The longitudinal distance to the wing center of pressure on the 
mean aerodynamic chord X measured from the leading edge of the mean 
aerodynamic chord and expressed as a fraction of the mean aerodynamic 
chord can be written as: 

where c.P.fl t and x, defined by equations (B5) and (~), respectively, 
are both fractions of the mean aerodynamic chord. 

If moments are taken about the quarter point of the mean aerodynamic 
chord of the finite wing, the equation can be written as 

Cmo •
25c 

= - CL (X - 0.25) (B8) 



If a linear variation of Cm with CL at CL = 0 and Cm = 0 is assumed, then from a differ
entiation of equation (B8) with respect to 0, 

Cmo = - CLo (X - 0.25) 

Substituting for X, defined by equation (B7) in equation (B9) 

Cmo = - CL (ao cos A 
o I a u 

r;. + tan2 A-tan A tan T) 
c. p

•o\( 1 + tan e tan A _ 0.25 

(
1 _ tan A tan e-tan

2 
A) + c. p. 0 tan A ( tan A-tan T ) + ( tan e-tan A ) 

1 + tan e tan A 1 + tan e tan T 1 + tan e tan A 

(Yc.P~-yc) tan V 

(B9) 

+ 

(B10) 

In modifying equation (B10) to account for the effects of compressibility, the assumption is 
made that the position of the center of pressure for a given flap deflection is independent of the 
Mach number. The modified equation (E10) then becomes 

~ 
~ 
!3:: 
> 
\Jl 
tj 
o 
I\) 

I\) 
I-' 



(Cmo)c 
= 

r-
I 

(CLo)c 
a o cos A 

au 

c·p·o l + l tAt T 

i (l _ tan A tan e-tan
2 II) 

L l + tan e tan A 

( tan2 A-tan A tan T0 l 
+ an an _ 0.25 + 

+ c.p. tan A ( tan A-tan T ) +( tan e-tan A '\ 
o l + tan e tan T l + tan e tanA) J 

(Yc.P~-YC»tan 1jr 

where (CLo)c may be computed by means of equation (Al) in appendix A and au can be 

computed directly by the method of reference lO. 

L_,_ 

(Bll) 

I\) 
I\) 

~ 
&; 
~ :;:: 
:> 
\Jl 

t; 
o 
I\) 



L 

NACA RM A5lD02 23 

REFERENCES 

1. Dads, Jules B., Jr.: Wind-Tunnel Investigation of Horizontal Tails. 
I - Unswept and 350 Swept-Back Plan Forms of Aspect Ratio 3. 
NACA RM A 7K24, 1948. 

2. Dads, Jules B., Jr.: Wind~unnel Investigation of Horizontal Tails. 
II - Unswept and 350 Swept-Back Plan Forms of Aspect Ratio 4.5. 
NACA RM A8Bll, 1948 . 

3. Dads, Jules B., Jr.: Wind~unnel Invest i gation of Horizontal Tails. 
III - Unswept and 350 Swept-£ack Plan Forms of Aspect 'Ratio 6. 
NACA RM A8li30, 1948. 

4. Dads, Jules B., Jr.: Wind~unnel Investigation of Horizontal Tails. 
IV - Unswept Plan Form of Aspect R8tio 2 and a Two-Dimensional 
Model. NACA RM A8J2l, 1948 . 

5. Dads, Jules B., Jr.: Wind-Tunnel Invest i gation of Horizontal Tails. 
V - 450 Swept-Back Plan Form of Aspect Ratio 2 . NACA RM A9D05, 
1949. 

6. Tinling, Bruce E., and Dickson, Jerald K.: Test s of a Model Hori
zontal Tail of Aspect Ratio 4.5 in t he Ames l 2-Foot Pressure Wind 
Tunnel. I - Quarte:r--Chord Line Swept Back 350 • NACA RM A9G13, 
1949. 

7. Tinling, Bruce E., and Dickson, Jerald K.: Tests of a Model Hori
zontal Tai l of Aspect Ratio 4.5 in t he Ames l 2-Foot Pressure Wind 
Tunnel. II - Elevat or Hinge-Li ne Normal to the Plane of Synrrnetry. 
NA.CA RMA9Hlla, 1949 . 

