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RESEARCH MEMORANDUM 

FULL -SCALE INVESTIGATION OF COOLING SHROUD AND EJECTOR NOZZLE 

FOR A TURBOJET ENGINE - AFTERBURNER INSTALLATION 

By Lewis E . Wallner and Emmert T. Jans en 

SUMMARY 

A full -sca le ejector cooling investigation was made on a turbojet 
engine - after'burner installation i n the NACA Lewis altitude wind tunnel . 
Ejector performance was studied at primary exhaust - gas temperatures from 
27000 to 34000 R (corresponding to ejector temperature ratios f rom 2 .0 
to 5 .0)) primary pressure r atios from 1 . 79 to 3 .4) secondary air flows up 
to 29 percent of the primary gas flow) and for diameter ratios from 
1.08 to 1 .42 and spacing ratios from 0 . 04 to 1 .16 . In addition) varia
tions were made in the primary exhaust - nozzle area . 

Ejectors with large diameter ratios permit the attainment of high 
gas - flow ratios ) but the jet - thrust losses become prohibitive as the 
spacing ratio is increased from 0 to 1 . 16 . As the ejector diameter is 
reduced) the obtainable gas - flow ratio and the thrust loss are reduced . 
Previous results showing that data obtained at a temperature ratio of 
1 .0 could not be extrapolated to determine ejector performance at high 
temperature ratios by the application of the temperature ratio factor 
to the gas - flow ratios are substantiated by the present investigation . 

INTRODUCTION 

With the advent of turbOjet afterburning) cooling of the after 
burner shell became one of the most important operating problems. Cool
ing is important not only for structural considerations of the after 
burner) but also for protection of the airplane frame from the radiant 
heat of the afterburner shell . One solution to the cooling problem is 
the use of a cooling- shroud passage with an ejector nozzle through which 
cooling air is pumped . Some of the important variables which have not 
been adequately investigated for the design of a full - scale afterburner -
ejector installation ar e : the thrust characteristics with the ejector) 
the pressures required to pump air through the shroud) the air flows 
required to cool the shell) and the effects of changes in flight speed . 

At present there is a multitude of small - scale ejector data (obtained 
in tests with cold air) available in the literature (see references 1 
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to 3 ); however , considerable doubt remains as to the applicability of the 
reference dat a to actual full - scale designs . The small- scale work of 
reference 4 , f or example, indicates a first -order deviation between the 
corrected data obta ined with and without a temperature difference between 
the primary and secondary jets . As for the effect of ejectors on the 
jet thrust of a nozzl e, the work most commonly referred to is refer-
ence 5 , which is not applicable to a turbojet afterburning installation . 

A full - scale ejector cooling investigation was made on a turbojet 
engine - afterburner installation in the NACA Lewis altitude wind tun
nel. The cooling ejector characteristic s were studied at primary 
exhaust-gas temperatures from 27000 to 34000 R, primary pressure ratios 
from 1 . 79 to 3 .4) secondary air flows up to 29 percent of the primary 
gas f l ow, and for diameter ratios from 1 .08 to 1 .42 and spacing ratios 
from 0 .04 to 1 .16 . I n addition, variations were made in the area of 
the primary exhaust nozzle . 

The results of the full - sca le ejector cooling work done in the 
al ti tude wind tunnel at temperature rat·ios from 2 .0 to 5.0 are compared 
with the relevant small -scale data available in the literature. 

APPARATUS 

Engine . - The turbojet engine used in this investigation ( fig. 1 ) 
had a static sea- level thrust rating of slightly over 3000 pounds at a 
turbine - outlet temperature of about 12000 F. At rated sea-level condi 
tions the air f l ow is approximately 60 pounds per second . 

Afterburner . - The standard tail-pipe of the engine was replaced 
by an afterburner assembly 80 inches in length (fig. 1 ) , which included 
a variable - area exhaust nozzle (fi g . 2). Details of the afterburner 
and cooling shroud as s embl y are shown in figure 3. The afterburner 
assembly incl uded an annular 2- ring v - type flame holder and an internal 
cooling liner, which extended from the flame holder to approximately the 
nozzle outlet , and had a combustion- chamber diameter of 25 inches. In 
addition, the afterburner wa s equipped with an external cooling shroud, 
which consisted of an annular inlet plenum chamber) a cooling-shroud 

passage 1/2 inch in height (for most of the length) and 48~ inches in 
4 

length, and a s eries of ejector nozzles (figs. 3 and 4) . At the outlet 
of the cool ing- shroud passage a support ring for the variable-area 
exhaust noz zle was mounted on the cooling- shroud shell and extended 
about 40 percent of the distance across the secondary air pass age . 

