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NATIONAL ADVI SORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

LOW-SPEED LONGITUDINAL AERODYNAMIC CHARACTERI STICS OF A 

TWISTED AND CAMBERED WING OF 450 SWEEPBACK AND ASPECT 

RATIO 8 WITH AND WITHOUT HIGH -LIFT AND STALL-CONTROL 

DEVICES AND A FUSELAGE AT REYNOLDS NUMBERS FROM 

1 . 5 X 106 TO 4 . 8 x 106 

By Reino J . Salmi 

SUMMARY 

A l ow- speed investigation of the static longit udinal aerodynamic 
characteristics of a twi s ted and camber ed wing having 450 of sweepback 
and an aspect ratio of 8 . 0 was conducted in the Langley 19- foot pressure 
tunnel . The tests included the effects of leading- and trailing- edge 
flaps , flow control fences , and a fuselage . The investigation was made 

through a Reynolds number range of 1 . 5 x 106 to 4 .8 x 106 . 

A comparison of the results with those of a wi ng of similar plan 
f orm, but with no camber or twist , indicated that , for the flaps - neutral 
case , camber and twist improved the stabili ty consider ably in the lift 
coeffic ient range below 0 . 7 , increased the lift -drag ratios in the mod
erate and high lift -coeffic ient r ange , and increased the maximum lift 
coefficient from 1.01 to 1 . 30 . With high -lift and stall -control devi ces 
on the Wings, camber and twist increased the lift-drag ratios in the 
high-lift range and increased t he maxi mum lift coefficient , although the 
forward shift of aerodynami c center near the maxim~ lift was somewhat 
greater for the twisted and camber ed wing than for the untwisted wing. 
The fuselage had a destabilizing effect which inc~eased greatly in the 
high angle - of -attack range . Reynolds number effects on the aerodynamic 
char acteristics in the range investigated were , in gener al , small. 
Roughness on the leading edge of the plain wing caused an appreciable 
decrease in the lift coefficient at which the pitching moment became 
unstable and decreased the maximum lift coeffic ient about 0.2. 
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INTRODUCTION 

As ~art of a broad program to investigate the low-speed aerodynamic 
characteristics of sweptback wings, the static longitudinal stability 
characteristics of a 450 sweptback wing of aspect ratio 8 . 0 were inves
tigated in the Langley 19- foot ~ressure tunnel. The results are re~orted 
in references 1 to 3 . Although a wing of such plan form is basically 
very unstable at moderate and high l ift coefficients, it was pointed 
out in reference 1 that longitudinal s t ability could be obtained from 
the use of s t all -control devices . 

More r ecently , consideration has been given to the use of camber 
and twist variations along the s~an as a means of counteracting the 
undesirable induced effects of sweepback. Camber and twist . also provide 
additional advantages , if pro~erly a~~lied, in that both the profile and 
induced drag would be reduced for high design lift coefficients. 

With these considerations in mind, an experimental investigation 
was conducted to determine the low-s~eed longitudinal characteristics of 
a 450 sweptback wing of aspect ratio 8 . 0, which was cambered and twisted 
to provide an elli~tical spanwise ioad distribution at a design lift 
coefficient of 0. 7 and a Mach number of 0.9 . The plan form of the present 
wing was similar to the plan form of the wing reported in references 1 
to 3, which had no camber or twist. 

The present paper contains the results of f orce tests to determine 
the effects of high -lift and stall-control devices on the cambered and 
twisted wing . The investigation was conducted at Reynolds numbers 

ranging from 1 . 5 x 106 to 4 . 8 x 106 . 

SYMBOLS 

All forces and moments ar e referred to a point 9 . 34 percent of the 
mean aerodynamic chord above the quarter-chord point of the mean aero 
dynamic chord projected to t he plane of symmetry . 

A aspect ratio 

a s~eed of sound 

b wing span 

c wing chord 
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L/D 

M 

q 

R 

S 

t 

v 

x 

y 

z 

p 

mean aerodynamic chord (~Iab/2 C2~ 

drag coefficient (Drag/qS) 

lift coefficient (Lift!qS) 

design section lift coefficient 
,;: 

increment in lift coefficient 

pitching-moment coefficient (Pitching moment/qSc) 

Cm (fuselage on) - Cm (fuselage off) 

rate of change of pitching-moment coefficient with 
lift coefficient 

lift - drag ratio 

Mach number (V/a) 

dynamic pressure ( 1/2PV2) 

Reynolds number (PVc!~) 

wing area 

wing thickness at any section 

free - stream velocity 

distance along chord line from leading edge 

spanwise coordinate 

distance normal to chord line 

angle of attack of wing root chord line 

3 

flap deflection angle me asured in a plane para llel to 
plane of symmetry 

ma ss densi t :,;' of a i r 
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coefficient of viscosity 

Subscripts: 

max maximum 

MODEL 

The wing (fig . 1) was similar in plan form to the untwisted wing 
reported in references 1 to 3) and had 450 of sweepback at the quarter
chord line ) an aspect ratio of B. O) and a taper ratio of 0 . 45 . The 
wing was designed to provide an elliptical spanwise loading and a uni
form chordwise loading at a lift coefficient of 0 .7 and a Mach number 
of 0 . 9 . The corresponding twist and camber were calculated by the method 
of reference 4. Figure 2 presents the spanwise variation of the geo
metric twist and the design section lift coefficient . The mean line 
used was a very close approximation of the mean line derived from refer
ence 4 and was obtained by increasing slightly the curvature near the 
nose of a mean line of the type a = 1 . The equations giving the shape 
of the mean line together with tabulated ordinates for a design section 
lift coefficient of 1.0 are given in table I . The mean-line ordinates 
at any spanwise station are obtained by multiplying the ordinates given 
in table I by the proper values of Cr . given in figure 2 . The thick-

l 

ness distribution of the NACA 631A012 section was used. The twisted wing 
represents a series of sections sheared parallel to the plane of symmetry 
and rotated about the BO - percent- chord point) so that true sections were 
maintained parallel to the plane of symmetry. 

