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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

FREE-FLIGHT MEASUREMENTS AT MACH NUMBERS FROM 0.7 TO 1.6 

OF SOME EFFECTS OF AIRFOIL-THICKNESS DISTRIBUTION AND 

TRAILING-EDGE ANGLE ON AILERON ROLLING EFFECTIVENESS 

AND DRAG FOR WINGS WITH 00 AND 450 SWEEPBACK 

By E. M. Fie l ds and H. Kurt Strass 

SUMMARY 

The wing- aileron rolling effectivene ss and drag for full - span sealed 
ailerons deflected 50 on untapered wings with 00 and 450 sweepback have 
been investigated over the Mach number range from 0.7 to 1.6 by means 
of rocket-propelled test vehicles in free flight . The test wings had a n 
aspect ratio of 3.7 and the aile rons were hinged a t 0.8 chord. The 
basic 6- percent-thick symmetrical circular- arc airfoil was modified in 
thickness distribution to produce a ra~ge of trai l ing-edge angles from 
00 to approximately 300 . 

In addition, data from previous tests of 3-percent-, 6- percent - , 
and 9- percent-thick airfoils having the same plan forms and a spect ratio , 
but with various profiles and trailing- edge angles) are presented and 
correlated with the r esults from the present tests to show the effect 
of trailing- edge angle on rolling effectiveness a t various Mach numbers. 

For unswept wings having airfoil profiles with flat-sided rearward 
portions , the results show that increasing the thickness of the trailinB 
edge (decreasing the trailing- edge angle) resulted in large drag increases 
with small rolling-effectiveness changes . 

For unswept wings with profiles having curved rearward portions, 
increasing the thickness near the trailing edge ( increasing the trailinB
edge angle) generally resulted in rolling- effectiveness decreases. 
Trailing- edge angles of 70 or less gave relatively high rolling effective
ness throughout the speed range tested ; whereas· trailing- edge angles 
between 70 and 300 gave control- effectiveness losses and sometimes control
effect iveness reversal in the h i gh subsonic speed range . 
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For wings swept back 450 and having profiles with curved rearwerd 
portions, increasing the thickness near the trailing edge (increasing 
the trailing-edge angle) resulted in rolling-effectiveness decreases. 
No control reversal occurred for trailing-edge angles between 30 and 330 , 

but the rolling effectiveness was near zero in the transonic region for 
the large r trailing-edge angles. 

The drag generally increased with increases in thickness near the 
trailing edge. 

INTRODUCTION 

Previous research (reference 1) has shown that the loss of wing
aileron rolling effectiveness in the transonic region which may occur 
for some wings with plain true-contour ailerons can be largely eliminated 
by increasing the thickness of the aileron trailing edge. The purpose 
of the present investigation was to obtain additional information on 
Wing-ai leron rolling effectiveness and drag as affected by varying the 
thickness distribution over the rearward portion of the airfoil. A 
6- percent-thick symmetrical circular-arc airfoil, equipped with sealed 
full -span ailerons, was modified in thickness distribution to produ~e 
a range of trailing- edge angles f rom 00 to 300 . Most of these modifi
cations were tested at both 00 and 450 sweepback. 

The wing-aileron rolling-effectiveness results of the present 
investigation are correlated with results of previous investigations, 
with an arbitrarily defined trailing-edge angle used as a basis, to show 
the effect of trailing-edge angle on wing-aileron rolling effectiveness. 

The flight tests were ma de at the Langley Pilotless Aircraft Research 
Station at Wallops Island, Va. The testing technique is described in 
r eference 2 . 

