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SUMMARY 

Some approximate values of the yawing moment due to sideslip 
derivative for eight airplane-like configurations flown as rocket models 
for other purposes, at transonic speeds, have been collected and compared 
with the available subsonic and supersonic wind-tunnel data for the same 
configurations. 

The comparisons of tunnel and rocket data tended to verify the 
magnitude of values of directional stability indicated by the rocket 
tests even though the rocket data were obtained by a simplified single-
degree-of freedom analysis of random oscillations at low angles of attack 
and sideslip. 

The rocket data indicated that the maximum value of the directional-
stability derivative Cn occurred at Mach numbers between 1.1 and 1.2. 

Although the data showed appreciable scatter because of the random nature 
of the oscillations, the variation of Cn with Mach number at transonic 
speeds generally appeared to be fairly smooth and regular. There was 
some evidence in the rocket-model data of cross coupling between pitch 
and yaw at low lift coefficients when the frequencies in pitch and yaw 
approached equality. 

The available data indicate little variation with Mach number of 
the wing-body contribution to Cnpat low lift coefficients. None of 

the data indicated the probability of any unusual vertical-tail-load 
problems at transonic speeds.
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INTRODUCTION 

Several rocket models of airplane-like configurations flown by the 
Langley Pilotless Aircraft Research Division in investigations of drag 
or longitudinal stability and control have been instrumented to record 
lateral force. Random oscillations have appeared in the lateral-force 
records, in the transonic speed range, as a result of rough air or other 
disturbances introduced into the flights. These oscillations have been 
analyzed by the method presented in reference 1 to obtain approximate 
values of the yawing moment due to sideslip derivative. Because of the 
general lack of experimental data, at transonic speeds, for many of the 
sideslip derivatives, the effective values of directional stability 
calculated from the records of 13 model flights (8 airplane-like configu-
rations) have been collected. The configurations considered have both 
unswept and swept wing and vertical-tail plan forms. 

The directional-stability data are presented in this paper with no 
analysis other than comparisons with the available subsonic and super-
sonic wind-tunnel data for the same configurations in order to make the 
data more immediately available to designers. 

SYMBOLS 

CL	 lift coefficient, Lift

C	 yawing-moment coefficient. 
Yawing moment about center of gravity 

qSb 

S	 wing area, sq ft 

b	 wing span, ft 

wing mean aerodynamic chord, ft 

q	 dynamic pressure, LpM 2 , lb/sq ft 

p	 static pressure, lb/sq ft 

M	 Mach number
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y	 specific heat ratio for air, 1)4-

sideslip angle, deg 

Cnp

	

	 rate of change of yawing-moment coefficient with sideslip angle per deg 

C *	 effective value of C , calculated from single-degree-of- 
* 

freedom equation of reference 1, C	 = 0.688 I  , per 
deg	 qSbP2 

moment of inertia in yaw, slug-ft2 

P

	

	 period of yawing motion as indicated by lateral accelero-



meter reading (lateral force), sec 

MODELS AND INSTRUMENTATION 

The models from which data were obtained had been propelled to 
various maximum speeds in free air by various combinations of internal 
and external solid-propellant rockets. Table I presents the principal 
geometric characteristics of all the models considered and three-view 
drawings of each model are presented with the C* data in the data 

figures. Additional data on the construction and propulsion systems of 
most of the models may be obtained from references 2 to 5. 

Instrumentation commn to all models and pertinent to the present 
study consisted of a telemetered lateral accelerometer providing con-
tinuous records of lateral force against time. Values of Mach number 
and dynamic pressure were computed from various combinations of teleme-
tered static-pressure data, telemetered total-pressure data, velocity 
data from a Doppler radar unit, flight-path data from an NACA modified 
SCR 584 tracking radar, and atmospheric data from radiosondes. Refer-
ences 2 to 5 discuss the instrumentation for the models more completely. 

