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SUMMARY 

An investigation has been conducted in the Langley 4- by 4-foot 
supersonic pressure tunnel-at a. Mach number of 2.01 and a Reynolds num-
ber of 2.2 X i06 1 based on the wing mean aerodynamic chord, to deter-
mine the effects of sweep and thickness on the aerodynamic characteristics 
in pitch of a series of wing-body combinations having cambered wings with 
an aspect ratio of 3.5 and a taper ratio of 0.2. The wings, tested on a 
slender body of revolution, had quarter-chord sweep angles of 10.8 0 , 350, 
and 470 for a thickness ratio of 4 percent, and thickness ratios of 4, 
6, and 9 percent for a quarter-chord sweep angle of 470 In addition, 

470 swept wing with a thickened root section (12 percent thick at the 
body center line tapering to 6 percent thick at the 40-percent semispan 
station) was investigated. A summary of the results of the investigation 
of this wing series at M = 1.60 is included for comparison with the 
results of the present tests at M = 2.01. 

The results of this investigation indicate that, in general, for 
this range of thickness ratios and sweep angles, the effects of thick-
ness are greater than the effects of sweep angle on the aerodynamic char-
acteristics in pitch. A maximum lift-drag ratio of 6.40 was obtained 
for the 470 swept, 4-percent-thick wing. There appeared to be little 
change in minimum drag between M = 1.60 and M = 2.01. As would be 
expected from theory, the values of the lift-curve slopes of the wings 
at M = 2.01 are about 75 percent as large as the M = 1.60 values.
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INTRODUCTION 

A research program has been in progress at the Langley Aeronautical 
Laboratory to determine, at subsonic, transonic, and supersonic speeds 
the effects of sweep and thickness on the aerodynamic characteristics of 
a series of wing-body combinations with cambered wings having an aspect 
ratio of 3.5 and a taper ratio of 0.2. The effects of thickness and 
of sweep on the aerodynamic characteristics in pitch of the wing series 
at subsonic and transonic speeds are presented in references 1 and 2, 
respectively, and at a Mach number of 1.60 in reference 3. The effects 
of sweep and thickness on the lateral stability characteristics of the 
wing series at a Mach number of 1.60 are presented in reference 4 and 
a Mach number of 2.01 in reference 5. The results of tests at Mach num-
bers of 1.60 and 2.01 of several nacelle configurations on the 6-percent-
thick 470 swept wing are given in references 6 and 7, respectively. 

The present paper presents the results of tests to determine the 
effects of sweep and thickness on the aerodynamic characteristics in 
pitch of this series of wings at a Mach number of 2.01 and a Reynolds 
number of 2.2 x 106 based on the mean aerodynamic chord. The wings had 
quarter-chord sweep angles of 10 . 80 , 350, and 470 for a thickness ratio 
of 4 percent and thickness ratios of 4, 6, and 9 percent for a sweep 
angle of 470. The effects of the addition of a horizontal canard sur-
face to the 6-percent-thick 1170 swept-wing configuration were investi-
gated. A thickened-root wing of 47Q sweep, having a thickness ratio 
of 12 percent at the root, tapering to 6 percent at the 40-percent semi-
span station, and remaining constant at 6 percent further outboard was 
also investigated. These results are presented without analyses to 
expedite publication.

SYMBOLS 

CL	 lift coefficient of wing-body combination, Lift/qS 

CD	 drag coefficient .of wing-body combination, Drag/qS 

Cm	 pitching-moment coefficient of wing-body combination 
about 0.25 mean aerodynamic chord, Pitching moment/qSE 

CLf	 lift coefficient of body, Lift/qA 

CDf	 -	 drag coefficient of body, Drag/qA
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Cmf	 pitching-moment coefficient of body, Pitching moment/qAl 