SYMBOLS 

A aspe ct ratio, 3.7, (b/c) 

b diameter of circle swept by wing tips, 2. 185 feet 

c s treamwise wing chord, 0. 59 feet 

wing lift coefficient 

• 
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s total exposed wing area for three wings, 1.563 square feet 

CDr test-vehicle total-drag coefficient, based on S 

M 

p 

pb/2V 

R 

v 

Oa 

h 

wing-drag increment due to increase in thickness of aileron 
trailing edge , based on S 

free-stream Mach number 

free-stream Mach number at which rapid rate of loss of wing
aileron rolling effectiveness begins as Mach number increases 
from subsonic speeds 

free-stream Mach number at which the Wing-aileron rolling 
effectiveness may be a minimum in the transonic region 

free-stream Mach number for recovery of wing-aileron rolling 
effectiveness going into low supersonic region when wing 
has experienced effectiveness loss in transonic region 

test-vehicle rolling velOCity, radians per second 

wing-tip helix angle, radians 

Reynolds number based on wing chord of 0 . 59 feet 

flight path velocity, feet per second 

average incidence for each wing streamwise, degrees 

average streamwise deflection of each aileron, degrees 

angle between straight lines drawn between 0 . 97 chord and 
1.00 chord on upper and lower surfaces, defined as trailing
edge angle, degrees 

thickness at trai ling edge 

TEST VEHICLES AND PROCEDURES 

The general arrangement of typical test vehicles is shown in the 
photographs presented as figure 1 and in figure 2 . Figure 3 presents 
details of the unswept- and sweptback-wing plan forms and full-span 
sealed ailerons. Figure 4 shows the 6-percent-thick symmetrical 
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circular-arc profile and its modifications used in the present investi
gation. Additional information is presented in table I. 

The fuselages, ordinates for which may be found in reference 2, 
were made of balsa and mahogany and were finished fair and smooth with 
lacquer. 

A two-stage rocket-propulsion system resulted in a maximum Mach 
number of approximately 1.7 at the end of thrusting period. During 10 
to 12 seconds of coasting flight, time-histories of the rolling velocity 
and flight-path velocity were obtained. From these data and atmospheric 
data obtained from radiosondes, the rolling-effectiveness parameter pb/2V 
and test-vehic l e total-drag coefficient C~ were computed. 

The variation of Reynolds number with Mach number is shown in 
figure 5. 

ACCURACY AND CORRECTIONS 

From mathematical analysis and previous experience, the maximum 
experimental uncertainties are believed to be within the following limits: 

M ••.•• 
CDr .... 
pb/2V (figs . 6 and 7) 
pb/2V (figs. 8, 9, 13, 14, 15, and 18) 

Subsonic 

± o. 005 
± o. 005 

±0.005 
±0.007 

Supersonic 

± 0.005 
± o. 005 

± o. 003 
± o. 004 

The larger rolling-effectiveness uncertainties indicated for figures 
other than 6 and 7 are the result of multiplying measured rolling
effectiveness values by factors larger than 1.0 in the process of correcting 
t o rigid-wing values. 

Except for figures 6 and 7, the rolling-effectiveness data have 
been correcte d to rigid-wing value s by utilizing the data of reference 3 
for the determination of wing-aileron rolling-effectiveness loss due to 
wing flexibility. 

All the rolling-effectiveness data have been corrected to iw 00 

and 0a = 5.00 (see reference 3). 

---------------- - -
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RESULTS AND DISCUSSION OF PRESENT INVESTIGATION 

Figures 6 and 7 contain wing-aileron rolling effectiveness and 
drag coefficients obtained with 6-percent-thick wings having 00 wing 
incidence and sealed full-span ailerons deflected 50 streamwise. The 
basic symmetrical circular-arc airfoil was modified in thickness distri
bution with the mos t extr eme modification consisting of a wedge forward 
portion and a flat-plate rearward portion; the resulting trailing- edge 
angles varied from 00 to approximately 300 . Most of the modifications 
were tested at both 00 sweepback (models 1, 2, 4, 6, 16, 17, 18, 25, 26, 
and 29 ) and 450 sweepback (mode ls 41, 44, 50, 58, 59 , 60, and 61). 