CONFIDENTIAL 
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Six ejector nozzles (fig . 4 ), which could b e attached to the 
shroud outlet flange, had the following ejector dimensions: 

Ejector Diameter Spacing 
configuration ratio, D)Dp ratio, S/Dp 

A 1.42 0.04 
B 1.42 . 79 
C 1.42 1.16 
D 1.08 . 79 
E 1.08 1.16 
F 1.08 .7 9 

3 

Configuration F differed from configuration D by the addition of a short 
straight mixing length ( see fig . 4) . 

I nstallation and instrumentation . - The engine and afterburner 
assembly were mounted on a wing section which spanned the 20-foot 
diameter test section of the altitude wind tunnel (fig . 1). Dry refri g
erated air was supplied from the tunnel make-up air system through a 
duct to the engine inlet. The inlet air duct was connected to the 
engine by means of a frictionless slip joint which permitted instal
lation drag and thrust to be measured by the tunnel balanc e scales . 
Ambient sea-level air was supplied to the cooling- shroud plenum cham
ber through a duct equipped with a valve used to throttle the a ir to 
the desired shroud inlet pressure . 

Instrumentation for the engine and afterburner was installed at 
the stations indicated on figure 3 . The locations of the pressure 
tubes and thermocouples at each of the instrumented stations are shown 
by the sketches in figure 5 . 

PROCEDURE 

The engine was operated at rated speed and limiting turbine- outlet 
temperature throughout the investigation . For each ejector - nozzle con
figuration, the turbine -outlet temperature was maintained constant by 
varying the afterburner fuel flow to compensate for any change in effec 
tive primary exhaust- nozzle area resulting from any effect of the 
ejector on the primary system . The primary pressure ratio was varied 
from 1.79 to 3 .40 . At each primary pressure ratio the cooling- shroud 
inlet pressure ratio was varied between 0.85 and 2 . 0, with the limit 
of the shroud- inlet pressure - ratio range being dependent on the ejector 
geometry and primary pressure ratio . The data were obtained at a pres 
sure altitude of 30;000 feet with the primary variable-area exhaust noz 
zle in the full - open pOSition) except for a brief investigation to 
determine the effect of primary nozzle - area changes on ejector 
performance. 

CONFIDENTIAL 
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RESULTS AND DISCUSSION 

Basic Ejector Performance Data 

Secondary pressure ratio , gas-f low ratio, and jet - thrust ratio are 
plotted as functions of cooling- shroud inlet pressure ratio (hereafter 
designated cooling- shroud pressure ratio ) at constant values of pri 
mary pressure ratio in figures 6 to 11 . (See fig . 3 for station loca
tions . The symbols and the parameters are defined in the appendix .) 

General ejector performance trends . - For a given primary pressure 
ratio , increasing the cooling- shroud pressure r atio raised the secondary 
pressure ratio for all configurations investigated (see figs . 6(a) to 
ll(a)). The difference between the cooling- shroud and secondary pres 
sure ratios represent s the frict i on pressure loss in the annular 
cooling- shroud passage surrounding the afterburner shell. 

I ncreasing the cooling- shroud pressure ratio at a given primar y 
pressure ratio also raised the gas-flow ratio, which is the r atio of 
secondary to primary gas flow (see figs . 6(b ) to ll(b )). For the range 
covered in this investigation, increasing the pressure ratio across 
the primary nozzle lowered the gas - flow ratio because (1 ) higher primary 
gas flows occurred; and (2) expansion of the primary gas flow reduced 
the effective area of the secondary passage and thus reduced the second
ary air flow . The primary gas flow increased from 19 to 35 pounds per 
second as the primary pressure r atio was increased from 1.79 to 3 .40, 
which was the range covered in this investigation . 