8. Abbott, I r a H., von Doenhoff, Albert E., and Stivers, Louis S . , Jr.: 
Summary of Airfoil Data. NACA Rep. 824, 1945 . (Formerly ACR L5C05) 

9. Sivells, James C., and Deters, Owen J.: Jet-Boundary and Plan~orm 
Corrections for Partial-8pan Models With Reflection Plane, End 
Plate, or no End Plate in a Closed Circular Wind Tunnel. 
NACA Rep . 843, 1946. (Formerly NACA TN 1077 ) 

10. DeYoung, J ohn, and Harper, Charles W.: Theor etical Synunetric Span 
Loading at Subsonic Speeds for Wings Having Arbitrary Pl an Form. 
NACA Rep . 921, 1948 . (Formerly NACA TN's 1476, 1491, and 1772) 

11. Herriot, J ohn G.: Blockage Corrections for Three-Dimensional~low 
Closed-Throat Wind Tunnels, With Cons i deration of the Effect of 
Compress ibility. NACA Rep. 995, 1950. (Formerly NACA RM A 7B28) • 



24 NACA RM A5lD02 

12. Dods, Jules B., Jr.: Estimation of Low-Speed Lift and Ringe-Moment 
Parameters for Full-Span Trailing-Edge Flaps on Lifting Surfaces 
With and Without Sweepback. NACA TN 2288, 1951. 

13. DeYoung, John: Theoretical Symmetric Span Loading Due to Flap 
Deflection for Wings of Arbitrary Plan Form at Subsonic Speeds. 
NACA TN 2278, 1951. 

14. Peterson, Robert F.: The Boundary-Layer and Stalling Character
istics of the NACA 64AOIO Airfoil Section. NACA TN 2235, 1950. 

15. Pitkin, Marvin, and Maggin, Bernard: Analysis of Factors Affecting 
Net Lift Increment Attainable With Trailing-Edge Split Flaps on 
Tailless Airplanes. NACA ARR L4I18, 1944. 



4 NACA RM A51D02 

TABLE I.- COORDINATES FOR THE NACA 64AOI0 AlRFOIL SECTION 

[All dimensions in percent chord] 

Upper and Lower Surfaces 

Station 

o 
.50 
.75 

1.25 
2·50 
5.00 
7.50 

10.00 
15.00 
20.00 
25.00 
30.00 
35.00 
40.00 
45.00 
50.00 
55.00 
60.00 
65.00 
70.00 
75.00 
80.00 
85.00 
90.00 
95.00 

100 .00 

L. E. radius: 
T. E. radius: 

Ordinate 

o 
.804 
.969 

1.225 
1.688 
2.327 
2.805 
3.199 
3.813 
4.272 
4.606 
4.837 
4.968 
4.995 
4.894 
4.684 
4.388 
4.021 
3.597 
3.127 
2.623 
2.103 
1.582 
1.062 

0.687 
0.023 

.541 

.021 

25 
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TABLE 11.- COORDINATES FOR THE AIRFOIL SECTIONS PARALLEL TO PlANE OF 

SYMMETRY OF MODEL 

[All dimensions in percent chord] 

Upper and Lower Surfaces 

Station 

o 
.63 
.95 

1.57 
3.14 
6.23 
9.29 

12.31 
18.23 
24.00 

, 29 .63 
35.13 
40.49 
45.72 
50.83 
55.82 
60.69 
65.46 
70.12 
74.67 
79.12 
83.48 
87.74 
91.92 
96.00 

100.00 

L. E. radius: 
T. E. radius: 

Ordinate 

o 
.673 
.811 

1.023 
1.406 
1.925 
2.306 
2.612 
3.074 
3.401 
3.622 
3.757 
3.813 
3.788 
3.667 
3.469 
3.212 
2.910 
2.574 
2.213 
1.836 
l.456 
1.083 

.720 

.363 

.014 

0.485 
0.016 
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unless otherwise noted 
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Figure 2.- The horizontal tail model mounted in t he Ames l2-f oot 
pressure wind tunnel. 
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