Rolling Effectiveness 

Wings with 00 sweepback.- Contained in figure 8 are the rolling
effectivene ss data of figure 6 corrected to rigid-wing values. Fig-
ure 8(a) shows that as the trailing-edge angle increased, the rolling 
effectiveness pb/2V decreased except i n the t ransonic and supersonic 
r egions for the largest value of ¢ tested. Increasing the trailing
edge angle generally decreased the Mach number Ma at which the aileron 

began losing its rolling effectiveness . A minimum rolling effect iveness 
occurred in the transonic r egion for all e xcept the smaller values 
of ¢; the Mach number at which this minimum occurred Mb decreased 
with increasing ¢. Changes in ¢ for M; 1.3 did not have an 
apprec iable effect on pb/2V except for small values of ¢. 

In figure 8(b) a comparison of wing-aileron rolling effectiveness 
is given for a flat - plate type of airfoil having wedge and circular -arc 
forward portions. The effectiveness was high throughout the speed range 
and, as indicated by reference 1, shows that moderate changes in thick
ness distribution over the forward portion of the airfoil did not appreci
ably affect the rolling e ffectiveness . 

Wings with 450 sweepback. - Figure 9 summarizes the rolling
effectiveness data of figure 7, which have be en corrected to rigid-wing 
values, and shows that increasing ¢ decreases pb/2V throughout the 
speed range tested except in t he supersonic r egion for the largest value 
of ¢ tested . Increasing ¢ de creased the Mach number at which a 
minimum transonic effectiveness occurred for the two largest trailing
edge angles tested. These results, when compared with those of figure 8 
(unswept wings ) , indicate that changes in trailing-edge angle result in 
the same general trends of effectiveness change for wings with 00 or 
450 sweepback. 
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Drag 

Wings with 00 sweepback.- Figure 10 summarizes the arag data of 
figure 6 for profiles having finite and zero trailing-edge thickness. 
Figure 10(a) shows that large drag increases result when the trailing
edge thickness is increased from zero to the maximum thickness of the 
wing. The substitution of a wedge forward portion for a circular-arc 
forward portion (models 1 and 2) increased the drag at some speeds and 
decreased it at others. Figure 10(b) shows that in general the drag 
increased with increases in trailing-edge angle for the profiles having 
zero trailing- edge thickness. Thus, it can be seen that the drag 
increased with increases in thickness near or at the trailing edge. 

Figure 11 shows the drag increases resulting when the thickness 
ratio h/c of the trailing edge is increased. To obtain the values 
shown, the dra g coefficients of model 6 were subtracted from those of 
models 1 and 4. Shown for comparison are values calculated from the 
base - pressure data of reference 4. 

Wings with 450 sweepback.- Figure 12 summarizes the drag data of 
figure 7 for profiles having zero trailing-edge thickness. The largest 
and small est trailing- edge angles resulted in the largest and smallest 
drag values, respectively, but the intermediate ¢ values did not show 
consistency within the group . Overall, the drag variations were small, 
and generally near the limits of accuracy. 

CORRELATION OF EFFECTS OF TRAILING-EDGE 

ANGLE ON ROLLING EFFECTIVENESS 

Conta ined in figures 13 and 14 are the rolling-effectiveness data 
from figur es 6 and 7 (present investigation) plus additional data from 
sources identified in table I (previous investigations), all corrected 
to rigid- wing values. All models have the same dimensions as shown in 
figures 2 and 3 , with the only variables being the airfoil streamwise 
thickness distributions and ratios and trailing-edge angles. While it 
is realized that the trailing- edge angle is not the only factor affecting 
the wing- aileron rolling effectiveness, the data presented in this corre
lation section show that changes in trailing-edge angle generally had 
strong effects on changes in wing-aileron rolling power. 

Rolling effectiveness, unswept wings.- Figure 15 contains pb/2V, 
obtained from figure 13, plotted against trailing-edge angle ¢ for 
several Ma ch numbers. Included for comparison are values calculated from 
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references 5, 6, and 7 (subsonic), and 8 and 9 (supersonic); the agree
ment between experimental and calculated values is generally good. For 
M < 0.88 the correlation of the experimental data is rather good and 
shows that increasing ¢ tends to decrease rolling effectiveness. For 
0.88 < M :S 0.94 the corre lation is generally poor but the data seem to 
indicate that increasing the trailing-edge angle results in a rolling
effectiveness decrease and reversal with some positive effectiveness 
recovery for the largest ¢ tested. For 0.94 < M < 1.6, the corre
lation is again rather good and shows that the effect of increasing the 
trailing-edge angle is generally to decrease pb/2V for ¢ < 160 ; 