The wing construction consisted of a steel core with an outer layer 
of a alloy of bismuth and tin . The various flaps and fences used on 
the wing were made of sheet steel . The details of these devices and 
their locations on the wing are shown in figure 1 . 

The fuselage was circular in cross section and had a fineness ratio 
of 10.0 . The fuselage had removable sections which permitted the wing 
to be set at incidence angles of 00 or 40

. For each incidence angle) 
the leading edge of the root chord remained fixed relative to the fuselage) 
that is) 3.182 inches above the fuselage center line . The following 
equations define the fuselage nose and afterbody shapes: 

Nose shape 
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Afterbody shape 

where the length of the constant - diameter section was equal to 41 . 680 
inches and 

r radius 

radius of constant - diameter section (6 . 36 in . ) 

distance measured toward center of fuselage from 
fuselage nose 

5 

length of curved portion of fuselage nose (33.344 in . ) 

distance measured toward center of fuselage from the 
stern 

length of curved portion of fuselage afterbody (52.236 in.) 

TESTS 

The tests were conducted in the Langley 19- foot pressure tunnel at 
an air pressure of about 33 pounds per square inch absolute and at Reynolds 

6 6 
numbers ranging from 1 . 5 X 10 to 4. 8 x 10 . Figure 3 shows the model 
mounted in the tunnel . 

Measurements of the forces and moments on the model were made for 
an angle - of - attack range from _40 to 30° . Most of the data were obtained 
with the fuselage off . Various combinat ions of the leading- edge flaps, 
trailing-edge flaps) and fences were tested) and the results are sum
marized in table II. The fuselage - on data were obtained for wing inci
dence angles of 0° and 4°. An indication of the air - flow characteristics 
near the surface of wing was obtained from observations of wool tufts 
fastened to the wing surface with cellulose tape. 



-------- --

6 NACA RM L52Cll 

The te st Reynol ds numbers and correspondi ng Ma ch numbers were as 
follows : 

R M 

1.5 X 106 0 . 07 
2 . 2 .n 
3 . 0 . 14 
4 .0 . 19 
4 . 8 .25 

The effects of roughness of the type described in reference 5 on 
the aerodynami c characteristics of the plain wing were determined at 
Reynolds numbers of 1 . 5 X 106 and 4 .0 X 106 . 

RESULTS AND DISCUSSION 

The data have been corre cted for the support tare and interference 
effects , a ir- stream misalinement, model blockage, and jet-boundary i nter 
ference . The jet-boundary corrections were determined by the method 
shown in reference 6. In the following discussion, reference is made 
to unpublished p~essure -distribution data which were o~tained on the 
present wing . 

Longitudinal Stability Characteristics 

Wing alone .- The lift and pitching-moment characteristics of the 
cambered and twisted wing and those of the uncambered and untwisted 
wing (reference 2 ) , which will hereinafter be referred to as the flat 
wing, are presented in figure 4 . It is readily apparent that the camber 
and twist increased the lift- coefficient range in which the wings did 
not experience any decrease in stability and that the twi'sted and cam
bered wing had an abrupt unstable break, whereas the flat wing had a 
more gradual unstable change . From r eference 2 and from unpublished 
section- lift data for the twisted and cambered wing, it was noted that 
a loss in lift for the wing sections near the tips began at a wing lift 
coefficient of about 0 . 4 for the flat wing and 0 . 7 for the cambered and 
twisted wing . The pitching-moment data of figure 4, however, indicate 
a forward movement of the center of pressure for the flat wing which 
begins at a lift coefficient of about 0.2. Analysis of the pressure
distribution data of reference 2 indicates that the section centers of 
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pressure do not move enough to account for much of the wing center-of 
pressure movement. The initial movement of the wing center of pressure 
is evide ntly due mainly to small reductions in the lift - curve slope of 

the tip section~', possibly even outboard of the 0.96~ station (the far 

thest outboard row of orifices) . Lift changes outboard of this station 
would not be large enough to affect the wing lift - curve slope but would 
have a noticeable effect on the wing pitching moment and center of pres
sure because of the distance of those sections behind the moment center. 
The lift curves were nearly linear for the tip sections of the twisted 
and cambered wing so that the pitching-moment - coefficient curve for that 
wing (fig . 4) was almost linear in the lift - coefficient range below 0.7 . 

