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THIS J;>OCUMENT HAS BEEN REPRODUCED FROM THE 

BEST COpy FURNISHED US BY THE SPONSORING 

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE­

LEASED IN THE INTEREST OF MAKING AVAILABLE 

AS MUCH INFORMATION AS POSSIBLE. 
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:~ATIOi:A1 Al) TISOR~ CO:.0ITTEE FOR AERO AUT I CS . 

TEE L I G H ':' A I R P L A _ E . 

:aRIEF ~vIZW OF TEE R3:S ~LTS OBTAI:!ED I~T T5E Dr;VE~OP lE:JT OF 

L I GET AJ:RPLA::ZS. 

PA~m I. 

In every country interested in aeronautical development 

there is no question tl:.a.t is attracting more attention today than 

hat of the small lig:lt c.irplane . It seems to be of great int-

erest to nearly everyone , whether connected directl Y vii th avia-

tion or not . Some wri ters have very great hopes . Others reser ve 

their opinions , while some view tLe li ght airulane as an interest-

ing but impraaticel toy . Tnether or not the enthusiasts are cor-

roct it is the "",)elief of a. great many that these li ttle airplanes, 

if ~roperly developed, can ~o nothing but good in furthering the 

use ar~ science of aviation . 

Such men as 1~r . OrvL~.lc Wrie;ht , Brig. General !Vm . Mitchell , 

and ,for . C. F . Kettering lave publicly stated that in their opin­

ion the light airplanes were the rr:ost int"e.resting and important 

a.eronautical developnent sllCvm during the l'ecent 2.ir Races held 

at Da:iton. 

The little airplanes also seem to have captivated the mind 

• of t~e general public . The press has broadcasted articles de­

scribing the II Aerial Fli vel's , II and suggesting the wonderful ex­

perience in store for all in t~e development of a cheap little 

* Reprinted. frotl liThe Slipstr eam lJo thly, II December , 1924, and 
January, 1925 • 
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ai rplane using but a gallon of fuel to fly forty miles. However 

these popular conceptions may work out, the feeling seems to per­

vade the aeronautical profession that the light airpl~ne may be 

the ent ering wedge, as it were, to commercial aviation. 

Due to their small size and relatively low horsepower light 

airplanes can be produced, even in small quantities, at a cost 

comparable to that of some of the sn~ller motor cars. The uses 

to which these airplanes can be put are naturally somewhat lim­

ited, Those limits, however, are ~nly those imposed by the small 

size and_ lack of overloading capacity_ As far as general control 

~, ability, and performance under design load is concerned a light 

I si.ngle seater can be constructed with a 22 horsepower engine 

that-will equal if not surpass the performance of several air-

planes used commercially tOday. The same degree of comfort and 
, , 

safety in bad air way also be accomplished. The records of Brit-

ish and American races seem to show that forced landings with 

this type are much less,dangerous either to ITan or machine, than 

with the larger and heavier 'airplanes_ Very great maneuverabil­

ityand sturdiness of construction may somewhat explain this int­

eresting fact. In liThe Aeroplane ll of November 19, 1924, the 

views of an experienced pilot are given, in which he states that 

he would rather fly cross country in a light airplane than in a 

faster, pigh-powered airplane, because he has no fear of flying 

low. Traveling by airplane becomes very monotonous if done at 

4000 to 6000 feet. Low flying on the other hand is very inter-
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esting when the traveler may watch everything going on around himo 

'i":lis man feels t~l3.t low flying with a light airplane is perfectly 

safe due to its extreme maneuverabili ty and abili ty to be "put 

down" in small areas of nearly any kind of ground. This thought 

. is extremely interesting and is probably true except over mountain-

.ous country. However the above idea may work out, undoubtedly the 

light airplane will find great usefulness for sport and for cheap 

rapid transportation over sections other~ise poorly accommodated. 

There is also the possibility of their use for training. A great 

ar,lount of money might be diverted to the construction of combat 

airplanes if such were found feasible by the Government. The 

British are already trying out this idea. It would seem that the· 

United States should also experiment with light airplanes. in some 

part of our training program. Possibly the Air Servic8 Reserve 

officers might find them very satisfactory for practice during 

tlieir yearly return for service. We, in the United States, may 

also follow the lead of the Bri tll:3h in the establishment of Light 

Airplane clubs among the ex-service pilots and. red-blooded young 

men of the country. Light airplanes a7e so recent a development 

in this country, however, that it is very difficult to predict 

just what the year 1925 may have in store. The experience gained 

during 1924 may be the foundation for the development during 1925 

of types that will meet the needs for training and practice f1y-

ing as well as for sport. 

Before proceeding with a technical discussion of the prirtci-
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ples of light airplane design, it will be well to review and to 

analyze the vlork that has been done in developing thi s type both 

abroad and in this country. It is unquestionably true that the 

light airplane idea is an outgrowth of gliding or soaring experi­

ments in Gern~ny during the last few years. After the war German 

aircraft acti vi ties were grea.tly curtailed by the condit ionq of­

the Peace Treaty. Desiring to keep ~p interest in aviation and 

to provide practice for their trained pilots the Germans offered 

substantial prizes for soaring flights under' various specifica-

tions. After a period spent in gaining tht"? experience necessary 

for the flying of these crafts~ flights were rmde that aston-
a 

ished the world as a wholeo It is/very significant fact that in 

nearly every case the most successf~l gliders were designed by 

men of some techni.cal experience and who were thoroughly .familiar 

with the modern theories of hydrodynamics as applied to aeronau­

tics by Doctors Prandtl, Betz, Munk and others of Ggttinge~ Uni­

versity. Although the rmjori.ty of these machines were built by 

trade school students under the supervision of their professors, 

the clear understandi.ng of the abO'lTe aerodynamical principles 

was plainly in evidence. The application of Dr. Prandtl's theo­

rems enabled the glider constructor to design directly for the 

required performance. In other words, they had been supplied 

with a formula by which they might solve directly for the size 

and shape of their machines knowing the results to be attained. 