further increasing ¢ has negligible effect on rolling effectiveness. 
The values from the faired curves of figure 15 have been utilized in 
figure 16 where pb/2V is plotted against Mach number for several 
arbitrary trailing-edge angles to show the types of rolling-effectiveness 
curves that can be obtained from figure 15. From these two figures it 
can be seen that ailerons having ¢ < 70 will provide high positive 
rolling effectiveness in the speed range 0.7 < M < 1. 6. Ailerons having 
¢ >70 will encounter varying amounts of control-effectiveness loss in 
the transonic range, with complete r eversal probable at some speeds for 
160 < ¢ < 260 . 

In figure 17 is shown the Mach numbers at which major changes occur 
in the curves of rolling effectiveness against Mach number for unswept 
wings having various trailing-edge angles; the method of obtaining the 
test points is shown in the upper part of figure 17. The faired lines 
enclose a region of undesirable control-effectiveness loss, where the 
trailing-edge angle ¢ determines the maximum subsonic and minimum 
supersonic Mach number at which relatively high positive control is 
retained. 

Rolling effectiveness, wings swept back 450 .- Figure 18 contains 
pb/2V, obtained from figure 14, pl?tted against trailing-edge angle ¢ 
for several Mach numbers. Included for comparison are values calculated 
from references 6, 7, and 10. It can be seen that the rolling effective
ness was positive throughout the speed range tested for trailing-edge 
angles between 30 and 330 • The rolling effectiveness, highest for the 
lowest trailing-edge angle , decreased with increasing ¢ and was near 
zero at M = 1.0 for the larger trailing-edge angles. For M > 1.4, 
variations in ¢ had a . negligible effect on the rolling effectiveness. 
The effects of ¢ on rolling effectiveness for the 450 sweptback wings 
were not as severe as for the unswept wings. 

The values from the faired curves of figure 18 have been utilized 
in constructing the curves of figure 19 where pb/2V is plotted against 
Mach number for several arbitrary values of ¢ to show the general types 
of curves obtainable from figure 18. 
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GENERAL COMMENT 

The magnitudes of the rolling effectiveness pb/2V shown in this 
paper are intended to apply specifically to wing-body combinations similar 
to those shown in figures 2 and 3. Although the rolling moment per unit 
aileron deflection Cl

5 
may change with wing angle of attack (reference 11) 

and the control-effectiveness reversal may sometimes be eliminated by 
increasing the aileron deflection (reference 12), it is felt that the 
trends established in the present paper will, in general, apply to other 
configurations and conditions where the major variable is the trailing-
e dge angle. 

CONCLUSIONS 

Wing-aileron rolling effectiveness and drag were obtained over the 
Mach number range from 0.7 to 1.6 for 6-percent-thick wings. In addition, 
rolling-effectiveness data from previous tests were correlated to show 
the effects of trailing-edge angle on wing-aileron rolling e ffectiveness 
for thickness ratios of 3 percent, 6 percent, and 9 percent. From these 
data the following conclusions may be drawn: 

1. For the unswept wings, the wing-aileron rolling effectiveness 
was positive and relatively high for aileron trailing-edge angles between 
00 and 70

• Trailing-edge angles between 70 and 300 caused rolling
effectiveness losses in the transonic and high subsonic region, with 
the magnitude and duration of the loss generally increasing with increasing 
t railing-edge angle; control reversal was indicated at some speeds for 
t railing-edge angles between 160 and 260 . 

2. For wings swept back 450 the rolling effectiveness was positive 
for all trailing-edge angles between 30 and 330 • The rolling effective
ness, highest for the lowest trailing-edge angles, decreased with 
increasing trailing-edge angle and was near zero at a Mach number of 1.0 
f or t he highest trailing-edge angles. The effects of trailing-edge angle 
on rolling effectiveness for the 450 sweptback wings were not as severe 
as for the Ullswept wings. 

