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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PRESSURE DISTRIBUTION AT LOW SPEED ON A MODEL
INCORPORATING A W WING WITH ASPECT RATIO 6,
4L5° SWEEP, TAPER RATIO 0.6, AND AN
NACA 65A009 AIRFOIL SECTION

By Edward C. Polhamus and Albert G. Few, Jr.
SUMMARY

This paper contains results of pressure-distribution measurements
at low speed on a wing-fuselage combination having a wing of W plan form
with aspect ratio 6, 45° sweep, taper ratio 0.6, and an NACA 65A009 air-
foil section placed parallel to the plane of symmetry. The test
Reynolds numbers ranged from 1,190,000 to 1,580,000.

The chordwise pressure distributions, which were determined at
various spanwise stations, indicate that a vortex type of flow exists
over the wing at moderate and high angles of attack. The strength and
location of this vortex were appreciably affected by changing the angle
of sideslip, The experimental chordwise and spanwise load distributions
at an angle of attack of 2.3° were in fair agreement with theory except
near the wing juncture, where there appears to be a mixing and shedding
of the boundary layer from the inboard and outboard wing panels. Wake
surveys at the juncture indicate a rather large increase in total pres-
sure loss at moderate to high angles of attack.

INTRODUCTION

Composite-plan-form wings made up of sweptback and sweptforward
panels have been proposed to alleviate the low-speed stability problems
associated with sweptback wings. An investigation made at low speed
(ref. 1) indicated that such alleviation was obtained by the use of M
and W wings. In a later investigation (ref. 2) it was found that the

large unstable shift of the aerodynamic center associated with a 9-percent-

thick swept wing in the transonic range was eliminated by the use of an
M or W plan form and that, although the drag at zero lift was higher in
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the transonic range than for a straight sweptback wing, a fairly large
portion of the sweep effect was realized. Recently, it has been pointed
out that M and W wings may have an additional advantage over conventional
sweptback wings in that the wings of composite plan form should have
smaller spanwise twist under air load.

The present paper presents the results of low-speed pressure-
distribution measurements of a wing-fuselage configuration incorporating
a wing of W plan form. The wing-fuselage combination used for this
investigation was the same as that used in an investigation of the low-
speed aerodynamic characteristics of a complete airplane configuration
employing a W wing reported in reference 3. The present investigation
also included wake surveys at several angles of attack for various span-
wise positions. Stall patterns obtained from tuft studies on the wing
for several angles of attack are also presented.

SYMBOLS

The system of axes employed together with an indication of the
positive forces, moments, and angles is presented in figure 1. All
pitching-moment coefficients are referred to the quarter-chord of the
mean aerodynamic chord. The symbols used in this paper are defined as
follows:

Cy, 1ift coefficient, Lift/qS

Cx longitudinal-force coefficient, X/gS

Cn pitching-moment coefficient, M/qST

X longitudinal force along X-axis, lb

M pitching moment about Y-axis, ft-1b

qQ free-stream dynamic pressure, pVe/2, 1b/sq ft
S wing area, sq ft

ol

b/2
wing mean aerodynamic chord, ngp cgdy, ft
0]

Pz_p

12 pressure coefficient, 3
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local static pressure, 1lb/sq ft

free-stream static pressure, 1b/sq ft

mass density of air, slugs/cu ft

free-stream velocity, ft/sec

local wing chord, parallel to plane of symmetry, ft

average wing chord, parallel to plane of symmetry, ft

angle of sideslip, positive when relative wind is from the
right, deg

angle of attack, measured parallel to plane of symmetry, deg

distance rearward of fuselage nose measured parallel to plane
of symmetry, ft

distance behind local wing leading edge measured parallel to
plane of symmetry, ft

actual length of fuselage, ft
wing span, ft

spanwise distance measured perpendicular to plane of symmetry,
ft

section normal-force coefficient

height above wing chord plane, ft
loss in total pressure, 1b/sq ft

pressure-difference coefficient, Pupper i AT

APPARATUS AND METHODS

A three-view drawing of the model as tested is presented as fig-
The wing had a W plan form of aspect ratio 6 with 45° sweep, a

taper ratio of 0.6, and an NACA 65A009 airfoil section placed parallel
to the plane of symmetry. The ordinates of the airfoil section are
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presented in figure 3. The fuselage had a fineness ratio of 10,
achieved by cutting off the rear one-sixth of a fineness-ratio-12 body
of revolution, the ordinates of which are presented in figure 3. The
fuselage was constructed of wood and the wing was constructed of wood
cycle-welded to a steel spar.