• Mr. Geo. H. Madelung has given an illustration of such proc~dure 
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by describing the design of the Hannover Sailplane in the S, A. E. 

Journal of January, 1933. It 'is therefore very logical that Dr. 

Prandtl's theories shall be ela.borated upon to a considerable ex­

tent further along in these articles. 

Naturally after the publication of German records the French 

and English were desirous of trying their hands. Consequently, 

the year 1922 saw some very fine flights in those countries. A 

group of students from the Massachusetts Institute of Technology 

constructed a glider for entry in one of the French competitions. 

This was probably the first serious American attempt at soaring 

since the Wright's experiments at Kitty Hawk, The greatest re­

sult of these trials was not that fine records were obtained but 

that they gave birth to the light airplane idea. 

The Europeans thought that if they could make such wonderful 

flights relying solely upon the wind for the power of suste:i.1tation, 

by installing a small auxiliary engine they might solve the prob­

lem of cheap and practical aviation. Consequently, at the Lympne 

competi tion in England during the fall of 1923, and at various 

French trials somewhat earlier we have the ad~jent of the so-called 

light airplane. Viewed in the light of our y~owledge a few years 

ago the 1923 single seater light airplane was a revelation. Al­

though nearly every meet was marred by incessant engine trouble 

the results obtained exceeded the wildest expectations. The 

French very quickly developed small engines for their craft 

but the English were forced to rely upon standard motorcycle en­

gines, which proved hardly suitable for full power airplane serv-
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ice. The displacement of the engines in the tympne competi tion 

was limited to 750 cm3 (45.8' eu.in.). Possibly the- trouble ex.:... 

perienced by the Bi:~tish may nave been due to the fact that they 
" 

TIere trying to take too much power out of the displacement al-

lowed. It does not appear that the size of an engine is a partic­

ularly good indication of its suitability for an airplane. If the 

power output of the engine could have been limited in some way, 

to say 16 HP., the designers might have had considerable more lat­

itude in their choice of power plant. A slower, larger displace-

ment engine would have worked a natural handicap by increasing the 

we~ght but would probably have kept the airplanes in the air for 

longer periods. Whatever the outcome of the engine problem may . ' 

be the use by the English of the small displacement engine has 

proved one worth while fact regarding the light airplane. Forced 

landings nay be 1M.d'g much more pafely with these airplanes than 

with the heavier, more sluggish and faster types. 

The next step was naturally to the two-seater which made its 

debut at Lympne in the fall of 1924. Again engine trouble was 

much in' evidence although motorcycle engines had been replaced' by 

engines designed especially for the service. The gene~al perforr~ 

ances were on the whole very satisfactory, when the airplanes were 

permi tted to fly by their balky engines. The results were such 

that the conclusion may be drawn that from 30 to 35 HP. is suf~i­

cient to make a two-seater light airplane equal the performance 

of some of the standard training airplanes using from two to three 

times that power. These 1924 competitions further demonstrated 
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-- the safety of these airplanes in forced landings. Out of numerous 

.-

cases of engine failu~e away from the airdrome by nearly every 

airplane, but one suffered any structural darrage. The two-seater 

competitions "also further sUbstantiate the thought that a larger 

displacement engine of t~e same power would have kept the air­

planes in the air for much longer periods and have produced a 

more practical airplane. 

During ·1922 and 1923 the United states remained inactive in 

the development of gliders and light airplanes, except for the 

one case already noted. However, the N.A.A. cane to life in 1924 

with light airplane races to be held in conjunction with the Inter­

na tional Ai r Races at Dayton. We as Americans cannot point with 

a great deal of pride to the results obtained. Although the con-

ditions under which these races were run were in no way con~ara-

ble to the Lyrttpne competitions, the number of the ai:rplanes was 

very disappointing as well as the gene:ral quality. Of nine air­

planes entered, but" six wer'e on the line for the start.. Or.:.1.y one 

of these six finished the three races on the program, one other 

finished tviTO races, and one finished but one -race. The remaining 

three either never left the ground or were forced out shortly 
, 

after the start. The direct drive Henderson four-cylinder motor-

cycle engine gaye very satisfactory service in Dormoy' s "Flying 

Bath Tub" and Johnson! s DJ-J. airplanes~ Although Dormoy was 

forced dOYffi on his second race by very bumpy air his engine was 

rUTl..ning perf ectly. J"ohnson made three forced landings in pa s­

tures, plowed fields, etco, due to imperfect full flow, but his 
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Henderson functioned smoothly in" eV0J:Y race. It is a significant 

GfG-ct in comr:rtrison \7ith the English sing1c-seateJ: trials that nei­

ther of these two engines had any adjustment whatever during the' 

period of the races. Those designers employing the geared twin 

cylinder Vee engines, however, were not so fortunate. The vibra­

tion in some cases was so excessive that the very light struc­

tures were repeatedly broken. Chain crives also contributed 

their share of trouble. 

Certain conc1usion$ nayoe dral7ll from the results of the Euro­

pean and Arnerican raceso 

-- First. For a single-seater, from 18 to 25 horsepower, and 

for a two-seater, 35 to 40 should be sufficient for practical 

purposes. 