Stall - cont~ol devices .- As in the case of the flat wing (reference 1), 
an appreciable improvement in the stabi lity of the cambered and twisted 
wing resulted from the use of upper - surface fences (figs . 5 to 9) . A 
comparison of the pitching-moment curve s of the various fence configura 
tions indicated that the most favorable stability characteristics were 
obtained for a combination of three complete fences located at 0 . 450b/2, 
0.700b/2, and 0 .890b/2 (fig. 7). When more than three fences were used, 
the stability characteristics in the lift - coefficient range below the 
maximum lift coefficient were further improved, but an unstable break 
resulted at the maximum lift coefficient . The results of the present 
investigation, however, indicate that, as in the case of the flat wing , 
the instability of the cambered and twisted wing could not be completely 
eliminated by the use of fences alone . 

Some indication of the effects of the fences on the boundary- layer 
cross flow may be obtained from the tuft studies of figure 10 . It can 
be seen that the cross flow was obtained between the fences even at the 
lowest lift coefficient for which the tuft - study data are presented. 
The cross flow between the fences is belIeved to be independent of the 
cross flow On the wing inboard of the fences, since the stalled areas 
on the wing in the high lift - coefficient range are prevented from 
spreading to the wing areas just outboar d of each of the fences . 

Figure 9 gives the results of a brief investigation of the effect 
of fence height. The effectiveness of the fences in promoting stability 
increased somewhat with size, but the fences having a height of 0 . 15tmax 

Here almost as effective as those having a height of 0. 60tmax · 

An appreciable improvement in the stability of the wing was also 
)btained with the leading-edge flaps (fig. 11 ) . It can be seen that, 
is in the case of the flat wing, the leading-edge flaps of about half 
)f the semispan provided the greatest reductions in the instability of 
the twisted and cambered wing. The tuft stUdies of figure 12 indicate 



l 

8 NACA RM L52Cll 

that the leading-edge flaps tended to reduce the cross flow at the 
forward part of the outboard sections and delay the separation to higher 
lift coefficients . 

When a combination of both leading-edge flaps and fences was used 
on the wing, the greatest stabilizi ng influence of the stall- control 
devices was obtained. From figures 13 and 14 it can be seen that the 
most favorable pitching-moment characteristics in the region of the 
maximum lift coefficient were obtained with a combination of 0 .450b/2 
leading- edge flaps and 0 . 575b/2 and 0 .800b/2 chord fences on the wing. 
From f i gure 14 it can be seen that whe n the leading-edge flaps were on, 
the use of more than two fences on the wing reduced the instability in 
the lift - coefficient range below the maximum lift coefficient but caused 
larger unstable variations near the maximum lift coefficient . 

Combinations of stall - control devices and trailing-edge flaps.-
When the stall - control devices were off, the trailing-edge flaps increased 
the lift coefficient at which the large unstable pitching-moment change 
occurred (fig . 15) . The greatest increase occurred with the longest 
span trailing-edge flaps. 

With the trailing-edge flaps on, the addition of fences to the wing 
reduced the instability to approximately the same degree as with the 
flaps off, as indicated by a comparison of figures 16 and 17 with 
figures 6 and 7 . From a comparison of figures 16, 17, and 18, it can 
be seen that, with the trailing-edge flaps on, the unstable pitching
moment break occurred at a higher lift coefficient with leading- edge 
flaps than with fences, but the instability prior to CT_ was greater 

4Ilax 
with the leading- edge flaps. 

As in the case with the trailing-edge flaps off, the greatest 
stabilizing influence of the stall-control devices when the trailing
edge flaps were on, was obtained with a combination of both the leading
edge flaps and fences. Figures 19 and 20 present the results obtained 
wit various spans of both split and extended-split flaps at deflection 
angles of 230 and 520

, on the wing with 0.500b/2 leading- edge flaps and 
0 . 575b/2 and 0 . 800b/2 chord fences . In general, the effects of trailing
edge split flaps on the stability were similar to those noted for the 
flat wing (reference 1) and a lower - aspect-ratio wing (reference 7 ) . 
It can be seen from figure s 19 and 20 that the shortest -span trailing-

edge flaps tested ~.350~) improved the s tability slightly, but with 

longer spans of trailing-edge flaps, the stability in the high-lift
coefficient range progressively decreased as the trailing-edge flap span 
was increased. With both types of t r ailing-edge flaps, smaller unstable 
variations in the pitching moment occurred at the lower flap deflection 
angle (23 0 ) . Except for the differences in the lift coefficients at 

---~ 
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which the unstable pitching-moment var iations occurred, the differences 
i n the stabil i ty characteristics for the t wo types of split flaps tested 
were, in general, small (fig . 21) . 

An indication of the effects on the stabil i ty of the number of fences 
used when both the leading- and trail i ng-edge flaps wer e on the wi ng can 
be seen from figure 22 . The curves i ndicate t ha t a single fence was less 
t han hal f as effective as t wo f e nces in reducing the i nstability . 

Both the spl i t flaps and the extended- split flaps effected a posi 
tive trim change, as would be expected f r om the geometry of the wing . 
Through the range of s pan investigated, t he trim change decreased as 
the trailing- edge-f lap s pan was i ncreased. 

A direct comparison of the stability of the various combinations of 
devices tested can be see n fr om figure 23 in whi ch the var iation of 
dCm/dCL with lift coefficient is shown for the most favorable arrange
ment of the devices from the vi ewpoint of s t abi li t y for each case . 