. The jet - thrust ratio is defined as the ratio of jet thrust of the 
complete configuration including the ejector to the jet thrust of the 
primary system alone . For a given primary pressure ratio, increasing 
the shroud- inlet pressure ratio raised the jet- thrust ratio for all 
configurations investigated except configuration A, which remained 
essentiall y constant (see figs . 6(c ) to ll(c)). This increase in jet 
thrust r atio is attributed to the increase in the momentum of the sec 
ondary a ir flow and to the restriction of the overexpansion of the 
primary jet by the secondary flow . Increasing the primary pressure 
ratio at a constant cooling- shroud pressure ratio had no effect on the 
jet - thrust ratio except for the ejector configurations having both large 
diameter and spacing r atios . The factors which influence the jet- thrust 
ratio for any ejector geometry, as the primary pressure ratio is 
increased, are : (1 ) there is l ess diffusion of the primary jet after 
reaching compl ete expansion in the ejector nozzle ; (2 ) the momentum of 
the secondary air flow is increased by the small er effective secondary 
air-flow pass age and is decreased by the drop in secondary air flow; 
and (3 ) a probable decrease occurs in the mixing losses . In using the 
jet - thr ust ratios, it should be kept in mind that the thrust with the 
ejector was not penalized in any way for the inlet momentum of the sec 
ondaryair . 

CONFIDENTIAL 
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. 
Effects of changes in ejector geometry. - For configuration A, which 

had a diameter ratio of 1.42 but about zero spacing ratio, changes in 
primary and cooling-shroud pressure ratios had no appreciable effect on 
the secondary pressure ratio . Increasing the spacing ratio for the same 
diameter ratio (configurations Band C (figs . 7(a) and S(a)) decreased 
the secondary pr~ssure ratio at a given cooling- shroud inlet and pri
mary pressure ratio . This decrease in secondary pressure ratio resulted 
from greater friction pressure loss brought about by the higher second
ary air flow through the cooling- shroud passage ; the higher secondary 
air flow was induced by the increased pumping action of the primary jet 
as the spacing ratio was raised. 

Changing the ejector diameter ratio from 1 .42 to 1 . OS resulted in 
reductions in secondary air flow, which in turn decreased the friction 
pressure drop in the cooling- shroud passage and caused an increase in 
the secondary pressure ratio (see configurations B and D, figs. 7(a) 
and 9(a), or C and E, figs . S(a) and 10(a)). The increase in secondary 
pressure ratio became more pronounced at the higher primary pressure 
ratios . 

For a diameter ratio of 1 .42 , increasing the spacing ratio at con
stant cooling- shroud inlet and primary pressure ratio raised the 
secondary air flow because of the greater pumping action of the primary 
jet . For example, at a cooling- shroud pressure ratio of 1 .1 and a pri
mary pressure ratio of 2 .73, ejectors having a diameter ratio of 1 .42 
and spacing ratios of 0 .04, 0 . 79, and 1 . 16 had gas -flow ratios of 0.030, 
0 .059, and 0 .070, respectively (see figs. 6(b) , 7(b), and S(b)) . How
ever, at the high cooling- shroud pressure ratios, where a choking con
dition is approached in the cooling- shroud passage, changes in ejector 
spacing ratio had less effect on the pumping action of the primary jet . 
For the same change in spacing ratio at a primary pressure ratio of 
2.73, the gas - flow ratio increased from 0 .107 to 0.130 at a cooling
shroud pressure ratio of 1 . 6 . For configurations having a diameter 
ratio of 1 .OS, a second effect exists which overrides the increased 
pumping action of the primary jet as the spacing ratio is increased 
with a net result of lowering the gas - flow ratio . This second effect 
is the increase in flow area of the primary jet at the exit of the 
ejector nozzle which results in a reduction of the flow passage for the 
secondary air stream . 

An increase in primary pressure ratio, which increased the expan
sion of the primary jet, or a decrease in ejector diameter ratio both 
reduced the flow ~assage area for the secondary air . For an ejector 
having a diameter ratio of 1 .08, in order to maintain a gas - flow ratio 
of 0 .02 as the primary pressure ratio is raised from 1.79 to 3.40, the 
cooling- shroud inlet pressure ratio must be increased from 0.975 to 
1 . 53 (see fig . 9(b)) . At a cooling- shroud pressure ratio of 1.6, 
decreasing the ejector diameter ratio from 1 .42 to 1.OS for a primary 
pressure ratio of 3 .40 lowered the gas - flow ratio from 0 .092 to 0 .031 
(see figs . 7(b) and 9(b )). 