Pressure orifices were installed in the wing at 13 chordwise posi-
tions for each of six spanwise stations shown in figure 4. In order to
reduce the number of orifices and manometer boards needed, orifices were
installed in only the upper surface of the wing and the model, which was
symmetrical, was tested at both positive and negative angles of attack
in order to obtain data representative of both the upper and lower sur-
faces for the wing at positive angles of attack. DPressure measurements
at the three inboard spanwise stations were made on the right wing while
those for the three outboard stations were measured on the left wing for
simplicity of installation. Pressure orifices were also installed in
the fuselage at 21 stations along each of three meridian lines as illus-
trated in figure 4. Figure 5 shows the model mounted on the center
support strut.

For use in wing wake surveys a rake consisting of a series of
total-pressure tubes extending over the entire wake at moderate angles
of attack was mounted at a distance equal to 0.806b/2 rearward of the
quarter-chord of the mean aerodynamic chord,

TESTS

The pressure-distribution tests were made in the Langley 300 MPH
T- by 1lO0-foot tunnel at a dynamic pressure of 39.96 pounds per square
foot which for average test conditions corresponds to a Mach number
of 0.17 and to a Reynolds number of 1,190,000 based on the mean aero-
dynamic wing chord. Force tests and wake surveys were made at a
dynamic pressure of T73.12 and 7Tl.1ll pounds per square foot, respec-
tively, which for average test conditions corresponds to a Mach number
of about 0.22 and a Reynolds number of about 1,580,000. Several tests
were made at a Reynolds number of about 1,580,000 and an angle of attack
of 2.3° in order to compare experimental and theoretical chordwise and
spanwise load distributions.

With the model at a given angle of attack, a record was taken of
the pressures at the orifices by photographing the multiple-tube manom-
eter to which the orifices were connected.
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CORRECTIONS

The angle of attack, drag, and pitching-moment data have been
corrected for jet-boundary induced upwash on the basis of unswept wings
(ref. 4) and for the tares caused by the model support strut. Calcu-
lations have shown that the effects of sweep on these Jet-boundary
corrections are negligible. No attempt has been made to correct the
pressure data for the slight spanwise and chordwise variation of the
Jet-boundary induced upwash. All coefficients have been corrected for
blocking by the model and its wake by the method of reference 5.
Tunnel-air-flow misalinement has been accounted for in the computation
of the test data.

RESULTS AND DISCUSSION
Presentation of Results
The results of this investigation are presented in the figures
tabulated below:
Title Figure
Sbrodyliamic characteristice of model . < o v i o o o o o oo L. 6

Pressure distribution on wing:

$revoure distribution on wng . .7, . .0 oo . o e i . THo 12
Wake surveys, B = RN = Beley el ] S o T el S i LS SRR TR R 13
Experimental and theoretical spanwise load distribution . . . . 1k
Experimental and theoretical chordwise load distribution . . . . 1155
TR e e N
Pressure distribution on fuselage:
e stncclagerotmbinegkion)” B =09 ", . L . . . .0 . T o8
Wib8lage alone, B =0 . .0 . L. o0 aare L SLE e ol St 19
Aerodynamic section characteristics . . . . . . . . o 20
PRSI patteams Vi o 80 e e e, . 21l

Aerodynamic Characteristics

The low-speed aerodynamic characteristics obtained for the wing-
fuselage combination at zero angle of sideslip are presented in fig-
ugeve,  A11 pitching-moment coefficients are referred to the quarter-
chord of the mean aerodynamic chord. While the data of figure 6 are
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included mainly for the purpose of correlation of the pressure data with
the force data, there are a few interesting points illustrated which
should be mentioned. It will be noted that the pitching-moment data
illustrate the advantage of W wings with regard to stability inasmuch
as the pitching-moment curve is essentially linear throughout the 1lift
range; whereas a sweptback wing having the same sweep and aspect ratio
would be expected to have a large unstable break at a 1ift coefficient
of sbout 0.50 and continuing to the stall (see ref. 6). It is also
interesting to note that for this particular wing-fuselage combination
the lift-curve slope is in good agreement with the theoretical wing-
alone results calculated by the method of reference 7. The theoretical
lift-curve slope is 0.062 while the experimental wing-fuselage 1ift-
curve slope is 0.063. The theoretical wing-alone aerodynamic-center
location is at 31.4 percent of the mean aerodynamic chord, while the
experimental wing-fuselage aerodynamic-center location is at 31.0 per-
cent of the mean aerodynamic chord.