Second. The displacement rating of the automobile races 

should not apply to 2..ircraft. POYler alone si10uld determine the 

classifications. 

Th:Lrd." Gearing in any form u:;'11e ss hi.ghly developed is a def­

inite source of trouble. 

Fourth. The sMOothness of four-cylinder engines is highly 

desirable. 

Fifth. Light airplanes as a class possess qualities that 

make them very safe -in forced landL1gs, '" "and., ':" their sturdiness 

on poor ground is superior to the larger airplanes. 

Bixth. Performance characteristics-and r.aneuveraoi1ity 

equal to if not better than sor,le standard training types have a1-
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ready been obtained. 

A great deal of general discussion has been offered ort the 

subject but as yet no attempt has been made to define the term 

II Light Airplane. II That is a question that is receiving a great 

deal of attention both abroad and in this country today. Is a 

light airplane an engined glider? Is it. an under-powered air­

plane? In the light of what has been accomplished it is neither. 

Of course, as pointed out previously the original idea was the 

~growth of glider or soaring machine development. In fact, one 

of the British single-seaters, the IIWrenll, could very truly b~ 

called an lI engine-glider,lI as in 1922 the same airplane without 

engine had been used in the soaring competitions. However, the 

problems of gliding and flying from place to place are vlidely 

separated. A glider receives its sustentation from a wind which 

has a strong upward· component. Such a machine is designed so 

that its sinking speed will be a mininmm and equal to or less 

than the rising speed of the wind in which it is flying. This 

necessitates a very high ratio of lift to drag at a very low 

speed. The aim in soaring is to stay off the ground as long as 

possible. Powered flight, on the other hand, has for its purpose 

the accomplishment o~ useful work, namely, the transportation of 

a required pay load through the n~ximum distance, in the shortest 

possible time and at the least cost. This is a problem of range 

of flight rather than of duration, as in the case of the glider • 

Winds cannot be depended upon for assistance as it may be neces-
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sa.ry to fly in a di rection from vlhich no help but rather nindrance 

can be e:>..-pected from the ai r cu:;:orents. An airplane will be the 

most efficient in meeting the denands of commercial work when it 

is least affected by the wind. This means that the cruising 

speed should be high in order that the percentage reduction in 

velocity over the ground experienced in average air conditions 

may be low. The practical airplane should have a rrarGin over its 

most efficient cruising speed at least equal to the avera~ ve­

loci ty of the winds liable to be encountered. The light ai:rplane, 

therefore, must have a very high ratio of ~ift to drag at high 

speed in order that flight may be accor!1plished with low p0i7ero 

Thus the requirements of a glider and of a light airplane 

are similar in one respect only, the necessity for a very high 

ratio of lift to drag, The engined glider will have a phenomenal 

duration but will not be a practical airplane. 

Li~l1t airplanes are not und6rpowe::.:.'ed in the true sense of 

that term. The number of pounds carried. per hOl'sepower is much 

great er than des ::'g!lers hal' e previously deemed aclvi sabl e in the 

construction of military typeso This high power loao.iT.l.g is the 

raisond'etre of the light ai~plane. For commercial work the 

greatest possible load must be carried by the rmnimum power. 

Everything else being equal, t11a.t airplane which has the highest 

power loading will be the cheapest both.in first cost and in oper­

ation. An airplane is underpowered only when it is unable to 

• properly function in the service for which it was intended~ 
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If that service be to transport a pilot and baggage 200 miles 

at a speed of 75 miles per hour and passing over a mountain range 

12,000 feet high on the way, that airplane which fails in-the ac­

complishment of the above is underpower-cd' whether it carries 15 . 

or 30 pounds per horsepower. 

The'advocates of the light airplane believe that there are 

. two ways of increasing airpla,ne performance, namely, by either 

-----in~reasing the engine power available or by decreasing the power 

required for flight; and that the latter method is by far the 

most logical and scientific. 

An increase of power necessitates an increased fuel load, 

and therefore a greater total weight 0 Consequently, the cost o~ 

the airplane both as to original outlay and as to maintenance in-

creases. Everyone has heard the statement "Give us power enough 

and we can fly the ki tehen table. II The light airplane is diamet­

rically opposite to a powered "kitchen table." It may be defined 

as a scientific attempt to obtain the greatest possible useful 

I 
I 

work from the least pOl'16r. Incidentally this results in an • I 

/ plane extremely cheap in all. respectsc 

Brief mention has been made of the different stages of light 

airplane dev.elopment, and at tent ion has been directed to the d&-

pendence of the designers to a great extent upon the work of Dr. 

Prandtl. The engine glider idea as well as the criticism of light 

airplanes being underpowered have been discussed and shown to be 

the wrong conception~ 
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• Table I ~ 

Airplane Type ~rigine 
Weight· Weight _ iling Pouer 

light loaded loading loading 

Avro 558 B-S 500 cm3 294 480 2.89 26.7 
Avro 560 M-S 698 1\ 285 471 3.41 23.5 
A.N.E.C. M-S 638 1\ 289 465 3.21 23.2 
Wren M-S 398 1\ 232 408 
Gull M-S 698 1\ 402 500 3.52 
Gannet' B-S 750 II 283 460 4.47 
D. H. 53 M-S 750 II 310 490 4.08 
Viget B-S 750 II 395 575 2.88 26 
Poncelet M-S 750 II 

P eyret M-S 750 II 

Raynham M-S 750 II 

Pixie M-S 500 1\ 

Hurricane M-S 600 " 520 6.4 
H.P.23 M-S 500 II 480 2.85 

-n.P.25 M-S 430. 2.75 
H.P.26 M-S 698 II 500 8.10 
Dormoy M-S 80 C\l. in. 
Mummert M-S 74 II 

Driggs M-S 80 II 326 511 7.3 22.7 
Snyder B-S 
Turner B-S .74 II 

Heath B-S .. 