A	 maximum cross-sectional area of body, 0.0276 sq ft 

S	 wing area including body intercept, 1.143 sq ft 

wing mean aerodynamic chord, ft 

1	 body length, ft 

q .	 free-stream dynamic pressure, lb/sq ft 

M	 Mach number 

t/c	 streamwise wing-thickness ratio 

L/D	 lift-drag ratio 

LCL
	 lift-curve slope 

CL	 rate of chnge of pitching-moment coefficient with lift 
coefficient 

CD/CL	 drag rise factor 

• angle of attack of body center line, deg 

A	 sweep angle of wing quarter-chord line, deg 

Subscripts: 

max	 maximum 

min	 minimum

APPARATUS AND MODELS 

The tests were conducted in the Langley 4- by 4-foot supersonic 
pressure tunnel described in reference 3. The models used in these 
tests were composed of an ogive-cylinder body and various midwing con- 
figurations with a ratio of body diameter to wing span of about 0.094. 
The wings were positioned so that the quarter-chord point of the mean 
aerodynamic chord was always at the same body station. The wing air-
foil sections had an NACA. 65A-series thickness distribution and
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mean-line ordinates one-third of NACA 230 series plus an (a = i) mean 
line for CL = 0.1. The airfoil coordinates are given in table I. 
Details of the models are shown in figure 1. 

The models were sting supported and had a six-component internal 
strain-gage balance in the body. The model and sting are shown in 
figure 2. Figure 3 is a photograph Of the model in the tunnel. The 
models, balance, and indicating system were furnished by a U.S. Air 
Force contractor.

TESTS 

Test Conditions and Procedure 

The conditions for the tests of the wing-body configuration were: 

Mach number ............................2.01 
Reynolds number, based on wing mean aerodynamic chord . . 2.2 x 106 
Stagnation dew point, OF . . . . . . . . . . . .. . . . . . . . . <-30 
Stagnation pressure, lb/sq in...................111. 
Stagnation temperature, OF ....................110 

In order to establish an indication of the type of boundary layer 
existing over the basic body, the body alone was tested through a pres-
sure range of about 4 pounds per square inch to 14 pounds per square 
inch corresponding to a Reynolds number range of 2.1 to 7.1 x 106 (based 
on body length). All the other test conditions remained unchanged. 

Calibration of the nozzle prior to these tests has shown that the 
flow in the test section is reasonably uniform. The magnitudes of the 
variations in the flow parameters are summarized as follows: 

Ma c h number ..........................±0. 017 
Flow angle in horizontal plane, deg ..............±0.1 
Flow angle in vertical plane, deg ................±0.1 

Tests of all of the configurations were made through an angle-of-
attack range from _20 to 130. 

Corrections and Accuracy 

The angle of attack of the model was corrected for deflection of 
the balance and support system due to lift and pitching moment. Angle 
corrections were obtained from in-place calibration of the balance for
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various lift loads and pitching moments. The validity of this method 
of correction was verified during the tests at M = 1.60 (ref. 3). 
The estimated error in angle of attack was 10.1 0 . During these tests, 
the model was yawed about _0.20 because of misalinement. No correc-
tions were applied for this yaw angle or for the flow variations in 
the test section. 

The estimated errors in the force data obtained by comparing the 
results of two tests of the same configuration are as follows: 

CL ............................... ±0.001 
CD ............................... ±0.001 
Cm ............................... ±0.001 

The base pressure was measured for all the configurations tested and the 
drag data were corrected to correspond to a base pressure equal to free-
stream static pressure.

RESULTS 

The results are presented with a minimum of analysis in order.to  
expedite publication. In order to determine the type of boundary-layer 
flow over the model, the body alone was tested through a Reynolds number 
range of 2.1 to 7.1 x 106 (based on the body length) with and without a 
small transition strip near the •nose of the body. The drag coefficients 
at zero lift for both configurations are presented in figure 4 as a 
function of Reynolds number. The results indicate that, at the highest 
Reynolds number obtainable, the boundary layer of the body without 
transition strip had not become completely turbulent. All further tests 
except one were made without the transition strip. The 6-percent-thick 
470 swept-wing - body configuration was tested both with and without the 
transition strip on the body to investigate the effect of addition of 
the strip on the aerodynamic characteristics of the wing-body combina-
tion. All of the testing was done at a Reynolds number of 7.1 x i6 
based on body length (2.2 x 106 based on the wing M.A.C.). 

The experimental aerodynamic characteristics in pitch of the body 
alone, with and without the transition strip, and the theoretical values 
calculated by the method of reference 8 are presented in figure 5. Addi-
tion of the transition strip increased the drag about 30 percent and pro-
duced more lift at the higher angles of attack. 