CONFIDENTIAL 
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For a given primary pressure ratio) increasing the spacing ratio 
decreased the jet - thrust ratio because the increased losses due to dif 
fusion of the primary jet and the greater mixing losses were larger 
than the increase in momentum and magnitude of the secondary air flow . 
At a diameter ratio of 1 .42) a cooling- shroud inlet pressure ratio of 
1 .6 ) and a primary pressure ratio of 2 . 73) the jet- thrust ratios were 
0 .98 ) 0 .94) and 0 .89 for spacing ratios of 0 .04) 0 . 79 ) and 1 .16) 
respectively (see figs . 6(c ), 7(c )) and 8(c )). Changing the diameter 
ratio from 1.42 to 1. 08 increased the jet- thrust ratio because of the 
large reduction in the overexpansion of the primary jet and small 
increase in momentum of secondary air flow . At a spacing ratio of 0 . 79) 
a cooling-shroud inlet pressure ratio of 1.6) and a primary pressure 
ratio of 2 . 73 ) the jet- thrust ratios were 0 . 94 and 1 .005 for diameter 
ratios of 1 .42 and 1 .08 ) respectively (see fi gs . 7(c ) and 9(c )). 

Changes in primary exhaust - nozzle area were made for configura
tions A and D at primary pressure ratios of 2 . 73 and 3 .40 . I t shoul d 
be realized that these changes in primary nozzle area change the 
diameter and spacing ratios for each configuration . However) changing 
the primary nozzle area does represent a consideration in the practical 
application of ejectors on afterburner installations . 

The performance of configurations A and D is shown in figures 1 2 
and 13) respectively) for the three primary exhaust -nozzle areas - 266 
(full open ) ) 254, and 233 square inches . The performance variations 
of the ejector as the primary nozzle area is changed show the same 
trends as the performance variation for basic changes in ejector geom
etry . Decreasing the primary nozzle area results in an increase in 
ejector diameter ratio and a decrease in mi~ng l ength because the lips 
of the variable - area nozzle move downstream as the area is reduced . A 
reduction in primary nozzle area (increase in diameter r atio) permits 
a greater overexpansion of the primary jet, which results in a reduction 
in jet - thrust ratio) but permits a greater secondary air flow . However , 
fo r the primary nozzle - area change reported herein (diameter ratio 
increased from 1 .08 to 1 .152 ) , there was little change in jet - thrust 
ratio . The higher secondary air flow is accompanied by a higher second
ary air velocity, causing a greater pressure drop in the cooling shroud. 
For example, reducing the primary nozzle area from 266 to 233 square 
inches for configuration D resulted in a decrease in secondary pressure 
ratio from 1 .37 to 1 .17, an increase in gas flow from 0 .082 to 0 .104, 
and little effect on jet - thrust ratio at primary and cooling- shroud 
inlet pressure ratios of 2 . 73 and 1 . 60, respectively (fig . 13). 

Effect of Gas -Flow Ratio on Primary Exhaust - Gas Temperature) 

Ejector Temperature Ratio, and Shell Temperature 

Effect of gas - flow ratio on primary exhaust - gas temperature. - The 
variation of exhaust - gas temperature with gas-flow ratio at several 

CONFIDENTIAL 
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primary pressure ratios is shown in figure 14 for all the ejector con
figurations investigated . At high primary pressure ratios} changes in 
gas - flow ratio for the range investigated had no appreciable effect on 
the exhaust - gas temperature. At the lowest primary pressure ratio} 
however} increasing the gas-flow ratio tended to reduce the exhaust-
gas temperature for ejectors with diameter ratios of 1 .08} but there 
was little effect on the ejector with a diameter ratio of 1.42. This 
decrease in temperature results from the reduction in effective area 

7 

of the primary jet by interference from the secondary air flow} requir 
ing a reduction in the tail-pipe fuel flow in order to maintain constant 
turbine conditions . 