Brown.ie I M-T 1095 cm3 500 870 4.3 29 
Brownie II M-T 1096 II 500 870 4.5 29 
Cranwell B-T 1096 " 510 830 3.75 29.6 
Wee Bee M-T 1096 1\ 462 837 4.47 25.6 
Wood Pigeon B-T 1096 " 439 779 5.03 26 
Widgeon M-T 1096 II 4bO 790 5.5 ·26 
A.N.E.C. M-T 1100 It 415 730 3.94 24.3 
Short M-T 1096 " 483 850 5.05 28.3 
Sparrow B-T Li.OO II 478 860 3.26 28.6 
Avis B-T 1096 II 450 810 3.20 27.0 
Blue Bird B-T 1100 II 495 875 3.60 29.2 
Vagabond B-T 1100 " 527 887 3.96 29.6 
p.ixie III M-T loc:m " pixie IlIa B-T 1096 II 

M - Monoplane B -·Biplane 
S - Single seater T - Two Seater 

~. 

Outline drawings of rrany of the above-mentione~ light airplanes 
are given in N.A.C.A. T echni cal Memo randums Nos. 261 and 289. 
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Airplane 

Avro 558 
Avro 560 

Wren 
Gull 
Gannet 
De H. 53 

. Vi get 
Ponce1et 
Peyret 
Raynham 
Pixie 
Hurricane 
H.P.23 
H.P.25 
H.P.26 
Dorm.oy 
Mummert 
Driggs 
Snyder 
Turner 
Heath 
Brownie. I 
Brovmie II 
Cramvel1 
Wee Bee 
Wood Pigeon 
Widgeon 
A.N.E.C. 
Short 
Sparrow 
Avis 
Blue Bird 
Vagabond 
Pixie III 
Pixie IlIa 

Type 

B-S 
M-S 
M-S 
M-S 
li-S 
B-S 
llI-S 
B-S 
M-S 
M-S 
M-S 
1.1-S 
H-S 
M-S 
M-S 
M-S 
M-S 
M-S 
1.1-8 
B-S 
B-S 
B-S 
M-T 
l!L-T 
B-T 
H-T 
B-T 
1.:i-T 
liI-T 
M-T 
B-T 
B-T 
B-T 
B-T 
M-T 
B-T 

Engine 

500 
698 
698 
398 
698 
750 
750 

/I 

II 

" 
" 

. 750 
750 'II 

750 
750 
500 
600 
500 

II 

II 

II 

II 

II 

II 

II 

698 II 

Table I ( Cont.) 'h 

High Rate of 
speed climb 

74 

55.25 

59.3 
58.1 
58 

76.1 
58~5 

80 cu. in. 
74 II 

80 11 

74 /I 

1096 
1096 
1096 
1096 
1096 
1096 
1100 
1096 
1100 
1096 
1100 
1100 
1096 
1096 

cm3 

II 

II 

" 
" 
II 

II 

II 

II 

If 

II 

II 

11 . 
11 

70 
70 

'86 
72 
72 
85 
73 

75 
74 
74 

Ceiling 

13,850 

14,400 

9,400 

11 - LIonon1ane ,B - Biplane 
S - Single Seater T - Two Seater 

13 

Iii 1es 
Gallon 

87.5 

82.5 

59.3 

65.7 

Outline drawings of nnny of the above-r;;entioned light airplanes 
are given in N.A.C.A. Technical Memorandums Nos. 261 and 289 • 
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PART II~ 

~.iodern Theoretical Aerodynamics 

as Applied to Light Airplane Design.* 

In the first part of this series there is reviewed briefly 

the results obtained in the development of light airplanes, both 

in ID~rope and in this country. Considerable stress was laid on 

the importance of the mathematical work of the staff of ®ttingen 

Universi ty, in that it was largely the foundation of European 

progress. Like all good things, these theorems are very simpl·e, 

both to ~~derstand and to use. 

A strict mathematical proof of Dr. Prand tIt s theory is quite 

difficult and is na~~rally impossible in a series of this char-

act er. Suffice' to say that he applies the methods of clas·sical 

hydrodynamics to fluid flow ~bout a lifting organ, assuming that 

the fluid in question (air) has no viscosity, causes no friction 

and is incompressible. None of these assumptions is st:r;ictly 

:true, but the deviations are so small and. of such character that 

the truth of the theo~y may be demonstrated and proved by wind 

tunnel tests. 

If it were possible to visualize the air flow about an air-

pl'ane in fli ght the Pra:r:.d tl theory would be very easy to under-
* Author's Note:- The development of Elementary Aerodynamics in 
the following pages is necessarily somewhat mathenatical. Those 
readers who do not wish to follow this work may turn to the last 
page for a summary expressed in a few very simple rules. However, 
anyone familiar with elementary algebra should easily follow the 
mathematics as give:q.. 
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stand. As a wing is drawn through the air an infinite number of 

air molecules impinge upon its surface. If this wing is exerting 

a lift it naturally must be forcing these air particles downward,· 

gi ving rise to the well-known II dm'ffiwashll observed in numerous 

wind tunnel and free flight tests. This phenomenon may be demon­

strated by a silk cord secured to the trailing edge of an air­

plane wing. In flight the cord will be seen to maintain an angle 

with the wing chord considerably greater than the actual angle of 
/ . 

attack with the relative vnnd. T~is deflection of the air stream 

is equivalent to the airplane fly:i,ng at. all times in a curr-ent 

of air directed downwardo The fact that this downward deflection 

is caused.by the airplane itself in no way invalidates this assump-

tion. 