3. Increases in thickness near the aileron trailing edge generally 
increased the drag for wings both unswept and swept back 45°. For 
unswept wings having flat surfaces over the rearward portion of the 
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airfoil, increases in the thickness of the aileron trailing edge resulted 
in large drag increases but did not. materially affect the rolling 
effectiveness . 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va. 
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TABLE I 

SYMBOLS USED IN FIGURES, TRAILING-EDGE ANGLE ¢, AIRFOIL PROFILE, 

AND SOURCE OF DATA FOR ALL MODELS 

(a) Unswept Wings 

Airfoil ¢ 
Model Symbol profile 

(de g) 

1 
2 
3 
4 
5. 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

(a) 

0 0 bSpecial 
0 0 bSpecial 
(> 3 .0 NACA 65- 006 
A 3 . 2 bSpecial 
() 3 . 5 NACA 65A003 

\l 6.2 bSpecial 
[> 7 . 9 NACA 65A006 
<J 8.0 NACA 65A006 
17 9 . 6 9-percent-thick DW 
'I\J 9.8 9-percent-thick DW 

t:>. 10 . 5 NACA 65A009 
<J 11. 7 NACA 65A009 
Ll 12·9 6-percent-thick CA 
X 13.2 6-percent- thick CA 
D 13. 5 ~odified 6-percent-thick CA 

'CI 13.6 6-percent- thick CA 
D 13.6 6-percent-thick CA 
Ll 16.6 ~odified 6- percent-thick CA 
0 17.4 NACA 16- 009 
0 19.8 NACA 16-009 

0 20 . 0 9- percent-thick CA 
a 20 . 0 9-percent-thick CA 
0 20 . 4 9-percent-thick CA 
0 21.0 NACA 16-009 
0 21.2 ~odified 6-percent-thick CA 

0 21.2 bModified 6-percent-thick CA 

0 24.3 NACA 16-009 
<> 24. 8 NACA 16-009 
0 30 . 2 ~odified 6-percent-thick CA 
Q 31.2 ~odified 6-percent-thick CA 

aAbbrevia tions used: 
DV - Syrr.metrical double wedge 
CA - Symmetrical circular arc 

bSee figure 4. 

Source of data 

Present investigation 
Present investigation 
Reference 13 
Present investigation 
Reference 3 

Present investigation 
Unpublished data 
Unpublished data 
Unpublished data 
Unpublished data 

Unpublished data 
Reference 3 
Unpublished data 
Unpublished data 
Unpublished data 

Present investigation 
Present investigation 
Present investigation 
Reference 12 
Reference 12 

Unpublished data 
Reference 12 
Reference 12 
Unpublished data 
Present investigation 

Present investigation 
Unpublished data 
Unpublished data 
Present investigation 
Unpublished data 

• 
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TABLE I 

SYMBOLS USED IN FIGURES, TRAILING-EDGE ANGLE ¢, AIRFOIL PROFILE , 

AND SOURCE OF DATA FOR ALL MODELS - Concluded 

(b) Wings swept back 450 

Airfoil ¢ Model Symbol profile 
(deg) 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

51 
52 
53 
54 
55 

56 
57 
58 
59 
60 

61 
62 

(a ) 

0 3.0 NACA 65-006 
0 4. 5 NACA 65-009 
0 4. 5 NACA 65-009 
6 8. 2 NACA 65A006 
'V 10. 2 9-percent-thick DW 

t> 10.2 9-percent -thick DW 
<I 10.4 9-percent - thick DW 
V' 11. 3 NACA 65A009 

'\J 11. 7 NACA 65A009 
d 11. 9 NACA 65A009 

Ll 12.3 6-percent-thick CA 
X 12.7 NACA 65A009 
D 12.7 6- percent-thick CA 
D 12.9 6- percent- thick CA 
~ 12.9 NACA 65A009 

(j 13.0 NACA 65A009 
0 13.5 ~odified 6-percent-thick CA 
0 15.3 ~odified 6-percent-thick CA 
D 16. 4 9-percent-thi ck CA 
a 17.2 ~odified 6-percent- thick CA 