Lift Characteristics 

Wing alone. - A maximum lift coefficient of 1 . 30 was obtained for 
the plain cambered and twisted wing in the angle - of -attack range tested 
(fig . 4). The increase in the maximum lift coefficient over t he value 
of 1 . 01 obtained for the flat wing was approximately equal t o the amount 
that would be expected because of the addition of the camber (reference 5) . 
A decrease in the lift - curve slope occurred at a wing lift coeffi c ient of 
about 0 . 7 and corresponded with the unstable break in the pitching moment . 
In the region near the maximum lift coefficient the variation of the lift 
coefficient with angle of attack was small . 

High- lift and stall - control devices .- A maximum lift coefficient 
of 1 . 47 was obtained with the combination of 0 . 450b/2 leading-edge flaps 
and 0 . 575b/2 and 0 . 800b/2 chord fences on the wing, which was the most 
favorable combination of stall- control devices from the viewpoint of 
stability with the t r ailing-edge flaps neutral (fig . 13) . 

As shown by figure 24, the split flaps were very poor high-lift 
devi ces r egardless of their span or deflection a ngle . The exte nded-split 
f laps, however, increas ed the maxi mum lift coefficient appreciably. The 
maximum lift coefficient increased with an increase in the spa n of the 
extended split flaps for both deflection angles tested . The i ncreme nts 
in the maximum lift coefficient obtained with the extended- split f laps 
were greater at the lower deflection angle. The optimum flap def lection 
a~le for maximum lift is probabl y in the range between 230 and 520 

This conclusion is in agreeme nt wi th the results obtained i n refere nce 8 , 
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where an optimum deflection angle of 400 was obtained for extended
split flaps. 

The highest value of the maximum lift coefficient obtained in the 
tests was 1'68 with the combination of 0 . 600b/2 extended-split flaps 
deflected 23 and with leading- edge flaps and fences (fig. 20). A large 
unstable variation in the pitching moment occurred near the maximum lift 
coefficient for this combination, however . As previously noted, the 
most favorable pitching-moment characteristics were obtained with the 
shortest-span trailing- edge flaps in combination with the leading-edge 
flaps and fences . For this configuration (using extended- split flaps) 
a maximum lift coefficient of 1 . 61 was obtained with a forward movement 
of the aerodynamic center of about 17 percent of the mean aerodynamic 
chord in the high- lift range, as shown by figure 23 . In the case of the 
flat wing , a maximum lift coefficient of 1.50 was obtained with an 
aerodynamic - center shift of about 6 percent mean aerodynamic chord for 
a combination of 0 . 500b/2 extended-split flaps and a similar arrangement 
of s tall-control devices as that used on the cambered and twisted wing. 

Drag Characteristics 

The drag characteristics of the cambered and twisted wing are pre
sented as variations of the lift - drag ratios with lift coefficient 
(figs. 25 and 26). The maximum value of the lift-drag ratio of the 
tTvisted a nd cambered wing was slight ly less than that of the flat wi ng, 
l !t the L/D curve for the cambered and twisted wing had a much broader 
peak and considerably higher values of L/D in the lift-coefficient 
range above approximat ely 0 .45 . 

From figure 26 it can be seen that, although fences reduced the 
maximum value of L/D of the cambered and twisted wing, they increased 
the li f t -drag rat ios i n the high- lift range. With similar arrangements 
of t r a iling-edge flaps, leading- edge flaps a nd fences on the wings, the 
cambered and twisted wing exhibited greater values of L/D at lift 
coefficients above about 1. 35 (fig. 26) . The L/D values in the low 
lift-coef ficient range may be smaller for the cambered and twisted wing 
because of the large negative angles of attack of the tip sections at 
low l ift coefficients . 

Fuselage Effects 

The variations of the lift and pitching-moment characteris tics of 
the cambered and twisted wing with and without a fuselage are presented 
in figure 27. From figl rre 28 which shows the varia tion with angle of 
attack of the increment in pitching moment betwee n the wing alone and 

J 
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wing-fuselage combination (6Cmf)J it can be seen that a sharp increase 

in 6Cmf occurred at approximately 260 angle of attack. It can also 

be seen from the curves of 6Cmf for the various flap configurations 

that the angle of attack at which the increase occurred was dependent 
to some degree on the wing flap configuration . Inasmuch as ~mf 

represents the summation of all the mutual interference effects between 
the wing and fuselage in addition to the basic fuselage pitching-moment 
characteristics, the causes of the sharp increase in ~mf cannot be 

isolated from the data available. Betause the fuselage caused the 
pitching moment to break unstable at the maximum lift coefficient as 
shown in figure 27, it seems that a more detailed investigation of the 
fuselage effects in the high-angle-of-attack range would be desirable. 

From a comparison of the curves of figure 27 the effects on the 
stability of a change in the wing incidence angle from 00 to 40 relative 
to the fuselage center line appeared mainly as a trim shift. 

Both the maximum lift coefficient and the lift-curve slope were 
slightly higher with the fuselage on, for both values of the wing
fuselage incidence tested. At zero angle of attack, the fuselage caused 
a slight decrement in the lift coefficient (fig. 27) . The decrement in 
lift was greater for a wip~ incidence angle of 40 than 00 because of the 
greater negative attitude of the fuselage. 