If an airplane is flying in such a downward current, in order 

~o maintain level flight it nrust have a vertical velocity upward 

exactly equal to the vertical velocity of the air downward. In 

other Vlords it nI'-lst be climbingo 'I'hi s is actually w:b...a t happens. 

The airplane is cOlltinually climbing away from the air that it 

has passed over and ther~by forced downward. Power is expended 

in thus causing thc airplane to climb. This power negessitated 

to maintain the ai rplane in level flight in the downwash induced 

. by its own pas sagJ through the air is 9alled induced power. Dr. 

Prandtl :b...as been able to arrive at a mathematical expression for 

this proportion of the power required. This formula represents 

• the basis of the so-called Prandtl theory. It has -been extended 
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to apply to mul tiplanes as well as to monoplanes from which the 

original expression was derived. 

Let W = Weight of airplane in pounds = Lift. 

b = Span of airplane wing in feet. 
(Average in case of biplane with uneven wings.) 

v = Velocity of flight in miles per hour. 

P = Density of the air at any altitude rele.tive to 
that at the ground (always uni ty or less). 

. p. "d. 
~' ... :rn = Induced poner required as explained above. 

Then Pind = W2 

for a monoplane (1) 
3b2 PV 

Pind 
. W2 

for biplane ( approximately) (la) -
306'0

2 
PV 

a 

Formula (1) hot-rever does not represent the total power required 

for flight. As pointed out previously the assumptions under 

which the induced power has been calculated by Dr~ Prandtl do not 

coincide absolutely with the actual facts. He was forced to ig-

nore the friction of the 8.ir on the wings as vlell as other slight 

discrep:mcies. At the prE-sent time a wind-tunnel test is the only 

means. available for det~n~mining the magni tude of the power necest-

sary to overcome th5.s aided wing resistance. Tests on nu,.'YLerous 

·airfoils have shown that the frictional resistance, or Profil 

Drag as it is call~d, is very nearly constant for all angles of 

attack in the ordinary flying range .. It increases sligctly at 

the lower and higher angles. Extensive wind-tunnel tests have 

shown that this Profil Drag does not vary exactly as the velccity 

• squared as ordinarily supposed but at a somewhat lower rate. This 
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gives rise to the so-called Scale Eff~ct mentioned in numerous 

, aE;ronauti,cal wor}~s. The wing Profil Drag is entireTy parasi tical 

in its aotion as it contributes nothing to the usefulness of the 

airplane. The power expended in overcoming this form of resist-

ance may be called the Wing Parasite Power. 

L,et PW. P. = Wing parasi te Power 

K = Coefficient depending 'upon th8 ai.l'foil used. 
To be determined by wing turned test. 

= (Profil D'rag of 1 sq. ft. of wing area at 
1 mile per hour. ) 

Sw = Area of wings in square feet. 

3 
(2) ThenPW.p. = KflWV 0 

375 

. In the foregoing paragraphs the pO',1er required by the wing 

alone has been develepedo There are alw8,Ys certain other struc-

tural parts necess:1ry for bracing or con-Gaini.ng the pewer plant 

and us'eful load. ''I'hese bod.i 83 also ab s07b povier rthen propell ed 

through the at r. ~rhi s propo:::-ti ")n of the power required may be 

called the Structur.e.l Paras"!. te Power to d.ifferentiate it from the 

Wing Parasite POW31'c The magni tu.de of the struct-..lr.al Parasite 

resi stance is the mo st diffi cuI t to obtai,n. PIobably the most 

'accurate method is to, test a scale r:lOdel of a proposed airpla:'le 

in the l"lind tur..nel for resist:,nce at various angles of attacko 

If a wind-tunnel test is OU'c of the question the resi stance of-

all items exposed to thE:) air stream may be calculated by refer-

r'ing to experimental data on similar snapes. The laboratories of 
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various countries have tested great numbers of fuseiages, wheels., 
-

wires, struts, etc., and have published the data on those objects 

in a form conveni ent for ready use. Af-ter the resi stance of each 

item has been found_ as above, the total resistance is the sum of 

all the small components. Probably the simplest way to arrive· 

at the magni tude of the structural Parasite resistance is to eS,,"i­

mate it by comparison with airplanes of similar type which have 

had coefficients experimentally derived by flight test. This is 

most conveniently done by imagining all the miscellaneous struc­

tural items to be replaced by a flat plate of such area that the 

resi stances at any given velocity wi 11 be identi cal. A table of 

such flat plate areas of equivalent structural Parasite Resist-

ance may be easily calculated from published tests on different 

airplanes. When this equivalent flat plate area is determined, 

whether by tunnel test, calculation, or by estimation, the Struc­

tural Parasite Porler may be expressed as in formula (3). 

Let PS. P. -- St::-uctural Parasite Power. 

Sp. s. = Ar'3a of flat plate of resistance equivalent 
to structural bodies. 