DATA AND ANALYSIS PROCEDURES 

The primary data were obtained as continuous-line records of lateral 
force against time. Oscillations due to rough air or other unidenti-
fiable sources appeared in these records. The oscillations were random 
in nature and their magnitudes generally were less than ±10 percent of 
the calibrated instrument range. The magnitudes generally corresponded
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to oscillations in sideslip of less than ti°. The periods of the oscil-
lations were obtained by measuring the time required for the occurrence 
of one or more complete cycles. The random nature and small amplitude 
of the oscillations induced appreciable scatter in the measurements of 
period. No attempt was made to fair a curve of period against Mach nuxther 
to reduce the scatter because, for most cases, insufficient data were 
available from any one flight to define such a curve adequately. 

The conversion of the period data to values of was made by 
using the single-degree-of-freedom expression from reference 1 (see the 
symbol list). In order to show the validity of this single-degree-of-
freedom approximation for airplane configurations similar to the models 
considered herein, some "true" and "effective" values of C	 are 

compared in figure 1. The true values of C 	 are those used along with 
the best available measured and estimated values of all the directional-
stability derivatives to calculate the period of sideslip oscillation 
for four airplanes in the flaps- and gear-up condition by using the 
complete equations of motion (ref. 6 to 8 and unpublished data). The 
effective values of Cn are those calculated by the single-degree-of-

freedom procedure by using the period obtained from the complete equa-
tions. The comparison in figure 1 shows that, in most cases, the true 
and effective values of Cn agree within ±0.0005. 

RESULTS AND DISCUSSION 

Basic Data 

The values of C* calculated from the rocket-flight data are 

presented in figures 2 to 9 for models 1 to 8. Also presented in 
figures 2 to 9 are three-view drawings of each model and the available 
wind-tunnel data on C	 for each model taken from references 6 to 	 14 

and various unpublished sources. The wind-tunnel values of Cn are 

presented for the complete models and, where possible ., for component 
parts of the models. All the wind-tunnel values of C	 have been 

transferred to the flight-model center-of-gravity location. Each curve
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or group of data points in figures 2 to 9 is labeled with some one, or 
combination, of the letters W, B, H, and V to indicate the components of 
which the model consisted when the data were obtained. The meanings of 
the letters are: 

W	 wing 

B	 body, including canopy where shown in sketch 

H	 horizontal tail 

V	 vertical tail (vee tail for, model 7) 

Other information of interest for particular models is given in 
table II.

General Trends 

Agreement with tunnel data.- The values of Cr * for the rocket 

models shown in figures 2 to 9 generally agree well in magnitude with 
test data or reasonable extrapolations of test data from subsonic and 
supersonic wind-tunnel tests. There is one apparent exception to this 
agreement, model 8. For model 8 there were the following differences 
between the wind-tunnel and rocket models: (a) The rocket model had 
longer fuselage ahead of wing, (b) the rocket model had smaller base 
(greater boattail on rear of fuselage), and (c) the rocket model was 
flown with aluminum-shell fuselage and magnesium vertical surface at 
nearly sea level static pressure, whereas the tunnel model had steel 
surfaces and a steel reinforced body and was tested at less than sea-
level static pressure. All these differences would be expected to result 
in lower values of C11 for the rocket model. Quantitatively, the 

aeroelastic loss has been estimated and the magnesium vertical tail on 
the rocket model is felt to have been about 85 and 70 percent effective, 
as compared to the steel tail, at Mach numbers of 0.85 and l.i-, respec-
tively. By using this loss in tail effectiveness and a value of C 

for fuselage as estimated from reference 15, most of the difference 
between rocket model Cn and tunnel model Crj can be explained. 

Complete-model Cn at transonic speeds.- The variations of C1* 

with Mach number In the transonic range appear to be generally regular 
with peak values occurring at transonic speeds as is usually the case 
for the lift-curve slope of finite-aspect-ratio airfoils. Although the 
data are very scattered, probably because of the random nature of the
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oscillations and possibly because of nonlinearities at small angles of 
sideslip, the rocket models all appeared to have maximum values of Cri* 

at Mach numbers between 1.1 and 1.2. The maximum lift-curve slope for 
finite-aspect-ratio airfoils (refs. 16 and i) generally occurs quite 
close to M = 1. The rearward shift in the aerodynamic center which 
occurs in the transonic range, however, is usually not complete at M = 1. 
This rearward movement of the aerodynamic center at M > 1 probably is 
the cause of the maximum value of C rj * occurring at M = 1.1 to 1.2 

instead of at M = 1 as for lift-curve slopes. 

