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RESEARCH MEMORANDUM

PRESSURE DISTRIBUTION AT LOW SPEED ON A

%-—SCAIE BELL X-5 ATRPLANE MODEL

By William B. Kemp, Jr., and Albert G. Few, Jr.
SUMMARY

This paper contains the results of measurements at 20° and 60° wing
sweep of the low-speed pressure distribution on the wing, wing slat, wing

leading-edge fillet, and fuselage of a 1 - scale model of a preliminar
) L J

Bell X-5 airplane design. The pressure-distribution measurements were
made to obtain specific aerodynamic load information for application to
the Bell X-5 airplane. Some of the results, however, are useful for
application to swept-wing airplanes in general.

INTRODUCTION
An investigation of the low-speed pressure distribution on a %-—scale

model of a Bell X-5 airplane

300 MPH T7- by 10-foot tunnel.

airplane incorporating wings

design has been conducted in the Langley
The X-5 airplane is a proposed research
having a sweepback angle that can be varied

continuously between 20° and 60°. Provision for longitudinal translation
of the wing with respect to the fuselage is also made. Results of longi-

tudinal and lateral stability and control investigations of the %- scale

model are given in references 1 and 2, respectively.

The pressure-distribution investigation reported herein was directed
toward obtaining specific aerodynamic load information for application
to the Bell X-5 airplane. Measurements of pressure distribution were
made at two stations on the right wing and slat, on the wing leading-edge
fillet, and on the forward part of the fuselage with wing sweep angles
of 20° and 60°. The wing and slat pressures were integrated to determine
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the section characteristics at the two measurement stations. Fuselage
pressure distributions were determined for several values of nose-inlet
vellocityiratio:.

SYMBOLS

The system of axes employed for plotting slat pressure coefficients
is given in figure 1. The symbols used in this paper are defined as

‘ follows:
o8 p
| P pressure coefficient Ere
P, local static pressure, pounds per square foot
j P free~-stream static pressure, pounds per square foot
V2
q dynamic pressure, pounds per square foot 95—
| P mass density of air, slugs per cubic foot
‘ v free-stream velocity, feet per second
V3 average velocity in jet duct, feet per second
Vi/V nose-inlet velocity ratio
C local wing chord, normal to 0.40 chord of unswept wing at all
wing sweeps, feet
g angle of yaw, positive when nose is to the right, degrees
a angle of attack of thrust line, degrees
A angle of sweepback of quarter-chord line of unswept wing,
degrees
X distance behind local wing leading edge measured in the wing
chord plane on a line normal to the 0.40 chord of unswept
wing at all wing sweeps
Z distance above wing chord plane

% ,‘,\,Q
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s distance behind local leading edge of wing fillet parallel to
plane of symmetry

X distance behind local leading edge of nose inlet measured
parallel to nose-inlet center line
5f flap deflection, degrees
c, section normal-force coefficient (—\¢;Pa 5)
c
Ce section chord-force coefficient <¥#?Pd §>
e slat section pitching-moment coefficient, referred to leading
S
edge of local wing chord line <7CP % d % +\7§P ; d §>
Subscripts:
8 slat
W wing in presence of extended slat
t wing and slat total

APPARATUS AND METHODS

Description of Model

The model used in this investigation was a %-scale model of a
preliminary Bell X-5 design. Physical characteristics of the model are
presented in figures 2 and 3, and photographs of the model on the support
strut are given as figure 4. Figure 5 includes details of the flap and
slat. The model was constructed of wood bonded to steel reinforcing
members.

Figure 6 presents a general arrangement of the pressure orifices on
the test model. The upper and lower surfaces of the right wing and slat
had two spanwise locations of orifices in planes normal to the 0.40 chord
of the unswept wing at all wing sweeps. The wing fillet had two spanwise
stations of orifices in planes parallel to the plane of symmetry at all
wing sweeps. The side, lower, and upper surfaces of the fuselage had
orifices in rows parallel to the thrust center line extending from beyond

~
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the wing trailing edge over the nose and into the jet duct inlet. An
orifice was located on the fuselage side 22.84 inches rearward of the
nose and 2.31 inches above the thrust center line to investigate a
probable location for the installation of an accessory air vent.

The wings were pivoted about axes normal to the wing chord planes.
The wing incidence measured in a streamwise direction was zero for all
wing sweep angles. At all wing sweep angles the wing was located so
that the quarter chord of the mean aerodynamic chord fell at a fixed
fuselage station.

The jet engine ducting was simulated on the model by the use of an
open tube having a constant area from the nose to the jet axis.