Reynolds Number Effects 

In the Reynolds number range investigated (1. 5 x 106 to 4.8 x 106 ), 
the maximum lift coefficient obtained on the plain wing in the angle
of-attack range tested increased from 1.22 at a Reynolds number of 

1.5 x 106 to 1. 30 at a Reynolds number of 4.8 x 106 . An examination 
of the lift curves of figure 29 indicated, however, that the maximum 
lift coefficient may not have been reached in the angle -of-attack range 
tested . The pitching-moment curves of figure 29 indicate that t he 
stable moment break in the region of the maximum lift coefficient was 
more pronounced at the higher Reynolds numbers . 

With a combination of four fences on the wing (fig. 30) the maximum 
lift coefficient increased from approximately 1.30 to about 1.39 as the 
Reynolds number was increased from 1 . 5 X 106 to 4.0 x 106 . Figure 30 
also indicates that the angle of attack and the lift coefficient at 
which the unstable pitching-moment break occurred increased as t~e 
Reynolds number was increased . 
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With a combination of split flaps, leading- edge flaps and fences 
(fig . 31) an increase in the maximum lift coefficient of about 0 . 12 

resulted for an increase in the Reynolds number from 1.5 X 106 to 

4 . 0 X 106 . The point at which the maximum lift coefficient occurred 
also became more definite as the Reynolds number was increased. The 
pitching-moment curves of figure 31 indicate that the instability in the 
lift- coefficient range just below the maximum lift coefficient decreased 
as the Reynolds number was increased . 

The Reynolds number effects on the lift- drag ratios were not dis 
tinct in the region of ( L/D) max but in the higher lift- coefficient 

range, where increasing the Reynolds number would tend to delay sepa
ration, the lift - drag ratios increased slightly with increasing Reynolds 
numbers (fig . 32). 

Effects of Wing Roughness 

The effects of roughness (of t he type described in reference 5) on 
the lift and pitching-moment characteristics of the cambered and twisted 
wing are presented in figure 33 . At a Reynolds number of 4.0 X 106, 
the roughness decreased the maximum lift coefficient about 0 . 13 . A 
decrease in the lift- curve slope in the low lift - coefficient range began 
at an angle of attack of about 30 • The pressure - distribution data 
indicated that, with roughness on, the lift - curve slopes of the outboard 
wing sections were lower and that the curves began rounding off at a 
lower angle of attack . The effects of the wing roughness on the lift 
characteristics of the outboard wing sections are also reflected in 
the pitching-moment curves of figure 33, which indicate that both the 
large unstable break and the initial decrease in stability began at 
much lower lift coefficients . 

At a Reynolds number of 1 . 5 X 106, the decrease in maximum lift 
due to the roughness was not as great as at the higher Reynolds number, 
but the effects of roughne ss on the pitching~moment characteristcs in 
the low lift-coefficient range were almost as large as at the higher 
Reynolds number. 

CONCLUSIONS 

The following concluding remarks are based on the investigation 
in the Langley 19-foot pressure tunnel of a 450 sweptback wing of aspect 
ratio 8.0, which incorpor ated twist and camber: 
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1. The plain twisted and cambered wing exhibited almost linear 
stable pitching -mo~ent characteristics up to a lift coefficient of about 
0.7 at which point a severe unstable break occurred . 

2 . Both upper-surface wing fences and leading- edge flaps reduced 
the instability between lift coefficients of 0.7 and the maximum lift 
coefficient but in no case was the instability completely eliminated. 
The greatest stabilizing effect was obtained from the use of both 
leading- edge flaps and fences in combination. 

3 . In general, the stability decreased with increasing trailing
edge flap span, but with leading- edge flaps and fences on the wing, a 
slight improvement in the stability resulted from the use of 0.350-
semispan extended- split flaps deflected 230 . The stability was generally 
more favorable with the flap deflected 230 than deflected 520 . 

4. The cambered .and twisted wing had a maximum lift coefficient of 
1.30 as compared with 1. 01 for a similar wing of no camber or twist. 
A maximum lift coefficient of 1.61 was obtained with 0 . 350- semispan 
extended- split flaps in combination with leading-edge flaps and fences, 
for which case the least forward shift in aerodynamic center (about 
17 percent mean aerodynamic chord) was obtained. In the case of the 
untwisted and uncambered wing, a maximum lift coefficient of 1.50 was 
obtained with 0 . 500-semispan extended- split flaps and a similar arrange
ment of stall - control devices as used on the untwisted and cambered 
wing. The aerodynamic - center shift in the latter case was about 6 per 
cent mean aerodynamic chord. 

5 . In general , camber and twist increased the lift - drag ratios at 
high lift coefficients . 

6 . A large increase in the destabilizing influence of the fuselage 
occurred at high angles of attack. The addition of the fuselage caused 
an unstable pitching-moment break at the maximum lift coefficient for 
fuselage - off configurations that originally exhibited stable pitching
moment breaks at the maximum lift . 

7. Reynolds number effects on the aerodynamic characteristics in 
the range investigated were, in general, small. 

8. Roughness on the leading edge of the plain wi ng caused a consid
erable decrease in the lift coefficient at which , the pitching moment 
became unstable and decreased the maximum lift coefficient about 0 . 2 . 