Pitch-yaw cross coupling. - The data for model 5 showed a reduction in 
C

flJ3 * at Mach numbers between 1.0 and 1.2 both with and without external 

stores installed. The reason for this apparent decrease is not known but 
it is probable that the C rj * values in the Mach number range between 

M = 0.85 and 0.98 are erroneously high because of cross coupling with an 
oscillation in pitch that is known to have occurred simultaneously with, 
and at the same frequency as, the lateral oscillation. The wind-tunnel 
data tend to support this explanation as does the rocket-model peak in 
Cn* at M = 1.2 which is consistent with the data for the other models. 

The rocket-model data near M = 1. 3, which agree with the wind-tunnel 
data, were also obtained when the model was oscillating in both pitch and 
yaw but not at equal frequencies in the two planes, thus, the cross 
coupling, if any, was appreciable on..y at subsonic speeds where the pitch 
and yaw frequencies were approximately equa l. for this model. Examination 
of the basic data records shoved that equal-frequency pitch and yaw oscil-
lations occurred for the following models and Mach numbers: 

Model Mach number Figure	 - 

1 1.21 to 1.23 2 
II. 1.17 5 
5 0.85 to 0.98 6 
8 0.88 to 1.05 (Not presented)

These equal-frequency oscillations generally occurred at values of 
CL between -0.1 and 0.1. The values of C* for the above models and 

Mach numbers may be erroneous and should therefore not be given much 
weight in estimating the variation of C n * with M. 

The reason for the existence of the cross-coupled oscillations is, 
as yet, unknown. The low lift at which the oscillations occurred and 
the appearance of equal pitch and yaw frequencies indicate that the cross 
coupling is not the high-angle-of-attack type treated in reference 18 nor 
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the low-angle type encountered in some research-airplane flight tests 
where the pitch frequency was twice the yaw frequency (ref. 19). 

Fuselage Cri at transonic speeds.- There are no data to indicate 

directly the variation of the fuselage contribution to C1 with Mach 

number at transonic speeds except the wing-off data from reference 15. 
It might be expected that slender bodies would show no marked variations. 
Of Cn with Mach number and both the rocket data (ref. 15) and the wind-
tunnel data for models 2, 3, 4, and 5 tend to substantiate this belief. 
The magnitudes of the values of tail-off C 11 generally agree reasonably 

well with estimates based on the data and procedures of references 20 and 
21.

Vertical-tail loads.- None of the data for models 1 to 8, all of 
which had fairly thin stabilizing surfaces, indicated any radical losses 
in Cnp at transonic speeds. Thus, no unusual vertical-tail loads would 
be expected to occur at Mach numbers near 1. Not enough is known as yet 
about the coupled oscillations which occurred for models 1, 4, 5, and 8 
to estimate whether they would occur on the airplanes. For the models, 
however, the amplitudes of the coupled oscillations were not appreciably 
different from those of the other oscillations. Therefore the possible 
existence of such coupled oscillations for the airplane is felt to be more 
of a handling-qualities problem than a tail-loads problem. 

CONCLUDING REMARKS 

Comparisons of the yawing moment due to sideslip derivative Cn 

values from wind-tunnel data and from single-degree-of-freedom analyses 
of random oscillations in rocket-model data for several airplane-like 
configurations show fair agreement. The rocket-model data generally show 
fairly smooth variations of effective C np with Mach number and maximum 

values of effective Cnp occurred in the Mach number range between 1.1 

and 1.2. There was some evidence in the rocket tests of cross coupling 
between pitch and yaw at low lift coefficients when the frequencies in 
pitch and yaw approached equality. The data indicated very little
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variation with Mach number of the wing-body contribution to Cnp at low 

lift. None of the data indicated the probability of any unusual vertical-
tail-load problems at transonic speeds. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va.
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Figure l.- Comparison of true and effective values of directional-
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Figure 3. - Directional-stability data for model 2.
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Figure II. .- Directional-stability data for model 3. 
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Figure 6. - Directional-stability data for model 7, from unpublished
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Figure 1. - Directional-stability data for model 6.
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Figure 8.- Directional-stability data for model 7.
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