Effect of gas - flow ratio on ejector temperature ratio. - The var
iation of ejector temperature ratio (defined as the ratio of primary 
exhaust-gas temperature t o secondary air temperature measured at the 
inlet of the ejector nozzle) with gas - flow ratio is presented in fig
ure 15 . Figure 15(a) shows that primary pressure ratio has no effect 
on ejector temperature ratio} but increasing the gas-flow ratio decreases 
the secondary air temperature and thus raises the ejector temperature 
ratio . This relation was plotted for each ejector configuration} and 
the faired curves are shown in figure 15(b). For each ejector configu
ration} a given gas - flow ratio defines a single ejector temperature 
ratio} and within the range of gas - flow ratio investigated the tempera
ture ratios varied from 2 . 0 to 5 .0 . At a given gas - flow r atio} the 
effect of changes in ejector geometry was relatively small because the 
secondary air temperature was measured at the cooling-shroud outlet 
passage, which is the entrance to the ejector nozzle (station d, 
fig . 3). 

Effect of gas - flow ratio on afterburner shell temperatures . - The 
variation of afterburner shell temperatures with gas-flow ratio is pre 
sented in fi gure 16 for all e j ector configurations. The afterburner 
shell temperature was measured at two stations : (1) just ahead of the 
afterburner flame holder (station c, fi g . 3) and (2) at the inlet of 
the primary nozzle (station d) fig . 3) . The primary gas temper ature s 
ahead of the flame holder were essentially the turbine - outlet tempera
ture (16600 R) for all operating conditions} and at the inlet to the 
primary nozzle ) primary gas temperatures were about the same as the 
afterburner exhaust - gas temperature . Variations in primary pressure 
ratio had no effect on the shell temperatures (s ee fig . 16(a) for con
figuration B). The faired curves for each ejector configuration are 
presented in figure 16(b). From this fi gure it is apparent that a 
given gas - flow ratio defines approximately the same afterburner shell 
temperature for all the ejector configurations tested. An evaluation 
of the ejector cooling effectiveness should take into account that the 
afterburner was equipped with a cooling liner which extended the 
lensth of the combustion chamber (fig . 3 ). 

CONFIDENTIAL 
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Application of Ejector to Afterburner Installation 

In the design of an afterburner ejector , two approaches might be 
considered : (1) the maintenance of constant afterburner shell tempera
ture, and (2 ) constant ram pressure recovery at the cooling- shroud 
inlet . Because afterburner shell tempe rature is directly related to 
gas - flow ratiO , performance plots are presented at constant gas - flow 
ratios . For the condition of constant pressure recovery, performance 
curves are presented for cooling- shroud inlet pressure ratios which 
correspond to values of constant engine - inlet pressure r ecovery at the 
cooling- shroud inlet . The r ange of primary pressure ratio investigated, 
which was from 1 . 79 to 3 .40 , corresponds to engine - inlet pressure 
ratios from 1 .05 to 2 .0, or f l ight Mach numbers from 0 . 25 to 1 .08 . 

Ejector design for constant gas - flow ratio . - The variation of 
COOling- shroud inlet pressure ratio and jet - thrust ratio with primary 
pressure ratiO is presented in figures 17 and 18 , respectively, for 
constant gas - flow ratios of 0 .04 , 0.10, and 0 . 16 for all the ejector 
configurations investigated . A line which represents 100-percent 
recovery of engine-inlet pressure at the inlet of the cooling shroud 
has been superimposed on each of the shroud inlet pressure curves. 
Operation below this line might be possible with the use of ram air 
alone ; however , operation above the line would require the use of high
pressure ai r from some auxiliary source . 

Difference s in ejector geometry have a large effect on the cooling
shroud inlet pressure required to maintain a constant gas - flow ratio 
(fig . 17) . At a diameter ratio of 1 .42, a gas - flow ratio of 0 .04, and 
a primary pressure ratio of 3 .04, increasing the spacing ratio from 
0 . 04 to 1 .16 lowered the cooling- shroud inlet pressure ratio from 1 .18 
to 0.89 (see configurations A and C, fig . 17(a)). At the same operating 
conditions for a spacing ratio of 0 . 79 , decreasing the diameter ratio 
from 1 .42 to 1.08 increased the shroud inlet pressure ratio, for con
stant gas - flow ratio, from 1. 01 to 1 .48 (see configurations B and D, 
fig . 17(a)) . As the cooling- air flows are increased, however, the 
effects of ejector geometry on cooling- shroud inlet pressure ratio are 
diminished (see figs . 17(b ) and 17(c )) . 