Langley Aeronautical Laboratory 
National Advisory Committe e for Aeronautics 

Langley Field, Va . 
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TABLE 1.- WING CAMBER-LINE ORDINATES FOR A DESIGN SECTION 

LIFT COEFFICIENT OF 1 .0. 

[All values are given in percent of chord] 

x/c z/c * x/c z/c * 

0 0 40 5 · 3l0 

. 5 .262 45 5 . 407 
·75 · 369 50 5 . 428 

1. 25 . 566 55 5 · 372 
2 . 5 ·991 60 5 . 2L~0 
5 .0 1. 689 65 5 .028 
7 · 5 2 .256 70 4· 733 

10 2 .731 75 4· 350 
15 3 . 496 80 3.861 
20 4 .070 85 3 ·257 
25 4 .525 90 2 . 490 
30 4 .874 95 1 · 522 
35 5 ·132 100 0 

ordinates for a mean line of the type a = 1; cl. 
l 

ordinates for an NACA 230 series mean line; c
l

. 
l 

(reference 5) . 

15 

1 

0 · 3 
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TABLE 11.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF THE 

TWISTED AND CAMBERED WI NG OF 45° SWEEPBACK AND 

ASPECT RATIO 8 . 0 

Span Span ?once 
Clc

Lmu 
!IO a. r L.E. lor T .E T..oC8 ticn Conrigura ticn Ct",a , Cm Characteristic, Plgure 

~ii)e Dev1ce (b/» 0.e5 Cr,. .. 
(b/2) 

CL 

0 .4 .8 1.2 1.6 

lL 1.~O 27.0° 7 ·5 4 
.2 

None c=::::==-
.1 
C" 
0 

- .1 

I' ~ 
5 

~ 1.~5 28 .2° 

I~ ~ 1.~8 26.8° ~~L, 5 

.~ ~ 1.~6 29 .0° l,L 5 

I~ · 575 
@ ;;;;, 

1.~7 27 .6° r~~ 6 

~ 1.40 27 .1° r~~' 6 I~ 8.2 
.80 

None None 

IF.\ ~ ~~, · 575 1.~8 27 ·5° 7 
.So 

\i\ ~ 1.~8 27 .0° ~~L, 7 

:~ 

:~ ~ ~~, 8 ·575 1.~7 27.8° 
.80 
.89 

t\ ~ 1.~9 27 . 0'0 ~""'JL , 7 
.80 
.39 

\A ~ 1.40 28.0° ~ -=::;?L , 7 
.eo 

i\ cs: ~ 140 26.8° ~~L, 8 

\~ ,c-== 1.42 21 .0° ~-=::7~ 6 
. ~o 

~ 1.40 26 .2° r'Y~ , 7 i\ . 89 ~ 
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TABLE 11.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF THE 

TWI STED AND CAMBERED vlING OF 45° SWEEPBACK AND 

ASPECT RATIO 8 . 0 - Conti nued 

Span Span 'COen ee ~C LID a t ( L . E . Io( T .E CLm• 
lz?e~lce Lee:::. tton Configur atio n Lmax 0.85 Ot.",.,. elll Charac ter1s tl c s 

Dev1 ce (b/Z ) 
(b/Z ) (b/Z ) 

"L a .4 .8 1.2 1.6 

.~ ~ 1.19 26 .5° ~:~~ · 575 

.80 

~ ~ ~~ Nono 
·575 26 .5° 
.80 

1. }9 

.89 

.~ ~ ~~ 1.~9 ?7 ,0" 

:~ 

Hone ~ l.}O zj • • 2° bL Or = 60° 
·}5 

Spl1 t 
Plap3 

~ ~ 22 ·5? j~ loll 
.80 or = 60° 

None None ~ l.}ll 2L .2° U lit = 60° 

· 50 

~ f~ pl1 t 

~ la ps 1.44 22 .2° 

.80 o( = 60° 

~ ~ I~ ·575 1.44 27.0° 

.80 Or =:= ,0° 
.89 

None ~ 1.~5 2Jl .2° U O( = 60° 

.60 
pUt 
laps 

LL i\ ~ l.t8 2, .0° 

.80 Or = 60° 

·SO C::==----, 1.61 11.2° U Ext. None 
Spl i t 

Or = '0° Plaps 

it Wax imum 11 f t coernclent probstl limited b y angle-ot-a. ttack r Orl£& tested. 

Plan deflection .nples o f 30 ° a nd 60u measure d 1 n plane norma l t o 0 . 80 
chord line correspond to 23° and 52° me asured 1n a plane paralle l to 
the pl ane or s ytmle t r y . 

Flgure 

7 

8 

8 

15 

16 

15 

16 

17 

15 

1& 

15 
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TABLE 11.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF THE 

TWISTED AND CAMBERED WING OF 45° SWEEPBACK AND 

ASPECT RATIO B.o - Cont inued 

Span Span Fence 
· C Ll c at r L.E. 

r:.i~; LoeB ticn Conrlgurat ton CLm• Lmall 0.85 c"" .. c;. Charaeter!aUca Dade. (b/Z) 
(b/Z ) (b/Z l 

0 .4 L. 8 1. Z 1.6 

~ ~ 1. 61 :n ·Zo 
.Z f 

.90 Or :: 30° ~; . ~ 

~ ~ 1.64 }1.Zo j~ 
.So or = }o 

.50 
None Ext. 