Pressure Distribution on the Wing

Wing pressure distribution and wake surveys, B = 0°.- The chord-
wise pressure distributions at six semispan stations for various angles
of attack are presented in figures 7 to 12. Wake surveys at several
angles of attack are presented in figure 13 for various spanwise posi-
tions at a distance equal to O.806b/2 rearward of the quarter-chord of
the mean aerodynamic chord. The wake surveys are presented as plots of
total-pressure loss AH/q against height above wing chord plane z/c.
The chordwise pressure distributions at low angles of attack (figs. 7
and 8), in general, are normal. At an angle of attack of 8.6° (fig. 9),
there is an indication of a vortex-type flow over the inboard panel of
the wing. This is reflected in the pressure distribution at the leading
edge of the 20- to 50-percent-semispan stations. This type of flow
phenomena has been reported in reference 8. Wake surveys in this region
(fig. 13) at a comparable angle of attack show large increases in total-
pressure loss, which is indicative of separation. At 8.6° angle of
attack there appears to be no vortex flow on the outboard panel. At
12.7° angle of attack (fig. 10), the vortex pattern on the inboard panel
has moved inboard and a second vortex appears to have formed on the out-
board panel. At the higher angles of attack the inboard panel has
stalled and the outboard stall pattern progresses toward the tip. The
delay in the formation of the vortex on the outboard panel is probably
due to the fact that the effective angle of attack is considerably less
on the outboard panel than on the inboard panel.

Experimental and theoretical spanwise load distribution.- A com-
parison of the experimental and theoretical spanwise load distributions
is presented in figure 14. The experimental results are for an angle of
attack of 2.3° and the theoretical results were calculated by the method
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of reference 7. In general, the agreement is rather poor with the
experimental loading having a rather large dip at the midsemispan

station. However, the experimental loading does substantiate the

rather rapid load gradient from the midsemispan station out to the
wing tip.

Experimental and theoretical chordwise load distribution.- Com-
parisons between the experimental and thin-airfoil-theory chordwise

load distributions(?P = uQZwEE;EE’ where a; is the local effective

angle of attack expressed in radians, which was determined from the

theoretical spanwise load distribution) at an angle of attack of 2.3°

are presented in figure 15. The agreement at the two inboard and two
outboard stations is fairly good. However, at the 50-percent-semispan
and 60-percent-semispan stations the agreement is rather poor especially
at the 50-percent-semispan station where there appears to be a rather
large camber effect. This may be due to boundary-layer drainage from
the inboard and outboard panels with the boundary layer being thicker

on the upper surface of the wing.

Effects of sideslip.- The effects on the wing pressure distribution
of sideslipping the model are indicated in figures 16 and 17. 1In the
presentation of the data the sign of the sideslip angle has been reversed
for the three outboard stations so that figures 16 and 17 may be inter-
preted as though all pressures were measured on the right wing. Measure-
ments at negative sideslip angles yield results for the trailing wing,
and conversely, measurements at positive sideslip angles provide pres-
sure distributions on the leading wing. At angles of attack near zero
degrees (fig. 16), the effect of sideslip was to increase the magnitude
of the pressure coefficients on the sweptforward panel of the trailing
wing and the sweptback panel of the leading wing and to decrease those
on the other two panels. This effect is attributed to the change with
sideslip angle of the velocity components normal to the leading edge.

At an angle of attack of 6.5° (fig. 17), sideslipping the model had a
pronounced effect on the strength and location of the vortex near the
leading edge. At zero sideslip, a vortex type of flow on the inboard
panel was evidenced by broadened leading-edge pressure peaks and rapid
pressure recovery just behind the peak. This vortex flow became slightly
stronger at negative sideslip angles and weaker at positive sideslip
angles. No evidence of this vortex flow exists on the outboard panel at
zero or high negative angles of sideslip; however, as the sideslip angle
increases positively, a vortex appears somewhat downstream from the
leading edge on the inboard end of the outboard panel.
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Pressure Distribution on the Fuselage

Pressure distributions on the fuselage in the presence of the wing
along each of three meridian lines, as illustrated in figure 4, are
given in figure 18, while the pressure distributions along these
meridian lines for fuselage alone are presented in figure 19. Figure 18
shows an increase in pressure along the three meridian lines near the
region of the wing-fuselage juncture. This pressure rise is somewhat
greater on the 15° meridian line and diminishes progressively as the
90° meridian line is approached, indicating a pressure carry-over from
the wing. It can be seen from figures 18 and 19 that no significant
change occurs in the magnitude of the fuselage pressures except in the
immediate vicinity of the wing.