Tests

The tests were conducted in the Langley 300 MPH 7- by 10-foot tunnel
at a dynamic pressure of 34.15 pounds per square foot which for average
test conditions corresponds to a Mach number of 0.152 and a Reynolds

number of 2 X lO6 based on the mean aerodynamic chord of the wing at
50° sweep.

During the tests, a cone extending into the jet exit (fig. 6) was
used to control the air-flow quantity through the jet duct. To determine
inlet velocity ratios a survey rake was installed inside the jet duct
near -the exit. The rake consisted of a series of total-pressure tubes
extending over the entire diameter of the jet duct, and a static tube
mounted on the center line of the jet duct.

With the model at a given angle of attack, a record was taken of
the pressures at the orifices by photographing the multiple-tube manometer
to which the orifices were connected.

Corrections

The angle of attack has been corrected for jet-boundary effects
computed on the basis of unswept wings by the method of reference 3.
Calculations have shown that the effects of sweep on this correction are
negligible. All pressure coefficients have been corrected for blocking
by the model and its wake by the methods of reference 4. Tunnel air-
flow misalinement has been accounted for in the computation of the test
data.
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RESULTS AND DISCUSSION

Presentation of Results

The result of the pressure-distribution measurements made on various
parts of the model are presented in the figures tabulated below:

Pressure distribution on wing and slat: Figure
B E0T . =00, Baka TetRacted | i e e gl AT A s RGN
A = 60°, ¥ varies, Ailin aiintel nached Balnr s ST S e 8 and 9
REiE0Y, 4 = 0%, alate extended “n Wt b e i s e aRd T
B G0 Ay 50 Blath extendef . ar. tha 6 smare i ope ke el g i
50609 W =! <59, Blabs jextended , Va0 DEk -l TRk ad I

Pressure distribution on wing and slat:

ERERTOE S0l =000 Ropil ol retracbadl i in ves ailhotn e the S0 Ll e AR T
A =20% ¥ = 50, Bleti pobractad L » bt e Tt v § ekl o R A
Tl IR T i SRV L R Y Y LA N S i e T S AR
A =20°% ¥ = o°, Blaterextendsd | &7, Wi SNy o LN wis ot e
e 200y = 50 2 eLebe extended .o fe it T e e deoe il il N B S
3020007, i 2 08P “glate. axténded . S R S B L S LB
B =208 = 0%, slate extended, af 5o° SR S P i A e
Wit et Al e s S e i s R B SR L A R e T

Pressure distribution on fuselage:

Fuselage, A = 608, ¥ = OO, Jet ‘exit opanybeitie: v 9% M0 T s o
Fuselage, A = 600, = Jot- Xt OPel v e, » tn s raal AL A e
Fuselage, A = 60°, V.= —g , jet exit open . . PORRSRERR IR ) e
Fuselage, A = 60°, v = 0, Jet exit one-third closed PR el ) b
Fuselage, A = 60°, ¥ =0, jet exit two-thirds closed . . . . 40 to 42
Hiisslgges e 009 iz 07, Jet’ exlh OPenie o ol 7 4 oin e un i e
Section characteristics of wing and slat:
R I e 0 s R R e e L e
Win e ndie siliaty Venrarias iy et B s R et o e N A 50, to H2

The data presented are for zero flap deflection unless otherwise
noted in the figures. In order to facilitate the determination of the
normal and chordwise components of the slat load, the slat pressure
coefficients are plotted separately against the x and 2z coordinates.
The pressure measurements were made primarily to obtain information for
structural design of the X-5 airplane. Considerable knowledge regarding
the flow over the model can be gained, however, from the pressure diagrams
presented.
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Pressure Distribution on Wing and Slat

Slats retracted.- On the pressure-distribution diagrams of figure 7
for 60° sweep, a region of relatively constant negative pressure near the
leading edge of the upper surface is observed at moderate and high angles
of attack. This characteristic is indicative of leading-edge separation
and is observed to be more extensive on the outboard station than on the
inboard station. Pressure distributions on a series of wings having
60° swept leading edges reported in reference 5 showed characteristics

very similar to those in figure 7. In reference 5, the pressure distribu-

tions were correlated with tuft and smoke observations to show that a
leading-edge~-separation vortex pattern existed, the core of the vortex
being indicated by a negative pressure peak at the downstream end of the
separation region. The corresponding negative pressure peaks are evident
in figure 7 and indicate that the vortex core was located farther behind
the leading edge at the outboard station than at the inboard station and
moved rearward with increasing angle of attack. In general, separated
flow existed ahead of the vortex core.