.00327 S?, s. V
3

p (3 ) Ps. p. = 3'15 

Formulas 1 (or la), 2 and 3 r:1ay now be added to give an ex-

pression for the total Power Required - PRo 

.00327 Sp. S. V
3 

P KSWV3p Wz 
( 4) • PR + + = 375 375 3b2 VP 
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If KSvI 
·00327 

= Sp.w •. = The area of a flat plate of equal 
resistance to the wing profil drag. 

and if Sp = Sp. W,; + Sp. S'. 

Formula (4) may take this simplified form; 

.00327 Sp .~p + W
2 

PR = 375 3b2 PV 
( 5) 

( 5a) 

Equation (5) is very simple when compared with the ordinary 

procedure of calculating the Power Required curve .. One of the 

accepted methods is to start from a tunnel test on the chosen 

airfoil and apply to it various corroections· for aspect ratio, 

gap chord ratio in case of a biplane, stagger, wing tips, etc. 

From the chosen wing area and weight the velocity is computed at 

a series values of the lift coefficient corrected from tunnel 

test. Then from the values of LID obtained after corrections 

at the above lift coefficient the wing drag and then the wing 

power is computed. The Parasite Power is then calculated and 

added to that of ydng to give values of the Total required at 

'various velocities. If the same quantities were used as in cal-

culating power by equation (5) and if an extension of Dr. 

Prandtl 1 s theory were applied to correcting for aspect ratiO, ete., 

the curves of Power Required in both cases would be identical. 

The labor expended, however, in using (5) is infinitely less. 

This, however, is not the only advantage of the above applica-
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tion of Prandti I s theory .. In fOrrmlla (5) every quanti ty that af--: 

fects the power required for flight is shown in its proper re1a-

tionship to every other. There are no coefficients to confuse 

and emphasize the wrong quantity. Every item but. one is accurate­

ly known, assuming that the power is required at a given velocity 

and air density. The value of 5p, the parasite area, is the 

only quantity that must be determined either experimentally, by 

calculation or by estimation. This difficulty, however, is ex­

peyienced by all methods equally. A further advantage lies in 

the fact that the principles ·of mathematics may be applied to 

manipulate equation (5) into different forms and show variQus 

laws that have not been clearly expressed previously. This work 

will not be carried out here, due to the fact that an attempt is 

being made to keep this series as simple as possible. Suffice 

to say that by applying the principles of differential calculus 

the following may be demonstrated. 

I. At the speed of minim~~ power required the Induced Power 

is three times the Parasite Power. 

II. At the speed of minimum drag the Induced Power and Para-

site power are equal.* 

Theorem I applies to questions of duration, least sinking 

speed for a soaring machine and to ceiling, while Theorem II is 
* Differentiate (5) with respect to V and place differential 
equal to zero for t~e speed of minimum power. Divide (5) through 
by V and multiply by 375 to reduce to equation of drug. Differ­
entiate this equation with respect to V and place differential 
equal to zero for the speed of minimum drag. 
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important for ·range of flight-and best gliding angle. These rules 

show the very marked influence of induction on airplane perfor~ 

an~e, especially in the design of light airplanes and gliders. 

The induced power at any speed and air density is determined 

solely by the ratio of weight to span, W/b. Herein lies the 

most important fact relative to Light Airplane design. A span 

loading, Wit, of 20 pounds per foot on a 500-poundlight air­

plane means but a span of 25 ft. The same value of W/b on a 

4000-pound airplane calls for a span of 200 ft. Such a spread 

is impossible without excessive wing weight and almost-impossi­

ble maintenance and hangar conditions. The limit of span for 

4000-pound airplanes in practical use is approximately 50 ft. 

Therefore, W/b = 80 pounds per foot. Since the Induced Power 
:2 

varies as (W/b) from formula (1), for the 500-pound light ai~-

plane this portion of the power required will be 1/16 -as great 

as for the larger airplane. If the propeller efficiencies are 

the same in both cases the power available, and general perform­

ance of the two airplanes would vary somewhat as below; 

4000-pound Airpla.ne 

Span, 50 feet. 

W/b, 80. 

Power Available, 400 HP~ 

Absolute ceiling, 19,000 ft. 

Rate of Climb, 1200 ft./min. 

500-pound Light At~plane. 

Span, 25 feet 

W/b, 20. 

Power Available, 25 HP. 

Absolute Ceiling, 19,000 ft. 

Rate of Olimb, 600 ft./min. 
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4000-pound Airplane 

Span, 50 feet. 

W/'r, 10 lb. per HP. 
• 

Parasite Arca, 16 sq. ft. 

High Speed, 120 miles per hour. 

Parasite Area, .004 
Weight 

500~pound Light Airplane . 

Span, 25 feet. 

W/p, 20 lb. per HP • 

Parasite Area, 1 sq.ft. 

High Speed, 120 miles per hour. 

Parasite Area, .002 
Weight 

In the foregoing example the Parasite Power has been assumed 

to vary in the same ratio as the Induced Power. This assumption 

is not justified by the facts in the case. The wing parasite 

will probably vary directly as the relative weiGhts of the·tw~ 

airplanes. The structural parasite mayor may not vary in some 

such ratio, probably, .however, it wi 11 never decrease fast er 

than the ratio of weights. If such be the case the value of ·lp 

for the light airplane becones 2 sq. ft. and the high speed be­

comes 95 miles per hour approximately- Very little effect will 

be noticed in the rate of climb and ceiling, however, since the 

lowered propeller pitch used with the lower high speed will prob­

ably increase the Power Available at lower speeds sufficiently 

to compensate for an increase of Parasite Power, which has a rel-

atively small effect at lower speeds. 