Snl1 t 
!"laps 

~ cs- Or :: 3~ loSS 25 ·4° I ~ ·575 
.80 

~ ~ 1. 59 z5 ·4° I ~ JX5 
15 r :: 30° 

.89 

None No". r:=====- 1.44 27 . 00 9.4 ~ 
None 

~ 1.45 21.00 t~ Or = 60 
· 50 

Scl1 t 
Flaps 

~ ~ 1.49 }1.Zo 11 . 0 t:-:=: .90 or ::; 30° 

.45 None ~ 1.61 20 .2° f~ L.~ · 
Or :: 60

0 
Plaps 

·50 
Ex t. 
Spl it 
Pla ps 

1===:1 ~ 1 . 68 24.11° 10 . } ~ .90 Or :: 30° 

None ~ ~ 1.47 26.5° 9.0 ~, 
.80 

None None 
~ 1.44 31.20 b/ 

·50 
L.! . 

Flaps 

·}5 
10hz 21.2" fr--A Snl1 t None 

~ Flaps 

• Maximum 11ft coeffi cie nt pr obably limited by angle-of-a ttack range tested . 

Fla de fle ction angles ot 300 and 60° omeaaurod 1n plane normal to 0 .80 
c~ord line oorrospond to 23° and 52 measured 1n 8 plane par,,' 1el to 
the plane of tlJIMlotry. 

P1CUN' 

17 

17 

11' 

17 

11 

\6 

:u 

1e 

21 

D, 

U 

118 

==' 
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TABLE 11.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF THE 

Span Span 
r L .R . ior T.E 

~iW Dev1ce 
(b/2 ) 

.50 
Spl1 t 
Flaps 

.60 
Split 
Flaps 

· ~5 
SpIlt 
Flaps 

· 50 
Spl1 t 
Plaps 

· 50 
L.!L 
Plaps . 60 

Spl1t 
Plaps 

·~5 
Split 
Plaps 

· 50 
Split 
?laps 

.60 
Split 
Flaps 

· ~5 
Ext . 
Split 
Plaps 

.50 
Ext. 
Split 
Plaps 

.60 
Ext. 
S?llt 
Plaos 

TWISTED AND CAMBERED WING OF 45° SWEEPBACK AND 

?ence 
Loee ticn 

(b/2 ) 

None 

None 

~ 
~ .So 

~ ,57>' 
.Bo 

~ .So 

~ .80 

~ .so 

~ ,57>" 
.So 

~ .80 

~ .So 

~ .80 

ASPECT RATIO 8 .0 - Continued 

Conf i gur ation Ct.". 'c Lmax 
y o at 

O.SS "t.. ... C. Characterlatlca PiSUre 

0 .4 "L .S 1 .2 1 .6 

~ 1.119 21 .2° '~~I~ l S 

Of' = 60° 

1.1,9 20.00 f~ 18 
~ 

Or : 60° 

~ 1.44 20.4° t~ 22 
6r ::: 60° 

~ 1.46 21.20 10 ·5 tr----r 22 
Or ::: 60° 

j~ ~ 1.51 21 . 0° 19 

Or :: 60° 

~ 1.55 21 .2° 1~ 19 
\ 

Or :: 60° 

~ C-1 1.117 2l. .2° 11.5 19 
Or ::: ~oo 

~ j r-------f , 1.49 22.4° 19 

Or; ~oo 

j~ ~ 1.54 25·0° 19 
Or : ~Oo , 

~ 20 .4° l~, 20 1.57 

or ::: 600 

~ 1.66 20 .4° I ==-=---' 
20 

Or :: 600 

~ 1.72 ,0.00 

O!' ::: 60° 
I ~ 20 

Flap derlectlon angle s ot '0° and 600 measured 1n plano normal to 0 .80 ~ 
chord 11no correspond to 23° and 52° measured 1n a plane parallel t o 
the plano or symmetry _ 
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TABLE 11.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF THE 

TWISTED AND CAMBERED WING OF 45° SWEEPBACK AND 

ASPECT RATIO 8.0 - Continued 

Span Span Pence · c L/e a. f L.E. Iof T. E Loea ticn Conf1gura ti c n Cr,.. Lm• x 0.85 "r,. .. em Characterl31t!C8 Plgure ~/W ~i~r~ (b/Z ) 

0 .4 CL•8 1.2 1.6 ·}5 

j r :-J Ex t . 
~, Spllt ~ 1.61 28 .0° 10 .8 20 Flaps 

Or = }Oo .So 

·50 

tr---1 Ext. 
~ 1.74 28 .0° 20 S pll t ~ Flaps .80 Of = ~o 

. 60 
Ext. 

~, 1.78 ,0 .2° [~ Spl1t 
20 Flaps ~ Of = }Oo ·50 .80 L.E . 