The pressure distributions for 20° sweep (fig. 16) indicate that
the leading-edge separation vortex which was evident at 60° sweep did
not occur when the sweep angle was reduced to 20°. At the higher angles
of attack, the data of figure 16 show much more negative pressure peaks
on the leading edge at the inboard station than at the outboard station.
This is apparently the result of a localized flow separation along the
leading edge of the outboard part of the wing.

Effects of slats.- The pressure distributions for 60° sweep with
slats extended (figs. 10 and 11) do not show the pronounced effects of

the leading-edge separation vortex which were observed with slats retracted

at this sweep angle. At the highest angles of attack, the rapid pressure
recovery over the rear part of the wing chord at the inboard station, and
the flat pressure distribution indicating flow separation at the outboard
station may be indicative of a vortex type of flow but the extensive
leading-edge separation from the wing was apparently prevented by exten-
sion of the slat. Separation did occur, however, from the upper surface
of the slat at angles of attack greater than 8.61°.

At 20° sweep, pressure-distribution measurements with slats extended
were made at higher angles of attack than with slats retracted because of
the action of the slats in delaying stalling of the wing. The slat pres-
sure distributions of figure 20 indicate that the flow on the slat upper
surface did not reach the state of complete separation which was observed
at 60° sweep. :

Effects of flap deflection.- Pressure distributions on the wing and
slat at 20° sweep with the partial-span split flaps deflected 50° are
oresented in figures 25 and 26. It should be noted that the outboard row
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of pressure orifices was located very near the outboard tip of the flap
and the inboard row was located well within the flap span. Comparison

of these results with those of figures 19 and 20 for zero flap deflection
shows that deflecting the flap produced an increase in the lifting pres-
sures over the entire wing, particularly in the vicinity of the flap,

and also increased appreciably the lifting pressures on the slat.

Effects of yaw.- The effects on the wing pressure distribution of
yawing the model with 60° sweep and slats retracted are indicated in
figures 8 and 9. Inasmuch as pressure measurements were made on only
the right wing, measurements at positive yaw angles yield results for
the trailing wing, and conversely, measurements at negative yaw angles
provide pressure distributions on the leading wing. At angles of attack
near 0° (fig. 8), the effect of yaw was to increase the magnitude of the
pressure coefficients on the leading wing and decrease those on the
trailing wing. This effect is attributed to the change with yaw angle
of the velocity components normal to the leading edge. At 23.52° angle
of attack (fig. 9), yawing the model had a pronounced effect on the
strength and location of the leading-edge separation vortex. On the
leading wing (negative yaw) the vortex was shifted rearward so that flow
separation over the entire wing chord was observed at the outboard
station. On the trailing wing, the vortex moved toward the leading edge
and the pressure recovery downstream from the vortex center became much
more pronounced than that observed at zero yaw. With slats extended,
the effects on the wing and slat pressure distributions of yawing the
model, shown in figures 12 to 15, were considerably less noticeable than
those observed with slats retracted.

At 20° sweep with slats retracted, the major effect of yaw angle
(figs. 17 and 18) was to increase the magnitude of the peak negative
pressure on the leading edge of the leading-wing and reduce it on the
trailing wing. This effect is probably associated with an increase in
the extent of leading-edge separation on the trailing wing and a decrease
on the leading wing. With slats extended at 20° sweep (figs. 21 to 24)
yawing the model produced only minor changes in the wing and slat pres-
sure distributions.

Wing fillets.- A comparison of the fillet pressure distributions of
figures 27(a) and 27(b) for 20° wing sweep shows that extending the slats
had a negligible effect on the pressure distribution at the same angles
of attack. Increasing the sweep angle to 60° allowed higher angles of
attack to be obtained thus increasing the magnitude of the negative pres-
sure peaks observed on the fillet leading edge. Flow separation from
the fillet occurred only at the outboard station at the highest angles
of attack with 60° sweep.
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Pressure Distribution on Fuselage

The pressure distributions on the upper, side, and lower surfaces
of the fuselage are presented in figures 28 to 45. Dashed lines indicate
pressures inside the nose inlet. All fuselage pressures measured for
the 60° wing sweep configuration were with slats retracted whereas those
for 20° sweep were with slats extended to allow the attaimment of higher
angles of attack before wing stalling occurred. The effect of wing sweep
on the fuselage pressure distributions was negligible except for the
region on the fuselage side in the vicinity of the wing. (Compare
Piga. 268 fo. 30 Mith figs. 43 to.45.)