The simple example given brings to light another important 

fact. In order to obtain the maximum utility out of these air­

planes the Parasite Area should be reduced to the lowest possible 

limit. Parasite is, of course, of prime importance in any air~ 

plane 4 for a light airplane, however, its importance increases in 
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direct proportions to the increase of power loading. It wi1l 

probably be found impossible to decrease the parasfte area be­

yond a limit of approximately 2 sq.ft. for a 500-pound airplane. 

Naturally this will lead to a reduction in the high speed over 

that whicli would be expected reasoning from the Induced Power 

reduction alone. This i"s oTI:e of the penalties that must be paid 

for flight with low power, and should affect the general utility 

of these airplanes but little when considered in the light of 

. their low first 'cost and upkeep. To draw a para.llel from the 

automobile industry the most useful and widely sold car manufac­

tured is capable of developing but less than one-half the speed 

cro ss country than some of the larger and more expensive automo-

biles. Its utility in congested traffic, however, compensates 

in a great measure for such lowered high speed. Likewise the 

Light Airplane, due to the fact that it can get in and out of 

smaller areas and possibly paved roads, if necessary, closer in 

to the center of cities, ma.y ma17e up in the long run for some of 

the difference in maximum velocity. 

Light airplane races with high speed as the only criterion 

have been somewhat criticized in this country as not furthering 

development along the proper lines. Such a thought is absolutely . 
without foundations. High speed is the most important single 

item to be developed provided, however, that the power is not in­

creased and that no sacrifice is made in utility. 

An increased'~high(:~peed (with same power) necessitates a re-
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duction in parasite. towering weight and lowering parasite are 

the two most important problems confronting the light airplane 

designer today; provided, of course, that neither is done at the 

sacrifice of first ·cost, upkeep, or general utility. If tho para-' 

site and weight be lowered sufficiently, rate of climb, ceiling, 

• emd time to al ti tude may be increased at will by decreasing the 

span loading. The design which wakes the best high speed may be 

revised slightly if it be lacking in any of the above particulars 

and made to out-perform any other design of sar.1e power and weight. 

Returning to formula (5) it will be seen that no mention 

has been made of two quantities hithetto thought to be of prime 

importance in airplane design, namely, wing loading (:po~nds per 

,.square foot of· area) and aspect ratio (ratio of span to chord of 

wing). If the span be constant, wing loading (or wing area) has 

but little effect upon the curve of Power Required. Its main in­

fluence lies in the fact that it controls the wing Parasite Power, 

formula (2), and also the minimu'm speed at which level flight may 

be maintained. It is naturally assumed in application of formula 

(5) that the wing area is sufficient to maintain level flight at 

any veloci ty substi tuteo. into the equation. Wing area controls 

the lower limit of velocity (constant span and airfoil), and to a 

slight degree the parasite .. Aspect Ratio, on the other hand, is 

a perfectly useless term. Span and area tell the whole story. 

This is true whether a monoplane OT multiplane be under consider­

a tion. 

A little thought will show wherein lies the fallacy of the 
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belief that rate of climb and ceiling vary as the wing area. 

When these relationships were first wOTked out showing such 

c.epend.ence of performanc.e upon 'iving area t~e investigators over-

looked the fact that since they were keeping the Aspect Ratio 

Constant in their calculations they were varying the span as well 

as the wing loading. The effect obtained was due to the varia-

tion in span so produced and not to the wing loading. This is an 

example of reasoning from an experimental rather than a theoret­

ical basis. The effect was attributed to a cause which in reali-

ty acts just the opposite than generally f:'D..s .. 8u-;::rricsed. With con­

s tant span an increase of vling area wi 11 decrease cei ling, rate 

of climb and high speed through the increase of parasite. Howev-

er, at the same time a 10Yler landing speed will also be obtained. 

From Theorer.1. I above defining the speed of minimum pO'ner it 

may be shovm that 

if VM. P. = Speed 0 f ITI.ininn.lm power 

4./ .2 

= 10.64 ~ . ./.b Sp 
at the ground. 

The theoretical low speed of the airplane should not be 

(6) 

greater than the value given by equation (6) in order that the 

maximum effect may be realized from the given span loading. 

For the 500-pound light airplane investigated above with a 

value of ~p = 1 sq~ft., V,,~ p. J:iI. •• 
vrorks out to be 47.7 miles.per 

hour. If the airplane, houever, has an Sp of 2 sq.ft., V be­

comes 40.1 miles per hour. The wing area should be such that in 
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either case flight might be maintained at the speeds given, or 

preferably, slightly less. Therefore, wing area enters into con­

sideration but entirely in a secondary manner. 

If Ky max= Maxinum lift coefficient of airfoil used in 
Ibs~ per sq~ft. miles per hr. units. 

Then" ( 7) 

Equation (7) deter~ines the wing area necessary for a required 

low speed. 