The aerodynamic characteristics in pitch of the 4-percent-thick 
wings in the sweep series are . shown in figures 6(a) to 6(c) and of the 
470 swept wings of the thickness series in figures 6(c) to 6(f). Tests
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of the 6-percent-thick 470 swept wing indicated that the addition of 
the transition strip to the body resulted in a slight increase in the 
drag of the wing-body combination because of the increased region of 
turbulent flow. The effects of the addition of a horizontal canard 
surface to the 6-percent-thick 470 swept-wing configuration are shown 
in figure 7. 

The lift-drag ratios, as a function of lift coefficient for the 
wing series, are summarized in figures 8: the effect of the addition 
of the canard in figure 8(a), the effect of thickness in figure 8(b), 
and the effect of sweep in figure 8(c). The variation of the minimum 
drag coefficient with the square of the thickness ratio is presented 
in figure 9. Included for reference purposes on this figure is the 
drag coefficient of the body alone. 

A summary of the variation of the aerodynamic characteristics in 
pitch with thickness ratio and sweep angle is presented in figure 10. 
Table II contains a summary of the longitudinal characteristics of this 
wing series at M = 1.60 (ref. 3) and M = 2.01. As would be expected, 
the values of ( L/D)max and CL, decrease as the Mach number increases. 

The maximum value of L/D obtained at M = 2.01 was 6.40 for the 
470 swept 4-percent-thick wing. The values of C] 	 at M = 2.01 were 
about 75 percent of the values obtained at M = 1.60. The variation 
of CL, with sweep angle (fig. 10) agrees closely with the variation 

predicted by theory (ref. 9). As the Mach number is increased, there 
is a slight decrease in C mCLand a corresponding forward movement of 

the aerodynamic center of the wing-body combination. Within the limita-
tions of the accuracy of the-measurements and the test techniques, there 
appeared to be little significant change in C 

Dmin 
from M = 1.60 

to M=2.0l. 

In general, for this range of thickness ratios and-sweep angles, 
the effects of thickness are larger than the effects of sweep angle on 
the aerodynamic characteristics in pitch of the wings. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va.
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Body axis and 
wing chord plane 

Ogive nose —\	 20 R. 

Sting	
6.47 

Cylindrical section - 

25.12

w 

(a) Wing-body arrangement. 

Figure 1.- Details of models. All dimensions in inches unless noted.
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t/c= .04	 .04 

t/c= 04	 04 

Aspect Ratio 3] 

Taper Ratio 0.2 

Span, inches 24 

Area, sq. feet 1.143

	

t/c .04	 .04	 .04 

	

.06	 .06	 .06 

	

.09	 .09	 .09 

	

.06	 06	 .12 

(b) Details of wings. 

Figure 1.- Continued..
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ijnnel wall 

NACA FM L52E09 

50 

Top view of installation 

cJ

Side view of installation 

Figure 2.- Details of model sting support. All dimensions in inches 
unless otherwise noted.
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L-71421 

Figure 3.- Model in Langley 4_ by 4-foot supersonic pressure tunnel.
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Figure 4. - Variation of body drag coefficient with Reynolds number based 
on body length. M = 1.60 and 2.01.
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Figure 5.- Aerodynamic characteristics in pitch of body of revolution 
based on body frontal area and length. N 

= 2.01. 
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0	 .1	 2	 .3	 4	 5	 .6 
Lift coefficient, CL 

(a) A = 10.80; - = 0.011. 

Figure 6.- Aerodynamic characteristics in pitch of the various wing-body 
combinations. M = 2.01.
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C

0	 .1	 2	 .3	 4	 5 

Lift coefficient, CL 

(b) A = 350; . = 0.04. 

Figure 6.- Continued.
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0	 .1	 2	 3	 4	 5 
Lift coefficient CL 

(c) A = 470 ; . = 0.04. 

Figure 6.- Continued.
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.1	 2	 3	 4	 5 
tiff coefficient, CL 

(d) A = 470;	 = 0.06. 

Figure 6.- Continued.
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.1	 2	 3
	

4	 5 

Lift coefficient, CL 

(e) A = 470; L = 0.09.

Figure 6.- Continued.
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Figure 6.- Concluded. Flagged symbols are data from a repeat run. 
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Figure 7.- Aerodynamic characteristics in pitch of a wing-body combina-



tion with and without canard. A = 7; L = 0.06.
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Figure 8.- Variation of lift-drag ratios with lift coefficient for the
various wing-body configurations. M = 2.01. 
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Figure 10.- Summary of-the aerodynamic characteristics in pitch of the 
various wing-body configurations. M = 2.01. 
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