Plaps 

~ ~ 1.50 } L ao ~ ~ 
.90 

~ ~ 1.47 ~0 .4° ~=- ) 14 None · 57 5 
. 80 

f\. g====-= ~o .e o p ~I' · 575 1.48 ~ 
. 80 
. 89 

None ~ 1.1.0 ~o . oo ~ u 

t'?l5 None Flaps 

~ 1. 51 ~1 .2° ~ "l~ .~ .80 

None r=====- 1.39 }D . ao 11. 0 ~ 11. 
Inboa rd e nd 

d ': 
of L.E. nap 
a •. 40b/Z 

Flaps None 

~ ~ 1.43 29 .00 
1 ~ A .So of L.R . flap 

a •. 40b/2 

. 195 
None 1.4} 26 . 50 ~ d~' ~} L.E . 
~ Pisps .~ Inboard end 

.00 ot L.E. flap 
a • . 525b/Z 
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TABLE 11.- SUMMARY OF LONGITUDINAL STABILITY CHARACTER1CTICS OF THE 

TWISTED AND CAMBERED WING OF 45° SWEEPBACK AND 

ASPECT RATIO 8.0 - Concluded 

Span Span 
~nce nC LID at r L.E. for T.E CLm. 

~iW 
Loea tton Configura tio n Lmax 0. 85 ct..ox em Charac teri stIcs Devi ce 
(biZ ) (b /2 ) 

~ 
CL 

1.~9 26 .2° ,.:p'.' 
Fpl'ce he1grt = O . lStmax - .1 

c:::=:::=== ~ 1.41 26·5° ~ Fence height = O. lStmax -.80 
O . }Ot 

~-~==----t 1.~1 27 ·2° 7 · 5 

1 ,. = 0° 

None 10n8 None 

f c:::------ -s- 1. ~2 27 ·2° 

l w = hO ~ 

~ LL f ~ + 1.43 28.2° 8 · 5 ------

1 = 0° w 

./'7... 

~ 'i\ -J-&-~ 1.45 27 .4° 

110 = hO 

I~~ 

~ ·1.5 ·50 i\ tr-~ ~, -4 1.68 
,. 

31 .2° 
L .E. Ex t 
Plops Spl! t 

Flaps 
Of = ~Oo l w = 40 

* Maximum 11ft coeffi c ient probab ly limi ted by angle - or - attack range tested . 

Flap deflection angles of 3000and 6000measured 1n plane norrwl to 0 .80 
chord 11ne c orres pond to 23 and 52 measure d 1n a pl ane paral lel to 
the pinne of symme try . 

?tr:ure 

9 

9 

27 

27 

n 

.27 

.27 
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NACA 63 series section 

0. 25c - " 
0.25chord line 

/ 
/ / 

/ / 

--- - (- 0- - -, , --~ 

46.33° 
45< '\ 

~-----

" 
..... 21.94/ 

/ 
Mean aerodynamic chord, /6.672 

~
Aspect rolio 

Taper rolio 

Area, sq fl 

- - 36.758 

80.J 
0.45_ j 

/4.0.2 I 

- 33.266 

/.59/ 

C> 
_~: Wing rsftlrencs pIons (dlJlsrminsd 

C) by rool chord ond O.SOc lines) 

~3/~2 =.~. -::-/~-.7.-26-1-!D:f -~ - --. ~----- - - I 

-----I--------~--- I 
- 33.344 - - -'Section of constant diom. I ...... --- 52236 ' j 

- /27.260. -

(a) 1t7ing and fuselage. 

Figure 1.- Geometric details of the twisted and cambered wing of 

450 sweepback and aspect ratio 8.0 and the various devices tested. 

All dimensions in inches unless othenrise noted. 

.. 
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Section A-A (enlarged) 
Typical section with split flops 

\VJ, 
Typical section with extended split flops 

8, = 23° and 52° (30° and 60° in plane 
normal to o.BOc line) 

(b) Trailing- edge flaps. 

Horizontal plane through 
root chord line 

Section 8-8 (enlarged J 

1------0. 975b/2 --------l 

0.575b/2

S1 r O.320b/2 

0 .500b/2 ---t 
0 .450b/2 I I 

a 195b/2t-----.. u 

(c) Leading-edge flaps. 

Figure 1.- Continued. 

23 
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CO. 25c-1 

Complete fence 

30· N i O.6ImOX y-j 30· 

o.05C E ~I f----O'700b/2 _ _ -.l 
I 

0.800b/~ 
~-- 0 .890b/2 

0 .6tmax chord fence 

o.I5tmax chord fence 

Spanwise stations at which 
fences were tested 

300 17 
o.05C~ 

Chord fence height varies from 
o.I5tmax at o.05c to o.30tmax 

at 1.00c 
~ 

(d) Fences . 

Figure 1 .- Concluded . 
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Figure 2 .- Spanwise variation of wing geometric twist and design section 
lift coefficient. 
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Figure 3. - The twisted and cambered wing of 450 s':;eepback ' and;::aspect 
ratio 8 . 0 mounted in the Langley 19-foot pressure tunnel. 
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Figure 4.- Lift and pitching- moment characteristics of the cambered and 
twisted wing and the flat wing at a Reynolds number of 4.0 X 106• 
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Figure 5.- Lift and pitching-moment characteristics of the wing with a 
single fence on each semispan at various spanwise locations. 
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Figur e 6.- Lift a nd pitching-moment characteristics of the wing with two 
fe nces on each semispan at various spanwise l ocations. 
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Figure 6.- Concluded. 
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Figure 7.- Lift and pitChing-moment characteristics of the wing with 
three fences on ' each semispan at various spanwise positions . 
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