The effects of yawing the model are indicated in figures 31 to 36.
Only minor changes in the pressure distributions on the top and bottom

of the fuselage resulted from changing yaw angle. The fuselage side pres-

sures, however, were much more sensitive to yaw angle; large negative
pressure coefficients on the right side of the nose inlet resulted from
a positive yaw angle of 5°.

The. effects on the fuselage pressure distribution of reducing the
inlet velocity ratio by reducing the jet exit area are illustrated. by
figures 37 to 42. As the inlet velocity ratio was reduced, the magnitude
of the negative pressure peaks at the fuselage nose was increased and
the pressures inside the nose inlet became more positive.

Aerodynamic Section Characteristics

Figure 46 presents the section normal-force coefficients of the
wing with slats retracted for both 20° and 60° sweep. The section
normal-force coefficients were essentially the same for the outboard
and inboard stations except for the highest angles of attack at 60° sweep
in which case the normal-force coefficients at the outboard station were
considerably less than at the inboard station.

With slats extended (figs. 47 and 48) the individual contributions
of ithe slatfand ‘the wing to: the section normal-force coefficient ‘are
presented as well as the total section normal-force coefficient of the
wing and slat. Section chord-force and pitching-moment coefficients of
the slat are also presented.. It should be noted that the. slat section
coefficients are based on the local wing chord. To obtain values based
on the local slat chord, the normal-force and chord-force coefficients
should be multiplied by 6.67 and the pitching-moment coefficients by Uk.k.

With 60° sweep at low and moderate angles of attack, the normal-
force coefficients at the outboard station on both the wing and slat
were noticeably greater than at the inboard station. At high angles
of attack, however, the normal-force coefficients at the outboard station
fell below those at the inboard station, probably as a result of the more

3
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severe flow separation previously noted at the outboard station. With
20° sweep, the normal-force coefficients at the outboard station were
only slightly greater than those at the inboard station throughout the
angle-of-attack range investigated. The effect of sweep angle on the
division of load between the wing and slat is indicated in figure 49 in
which the portion of the total section normal force carried by the slat
is presented as a function of the total section normal-force coefficient.
Application of the simple sweep theory, which considers the surface
pressures to be independent of the free-stream velocity component parallel
to the leading edge, would lead to the conclusion that the division of
load between the slat and wing should be independent of sweep angle.
Figure 49 shows, however, a considerable effect of sweep on the division
of load. It is probable, therefore, that the concepts of the simple
sweep theory would not be adequate for predicting the slat loads on
swept wings from unswept slat load data.

The effects of angle of yaw on the aerodynamic section character-
istics are presented in figures 50 to 52. At angles-of-attack near zero
for all model configurations no significant changes in the section
characteristics were produced by changing yaw angle. At higher angles
of attack, the reduction in the velocity component normal to the leading
edge of the right wing with increasing yaw angles would be expected to
produce a reduction in the measured normal-force coefficients. With slats
retracted (fig. 50) and 60° sweep, the expected reduction was observed &t
the inboard station. At the outboard station, however, the opposite
trend was observed, probably as a result of the extensive separation
over the outer portion of the right wing at negative yaw angles which
was 1llustrated by figure 9. With slats extended at high angles of
attack for both 20° and 60° sweep, the slat section characteristics were
essentially independent of yaw angle. The wing section normal-force
coefficient, however, was dependent on yaw angle for both sweep angles.

CONCLUDING REMARKS

Although the tests reported in this paper were conducted primarily
to provide specific aerodynamic load information for application to the
Bell X-5 airplane, certain observations of more general interest may be
made from the pressure distributions obtained. With the wings swept 60°
and with slats retracted, a leading-edge-separation vortex pattern
existed over the wing at moderate and high angles of attack with resulting
separation and loss of 1ift from the outboard portions of the wing. The
strength and location of this vortex was appreciably affected by changing
the angle of yaw. Extending the slats prevented separation from the wing
leading edge but some of the characteristics of the vortex type of flow
were still apparent with slats extended. At 20° sweep, no evidence of
& leading-edge-separation vortex was observed with slats either extended
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or retracted. With the slats extended at 20° sweep, the maximum aero-

dynamic load carried by the slat was appreciably increased by deflection

of the trailing-edge flap. The effect of sweep on the division of load :
between the slat and wing was not in agreement with that predicted by

using simple sweep theory.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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Figure 2.- General arrangement of test model.
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Figure L4.- View of test model as mounted in tunnel.
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Figure 34.- Pressure distribution on fuselage upper surface.
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Figure 51.- Section characteristics of the wing with slats extended.
A = 60°.
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Figure 52.- Section characteristics of the outboagd station of the wing
with slats extended. A = 20 .
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