An important consideration i n the selection of the most suitable 
ejector geometry for the maintenance of constant gas - flow ratio (con
stant shell temperature ) is the rel ative position of the performance 
curves with respect to the 100-percent ram pressure recovery line . The 
cooling- shroud inlet pressure required to maintain low gas - flow ratios 
is considerably less than the pressure available at the engine inlet 
(see fig. 17(a)) . As the gas - flow ratio is increased, however, the 
pressure required at the inlet to the cooling shroud becomes greater 
than the pressure available at the engine inlet and thus would require 
an auxiliary supply of high -pressure air. 

CONF I DENTIAL 
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The variation of jet- thrust ratio with primary pressure ratio for 
gas-flow ratios of 0 .04) 0 .10 ) and 0.16 is presented in figures lS(a)) 
l S (b )) and l S(c)' , respectively) for all ejector configurations . At a 
diameter ratio of 1 .42 ) increasing the spacing ratio from 0 .04 to 1 .16 
resulted in reductions in jet - thrust r atio as high as 15 percent. How
ever) changing the spacing ratio for a diameter ratio of 1 . OS had a much 
smaller eff ect on the jet-thrust ratio . Lowering the diameter ratio 
from 1. 42 to 1.OS resulted in thrust increases of about Sand 12 percent 
for spacing ratios of 0 . 79 and 1 .16) respectively (see figs . l S (a)) l S(b )) 
and lS (c)). 

Ejector design for constant engine - inlet ram pressure recovery . -
The variation of gas-flow ratio and jet- thrust ratio with primary pres 
sure ratio is presented in figures 19 and 20) respectively) for constant 
pressures at the cooling- shroud inlet of 100) 70) and 40 percent of the 
ram pressure available at the engine inlet. At a given ram pressure 
recovery) the ejectors with larger diameter ratios permitted a substan
tially greater gas - flow ratio to be obta ined at any primary pressure 
r atio (fig . 19 ). For example ) at a ram pressure recovery of 100 per 
cent) a primary pressure ratio of 2 . 73) and a spacing ratio of 0.79) 
r ai sing the diameter ratio from 1 .OS to 1 .42 increased the gas -flow 
ratio from 0 . OS2 to 0 .116 . For ejector configuration C) reducing the 
ram pressure recovery from 100 to 40 percent lowered the gas-flow ratio 
from 0 .126 to 0 .088 at a primary pressure ratio of 2.73 . The effects 
of variations in ejector geometr y on the jet- thrust ratio at constant 
ram pressure recovery (fig . 20 ) are similar t o those indicated for 
constant gas - flow ratio (fig . l S). 

Design criterion for optimum performance . - I n the selection of an 
optimum ejector design ) a compromise must be reached by weighing the 
following factors : (1) the secondary air flow required to keep the 
afterburner skin temperature within all owable limits) (2) the pressure 
that would be available at the inlet to the cooling shroud) and (3) the 
thrust loss at critical flight conditions . From figures 17 to 20) it 
is possible to develop a qualitative idea of the effect of ejector 
geometry on the gas - flow ratio) the cooling- shroud pressure require 
ments) and the jet- thrust penalties . An examination of these curves 
l eads to the following genera l conclusions : 

(1 ) For ejectors with large diameter ratios) reasonable gas - flow 
ratios can be obtained at relatively low pressures at the entrance to 
the cooling shroud) but the thrust losses become prohibitive as the 
spacing ratio is increased from 0 to 1 .16 . 

(2) For ejectors with small diameter ratios } reasonable gas - flow 
ratios can be obtained only at high cooling- shroud inlet press ures ; 
however ) the thrust characteristics are superior to those obtained for 
ejectors with large diameter ratios . At high flight Mach numbers} use 
of the small - diameter - ratio ejectors may permit the attainment of a 
jet - thrust gain . 

CO~WIDENTIAL 
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(3) From the data presented) it is evident that a particular ejec 
tor configuration for a flight install ation will depend on the specific 
design requirements . However ) results of the present ejector investiga
tion show that maximum air - flow and thrust characteristics cannot be 
obtained from anyone ejector geometry) but that compromises must be 
made of one for the other . 