Table II lists some of the best American airfoils, giving 
. 

the value of the maximum 1 ift coeffi ci ent as well as the minimum 

profil drag of the sections. Since the low speed as given by 

formula (6) is more or less determined by this or other consid-

erations Ky n1Ll.X should be as large as possible in order that a 

smaller area may be used with corresponding reductions in wing 

weight. Similarl y, . K, the profil drag coeffici ent should be as 

small as possible in order that the wing Parasite Power, Pw • Po 

(sec formula 2) should be low. Thereforc, thc ratio of Ky max 

to minimum profil drag coefficient, Gho~ld be a very good criter-

ion for the choice of an airfoil, not conSidering structural re-

quirements or stability. This ratio also enters into Table II 

for ready comparison. 
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Airfoil 

R.A.Fj 15 

U. S' A. 27 

G8tt. 387 

G8tt. 430 

G8tt. 436 

U.S.A.35 B 

U.S.A.35 A 

Clark W 

Clark X 

-, Clark Y 

Clark Z 

U.S'A. 16 

Ky max 

.0026 

.00344 

.00366 

.00328 

.00307 

.00333 

.00376 

.00291 

• 00289 

-.00318 

.00321 

.00274 

Curtiss 0-62 .00233 

U.S.A. 35 

U. So.I\.. 45 

Sloane 105 

.00383 

.00331 

.00238 

Kmin 

.000025 

~0000345 

.000041 

.000033 

.0000313 

.0000325 

.000044 

- ~.0000294 

.0000289 

- .0000269 

. 000030 

~0000229 

.000022 

. 0000334 

. 0000276 

• 0000232 

, 

Ky max 
Kmin 

104 

99.8 

89.3 

102.5 

98 

102.5 

85.5 

99 

99G8 

118.2 

107.4 . 

11905 

106.0 

114.5 

120.0 

102.5 

27 

Thin - very -good. 

Medium thick. 

Medium thick. 

Medium -thick. 

Medium thi9k. 

Medium thick. 

Very thickG 

Medium thick. 

Medium thick • 

Medium thick - good. 

Medium thick - good. 

Thin good. 

Thin - racing sec~ion . 

Tapered cantilever . 

Taper-ed - cantilever • 

Very thin. 

Power required for flight at any velocity has been investi-

ga ted wi th special reference to the light airplane. The power 

available from the engine-propeller group has not as yet been 

touched upon. The engine itself is generally determined by con-

siderations of price, availability or race rules. The design of 

the propeller, however, may have a mar.ked influence upon the gen­

eral performance through its control to a certain measure of the 
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Power Available, PA· The Prand t1 theory has been extended to ap­

ply to propeller design and suggests some. very useful theorems 

especially pertaining to tight Airplane propellers. 

In the preceding discussions it has been shown that the ratio 

Wlb should be very small, similarly it may be demonstrated in 

case of the propeller that the thrust over the diameter should 

also be as small as possible. Mr. Max M. Munk, in N.A.C.A. Tech­

nical Note No. 94, has worked out a formula for propeller diame­

ter, D, based upon this theory. 

Let PM = Power of engine at 

N = Revolutions per minute of propeller· shaft. 

= Velocity in miles per hour at which the p-rope11er 
efficiency is desired to be a maximum, normally 
the designed high speed of the airplane. 

D = Propel1~r diameter in feet. 

3 (P;;­
Then D =564/ In 

'. 
(8) 

-
If equation (8) gives a diameter such that .0524DN exceeds' 

820 ft. per sec., the diameter will have to be reduced until that 

limit is not exceeded. This is due to the fact- that as the speed 

of the propeller tips appr'oaches the velocity of sound the corn­

pressibi1ity of the air becomes a noticeable factor and lowers 

the efficiency very rapidly. Equation.(8) will give diameters 

in excess of present practice, which is based upon the assump­

tions that 1/2 the diameter divided by the maximum blade width 

shall be approximately 6. That is, with the diameter above corn-
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puted, the maximum blade width will be smaller than present prac-

t ice would allow. Due to the fc.ct t:1U t t:1e weight and t~1rust are 

low, the stresses imposed upon the light airplane propeller per-

mit this increased ratio of diameter to blade wiQth. The reason-

ing is similar to that which allows a larger span in proportion 

to weight for a light airplane than for the-larger type. 

The pl'opeller used on the D-J-l 1;'[as 58 inches in diameter 

and but 3t inches maximum ~idth. No trouble whatever was exper­

ienced. Weros, grass, etc. ,had no appreciable effect except to 

wear the fabric tips. 

The influence of increasing the diameter is two-fold. The 

slipstream velocity is less and therefore the energy losses are 

also decreased TIith a consequent increase in propeller efficiency. 

The velocity of the slipstream being less and distributed further 

away from the fuselage causes less interference between the body 

and propeller. Both of these considerations make for better all 

around performance. 

A numerical example will serve to show more clearly the dif-

ferances between ordinary practice and diameters given by equation 

(8) • 

VD = 95 miles per hour. 

N = 3000 revolutions per minuteo 

D 
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D = 5.5 feet = 66 inches. 

A formu.la derived by H. C. Watts, for propellers of Aspect Ratio 

G, give 

D = 4.84 feet = 58 inches. 

If the maximum blade width in the latter case works out to 

be 29/6 = 4.84 in., the width, using a 66-inch diameter.propel­

leI', is approximately 4 inches or 1/8 of the blade radius, in-

,stead of 1/6. 

No attempt has been made to propose a method of performance 

calculation or propeller design. The main intention in mind has 

been to bring out a few very simple rules important in the design 

of light airplanes. These ideas are sU~ffarized below • 

Rule I. Make the ratio of span to weight as small as possi-

ble cor:1patible wi th structural and housing condi tions~ 

Rule II. Bui11 as light as possible. 

Rule III. Reduce Parasite to the absolute limit, even at the 

sacrifice of ~eighto 

Rule IV. Usc large diameter, narrow ble,de propellers, 
'I< 

The next sections 'Will show by means of a defini te numerical 

example how the different performance characteristics are affect-

ed by the vQrj e,~.0_n8 _:L~_~.h.§_.!).mel1sions of a light ai_!.i?.:.l<;l.le 0 

* Will be issued by Comm::;.ttee as a Technical Memoranc.um in the 
~. ·near future. 
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