0 17.3 9- percent-thick CA 
0 17.4 9-percent-thick CA 
0 17· 5 bModified 6-percent- thick CA 
0 19.7 NACA 16-009 
¢ 20. 2 ~odified 6-percent- thick CA 

<> 20 . 3 NACA 16-009 
0 20.6 -DModified 6-percent-thick CA 
Q 2l. 9 bModified 6-percent-thick CA 
D 22 . 0 ~odified 6- percent-thick CA 
(] 30.1 ~odified 6-percent-thick CA 

EB 30 . 2 bModified 6-percent - thick CA 
d 33 . 3 ~odified 6-percent-thick CA 

aAbbreviations used: 
DW - Symmetrical double wedge 
CA - Symmetrical circular arc 

bSee figure 4. 

Source of data 

Reference 13 
Reference 14 
Reference 14 
Unpublished data 
Reference 12 

Unpublished data 
Reference 12 
Unpublished data 
Unpublished data 
Reference 3 

Pres ent investigation 
Unpublished data 
Unpublished data 
Present investigation 
Unpublished data 

Unpublished data 
Unpublished data 
Present investigation 
Reference 12 
Present investigation 

Reference 12 
Reference 12 
Present inV€stigation 
Reference 12 
Unpublished data 

Reference 12 
Unpublished data 
Present investigation 
Present investigation 
Present investigation 

Present investigation 
Unpublished data 

-

13 



l4 NACA RM L5lG27 

Figure 1 .- Photographs of typical test vehicles. 
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4 7. O~_6 ._0_"- _- _-_-_-_-_ ---.l>-~I ~-~~'I 

I 5 'diamefer 
Spinsonde 

II 

3. 25 aircraft rocAet 

(0) Uns wep{ winqs. 

13.107" 

I I-<:c------- 39.0 /J ----~~1 /3. /07" 

__ -~---L..L....--___, . 1 
L ___________ _ ~~=..,....".,. 

(h) Winqs sw(?pf back 45 °. 

Figure 2 .- Geometric arrangement and dimensions of typical t est vehicles. 
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Figure 3.- Geometry and dimensions of typical wings. 
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r---_-_L_4 -L-/ =U 
~----- c = 7.071" 

-- L z 

Hinge line at 
0.8 CfNd 

L/ = length 01' circulor- ore foruJoro' poriio/) 

Lz :: ler;~?th of flat -sided portion (sid. ') porallel 
except Tor models '-Iood 6; 

L3 = length or <-ir..:ulor- arc t car portion 

19 

L.,. = lenoth of wedge forward portion} model 2. 

II = thickness ot oileron trailing e dge 

(0) Definition of profiles. 

Figure 4.- Six-percent-thick circular-arc profile and modifications utilized 
in present investigation t o produce a range of trailing-edge ~ngles ~~d 
thicknes s distributions. 
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/ 
2 

Models I and 2 

Model I: L!e =0.4 ) L 2/c = 0.6 ) hlc : 0.06 

Model c: L 4/c : 0.4-, L 2/c = 0.6) hie =0.06 

~---------------------------~ ~h 
Model 4 ~ --,.. 

~~------------~ 
Model 6 h=O 

(b) Models I) 2 ~ 4) and 6 . 

Figure 4.- Continued. 
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---
Models 16, 17, 41, and ~¢ 

(circular arc) 
LI/e = 0.5) L3/e =. 0.5) h/e =. 0 

~----------------~ 
Models 18 and 50 

(modified circular arc) 
LI/e =O.5} LEjc :0.1) is/e =0.4:1 h/c =0 

~---------------~ 
Models 25,26,58, one/53 
(;nodi/ied circular orc) 

LI/e =0.5) L2jc =0.2) L3 jc=o.3) hie =0 

~----------------~ 
Models 29) 60J ond 61 

(modified circular are) 
LI/e :: 0.5) L2 jc: 0.3, L3/e =0.2.1 h/e:O 

Figure 4.- Conc luded. 
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