Investigation of Effect of Temperature Ratio 

on Corrected Ejector Performance 

A comparison of test data obtained from two independent sources 
(references 1 and 2 ) is presented in figure 21 for similar ejector 
geometries and for equal primary and secondary air temperatures . This 
comparison is made with gas - flow ratio as a function of primary pres
sure ratio for two secondary pressure ratios . Because the data from 
both sources show good agreement even though the primary nozzle diam
eters were 0 . 78 and 4 .0 inches for references 1 and 2) respectively, 
i t appears that there are no sca le effects . 

When the temperatures of the secondary and primary air streams are 
not equal ) the square root of the temperature ratio i s suggested as a 
generalizati on factor for the ga s - flow ratio in references 3 and 6 . An 
investigation to determine the validity of this temperature - correction 
factor on the generalization of the gas -flow ratio is reported i n ref
erence 4 . Data that indicate the effect of temperature ratio on the 
corrected gas - flow ratio for a hypothetical and an experimental ejector 
configuration are reproduced from reference 4 in figure 22 . Increasing 
the temperature r atio from 1 .0 to 3 .0 at a primary pressure ratio of 
1 . 6 decreased the corrected mass - flow r atio about 25 and 18 percent 
for the hypothetica l and experimental ejectors) respectively) at second
ary pressure ratios of 1 .00 ) 1 .05 ) and 1 .10 . I t is therefore apparent 
that for the range covered in this investigation changes in temperature 
ratio between the primary and secondary air flows have a first -order 
effect on the corrected gas - flow ratio . 

The data obtained in the full- scale altitude- wind- tunnel ejector 
investigation at temperature ratios f r om 2 .0 to 5 .0 are compared in 
figure 23 with model data from reference 2 for the same ejector geometry 
with a temperature ratio of 1 .0 . At given primary and secondary pres 
sure ratios ) the corrected gas - flow ratios indicated by the small - scale 
ejector data at a temperature r at i o of 1 .0 were much larger than t hose 
indicated by the full - scale ejector dat a obtained in the altitude -wind
tunnel investigation at temperature ratios from 2 to 5 . For example) 
at a primary pressure ratio of 1.8 and a secondary pressure r atio of 
1 .05 ) the corr ected ga s - flow ratio fo r t h e hot ) full- scale data i s 
about 55 per cent of the amount indicated by the col d model data . How
ever) at higher primary pressure ratios the percentage dif ference 
between hot and col d ejector data increases . 

CONFIDENTIAL 
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Reference 6 indicates that a small variation in static pressure of 
the secondary air between conditions of different ejector temperature 
ratios will produce substantial changes in the corrected gas -flow ratio . 
For an example shown in the reference report where the secondary total 
pressure was the same but the sec ondary static pressure differed by 
about 0.2 of 1 percent) for hot and cold data) an error of 35 percent 
was obtained for the corrected gas - flow ratios . Therefore it seems 
likely that differences in secondary static pressure between hot and 
cold ejector data constitute a factor that prevents the generalization 
of gas - flow ratios by the simple temperature-correction factor. 

From thes e comparisons it is apparent that ejector performance 
data obtained at a temperature ratio of 1.0 cannot be extrapolated to 
the temperature ratios required of turbojet afterburning operation by 
the simple temperature correction factor suggested in references 3 
and 6 . 

SUMMARY OF RESULTS 

The foll owing results were obtained from a full - scale turbojet 
engine - afterburner installation equipped with a cooling shroud and a 
series of ejector nozzles : 

1 . For ejectors with large diameter ratios ) reasonable gas - flow 
ratios could be obtained at relatively low pressures at the entrance to 
the cooling shroud) but the thrust losses became very large as the spac 
ing ratio was increased from 0 to 1. 16 . 

2 . For ejectors with small diameter ratios ) reasonable gas - flow 
ratios could be obtained only at high cooling- shroud inlet pressuresj 
however) the thrust characteristics were superior to those obtained for 
ejectors with large diameter ratios . At high flight Mach numbers) use 
of the small-diameter ratio ejectors may permit the attainment of a small 
thrust gain over a simple convergent nozzle. 