Aerodynamic Section Characteristics

The aerodynamic section normal-force characteristics at zero side-
slip for various spanwise stations are presented in figure 20. The
angle of attack for maximum values of section normal-force coefficients
on the inboard panel decreases considerably toward the juncture, indic-
ative of separation beginning first at the wing juncture and progressing
inboard as the angle of attack is increased. Little evidence of sepa-
ration exists on the outboard panel except near the Jjuncture at the
60-percent-semispan station where the normal-force coefficient breaks at
about 10° angle of attack. At the lower angles of attack the normal-
force curves for the various semispan stations are fairly linear. The
large increase in total-pressure loss in the wake at about an angle of
attack of 10° from the 35-percent-semispan station to the 60-percent-
semispan station (fig. 13) would seem to substantiate the fact that
shedding and mixing of the boundary layer in this region results in flow
separation as indicated by the breaks in the normal-force curves at these
semispan stations.

Stall Patterns

Stall patterns on the wing, as determined from tuft studies, at
various angles of attack are presented as figure 21. Separation at the
wing juncture appears to begin at a low angle of attack and progresses
inboard more rapidly than it does outboard from the region of the junc-
ture. As has previously been pointed out, this could be attributed to
the fact that the effective angle of attack at the outboard panel is
less than that of the inboard panel. It can be seen that at moderate
to high angles of attack the arrows indicate flow from both the inboard
and outboard wing panels in a direction toward the wing juncture where
the boundary layer from both panels is mixed and shed off the wing
resulting in the large increases in total-pressure loss as shown in
figure 13.
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CONCLUSIONS

Based on the results of pressure-distribution measurements at low
speed on a wing-fuselage configuration having a wing of W plan form
with aspect ratio 6, 45° sweep, taper ratio 0.6, and an NACA 65A009 air-
foil section parallel to the plane of symmetry, the following conclusions
are drawn:

1. A vortex type of flow exists over the wing at moderate and high
angles of attack as indicated by the pressure distribution. This vortex
first appears on the inboard panels and later forms on the outboard
Panels as the angle of attack is increased.

2. At a given angle of attack, the strength and location of the
vortex are appreciably affected by changing the angle of sideslip.

3. Experimental and theoretical chordwise and spanwise load distri-
butions are in fair agreement except near the wing juncture, where there
appears to be a mixing and shedding of the boundary layer from the
inboard and outboard wing panels.

4. Wake surveys in the region of the juncture indicate a rather
large increase in total-pressure loss at moderate to high angles of
attack, while the variations of the wake along the span at the lower
angles of attack are rather small except for slight increases in the
Jjuncture region.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.

CONFIDENTIAL



10

CONFIDENTIAL NACA RM L52F11

REFERENCES

Purser, Paul E., and Spearman, M. Leroy: Wind-Tunnel Tests at Low
Speed of Swept and Yawed Wings Having Various Plan Forms. NACA
TN 2445, 1951. (Supersedes NACA RM L7D23, 1947.)

. Campbell, George S., and Morrison, William D., Jr.: A Small-Scale

Investigation of "M" and "W" Wings at Transonic Speeds. NACA
RM L50H25a, 1950.

. Polhamus, Edward C., and Becht, Robert E.: Low-Speed Stability

Characteristics of a Complete Model With a Wing of W Plan Form.
NACA RM L52A25, 1952.

. Gillis, Clarence L.; Polhamus, Edward C., and Gray, Joseph L, Jr.:

Charts for Determining Jet-Boundary Corrections for Complete Models
in 7- by 10-Foot Closed Rectangular Wind Tunnels. NACA ARR L5G31,
1945,

. Herriot, John G.: Blockage Corrections for Three-Dimensional-Flow

Closed-Throat Wind Tunnels With Consideration of the Effect of
Compressibility. NACA Rep. 995, 1950. (Supersedes NACA RM ATB28.)

Shortal, Joseph A., and Maggin, Bernard: Effect of Sweepback and
Aspect Ratio on Longitudinal Stability Characteristics of Wings at
Low Speeds. NACA TN 1093, 1946.

Campbell, George S.: A Finite-Step Method for the Calculation of
Span Loadings of Unusual Plan Forms. NACA RM L50L13, 1951.

. Lange, Roy H., Whittle, Edward F., Jr., and Fink, Marvin P.:

Investigation at Large Scale of the Pressure Distribution and Flow
Phenomena Over a Wing With the Leading Edge Swept Back 47.5°
Having Circular-Arc Airfoil Sections and Equipped With Drooped-
Nose and Plain Flaps. NACA RM L9G15, 1949,

CONFIDENTIAL




NACA RM L52F11 CONFIDENTTIAL dfsals

/514

Relative wind

Z

Figure 1.- System of axes. Positive values of forces, moments, and
angles are indicated by arrows.
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Figure 2.- General arrangement of test model.
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Figure 3.- Ordinates for NACA 65A009 airfoil and fuselage of basic
fineness ratio 12. Actual fuselage fineness ratio 10 achieved
by cutting off the rear 1/6 of the body.
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| Figure 4.- General arrangement and ordinates of pressure orifices
‘ on test model.
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