3 . Changes in the variable-area exhaust nozzle (primary system) 
had the same effect on ejector performance as the corresponding changes 
of ejector diameter and spacing ratios with constant primary nozzle 
area . 

4 . For a given gas-flow ratio) a single ejector temperature ratio 
and afterburner shell temperature were obtained for all ejector nozzles 
investigated . 
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5 . The full- scale altitude -wind-tunnel investigation of ejectors 
verified results previously reported - that secondary air-flow data 
obtained at a temperature ratio of 1 .0 could not be extrapolated to 
determine air flow at temperature ratios between 2 .0 and 5 .0 by the 
application of the temperature - ratio factor to the gas-flow ratios . 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland) Ohio 
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APPENDI X - CALCULATI ONS 

Symbols 

cross sectional area, sq ft 

thrust - scale balance force, lb 

jet- thrust coefficient) ratio of scale jet thrust to rake jet 
thrust (without ejector ) 

flow coefficient 

thermoexpansion coefficient, ratio of hot exhaust -nozzle area 
to col d exhaust -nozzle area 

diameter, ft 

external drag of installation) lb 

jet thrust) lb 

acceleration due to gravity) 32 . 2 ft/sec
2 

mixing length, ft 

total pressure , lb/sq ft absolute 

static pressure) lb/sq ft absolute 

impact pressure (p -p ) , lb/sq ft absolute 

gas constant, 53 .4 ft - lb/(lb ) (OR ) 

distance from primary nozzle exit to ejector no zzle - section exit 

total temperature, OR 

meta l temperature, OF 

static_ temperature, OR 

velocity ) ft/sec 

air flow) lb/sec 

fuel flo w, lb/hr 
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w p 
primary gas flow) lb/sec 

Ws secondary air flow) lb/sec 

y ratio of specific heats of gases 

Subscript : 

e engine 

Primary instrumentation stations : 

r exhaust - nozzl e survey rake 

t tail -pipe 

o free - stream 

1 inlet air duct 

NACA RM E51J04 

p primary exhaust nozzle outl et ) 1 inch upstream of exhaust -
nozzle fixed portion outlet 

Secondary instrumentation stations : 

A v enturi in secondary air supply line upstream of plenum chamber 

b plenum chamber 

c cooling- shroud inlet 

d cool ing - shroud outl et 

s secondary ejector- nozzle inlet 

Parameters : 

Ds/Dp ejector diameter ratio 

S/Dp ejector spacing ratio 

pp/PO primary pressure ratio 

ps/PO secondary pressure ratio 

Ws/Wp ejector gas - flow ratio 

Tp/Ts ejector temperature ratio 
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Methods of Calculation 

Primary gas flow . - Air flow at the engine inlet was determined 
from pressure and temperature measurements obta ined in the inlet air 
duct by the equation 

Primary gas flow in the tail-pipe is 

Secondary air flow . - The s econdary air flow was measured at the 
venturi l ocated upstream of the shroud- inl et plenum chamber. Because 
the velocity of the air was low at this station) the followi ng incom
pressible equation was used : 

15 

Primary exhaust - gas temperature . - The total temperature of the 
primary exhaust gas was determined from exhaust- nozzle total and static 
pressure and tail-pipe gas flow as f ollows: 

r - 1 
- p-

G:f - 1 

Jet thrust of combined primary and secondary systems . - The com
bined jet thrust was determined from the balance- scale measurements by 
the following equation : 

The last two terms represent momentum and pressure forces) respectively) 
acting on the installation at the slip joint in the inlet air duct . The 

CONFIDENTIAL 
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external drag of the installation was determined from experiments 
obtained with a blind flange installed at the engine inlet to prevent 
air flow through the engine . 

Jet th-ust of primary system . - The jet thrust of the primary sys 
tem was calculated from exhaust - nozzle outlet pressures and tail-pipe 
gas flow obtained simultaneousl y with the combined jet thrust of the 
primary and secondary systems . 

where the subscript n denotes the station at the primary nozzle vena 
contracta and the jet thrust coefficient Cj determined from previous 
engine operation was 0 .97 . The charts in reference 7 were used in the 
solution of the preceding equations. 
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Figure 2 . - View of afterburner cooling shroud and primary exhaust nozzle. 
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Figure 16. - Variation of afterburner shell temperature, measured at entrance and exit of cooling 
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