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RESEARCH MEMORANDUM

SUPPLEMENTARY NOTE ON MODIFIED-IMPACT-THEORY CALCULATIONS
FOR BODIES OF REVOLUTION HAVING MINIMUM DRAG AT _ )

HYPERSONIC SPEEDS

By Méyer M. Resnikoff

SUMMARY

Following the methods of NACA RM A51K27, 1952, the modified impact
theQry developed therein is employed to obtain improved expressions for
calculating the shapes of bodies of revolution having minimum pressure
foredrag in hypersonic flight, corresponding to cases where the hyper-
sonic similarity parameter (the ratio of the free-stream Mach number to
the,slenderness’ratio) is appreciably greater than 1. The investigation
ig carried out for various combinations of the conditions of given body
length, base dlameter, surface area, and volume. A minimum drag body of
given base diameter and surface area is calculated and compared with the
. cone, the corresponding body obtained with impact theory. It is found-
 that consideration of centrifugal forces in the disturbed flow (with the
modified impact theory) yields a shape of increased bluntness in the
region of the nose and increased curvature in the region downstream of
the nose, which result is in substantial agreement with that already
obtained in NACA RM ADI1K27 for the minimum drag body of given fineness
ratio. The calculated pressure drags at hypersonic speeds of the bodies
obtained with modified impact theory were only slightly less (of the
_order of a few percent) than those of the corresponding bodies obtained
with the impact theory. "

INTRODUCTION

Approximate shapes of nonlifting bodies of revolution having y
minimum pressure foredrag at high supersonic airspeeds were calculated
in reference 1 on the basis of Newtonian impact theory. The investiga-
tion was carried out for various combinations of the conditions of given
body length, base‘diameter, surface area, and volume. Comparison between
theory and experiment indicated that bodies so calculated do indeed have
relatively low drag; however, it was also suggested in reference 1 that
centrifugal forces in the disturbed flow about such bodies may
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significantly influence their shape, varticularly if the value of the
hypersonic similarity parameter is appreciably greater than 1 (i. e., at
hypersonic flight speeds). The impact theory was therefore modified to
account for effects of these forces in hypersonic flight and the corre-
sponding minimum drag body of given length and base diameter was calcu-
lated. This body had more bluntness in the region of the nose, and
more curvature in the region downstream of the nose than the shape
obtained with the impact theory.

Since minimum drag bodies obtained with the modified impact theory
would appear to be especially suited for hypersonic flight, it has been
undertaken in the present report to extend the calculations of refer-
ence 1, using procedures paralleling those presented therein. In
particular, the modified theory is employed to .develop expressions for
calculating minimum drag bodies of given base diameter and body surface
area or volume, and given length and volumie or surface area.

SYMBOLS

D R
Cp drag coefficient | —————— :
qon(d/2)"

D pressure foredrag
d  maximum body diameter

hig integrand function

Ip drag parameter <t D ‘>
2nq,

1 body length

. . . : p -po
P pressure coefficient o

P static pressure
q - dynamic pressure
'S body surface area.

v body volume
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X,y coordinates of point on meridian curve of body (origin of
coordinate system coincides with nose of body, and x axis
coincides with axis of symmetry)

o) angle (in meridian plane) between free-stream direction and
‘ tangent to body surface -

A Lagrange multiplier
Subscripts

o) free-stream conditions
1 values at nose point of minimizing curve
2 values at base point of minimizing curve

+ right-hand 1imiting value of quantity at cormer on minimizing
curve _

- left-hand limiting value of quantity at cormer on minimizing
- curve '
PROCEDURE FOR CALCULATING MINIMUM DRAG BODIES
Modified Drag Theory
It was shown in referencé 1 thét the piessure coéfficient obtained
by considering only the impact forces may be modified as follows to

include centrifugal-force effects in the flow over the surface of a
body:

P=2sin28+%(l-y—);->-d%'sin28 (1)

where the first term on the right represents the contribution due to
impact forces and the second term represents the effect of curvature
of the body in the stream direct1on. A drag parameter may be defined

by the relation
D 1
2nq,, o
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or, considering equation (1), this expression may be written in the
form (see reference 1)

l ' ’
I=2-f <1+—31 Y ax 2
D =72 A 2ya liyte ‘ (2)

Variational methods will be used to minimiie equation (2), subject to
the followlng conditions:-

a. Given base diameter and given surface area
b. Given base diameter and given volume

c. Given length and given volume

d. Given length and given surface area

)

Minimizing Procedure

Relations for volume and surface area can be written i’
v ! - ‘ :
- = J/‘ y2 dx = const. (3)
(o} . , _
and
2 1 . '
S—YL 12 - ’
= Jg\ yw 1+y's dx = const. (&)

respectively. The conditions for a fixed volume or surface area may be
included in the expression to be minimized by adding a multiple of V/n

or S/2n to Ip, thus forming a new function, say Jp, to be minimized.
Hence, . ‘ '

. Al 7 " : |
) . y
JD = ID + A T = y22 +f l:- <l + %—) = + Xy:! y dx (5)
: Yo ‘2 1+y

for a body with a given volume and

| ne. l 1
JD=ID-+-x§S-=y22+x—12—-+f {-<1+-§X-> y2+x,¢1+y'2]ydx

o EYZ _ 14y? ( 6)

A
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for a body with a given surface area, where A 1is a constant which will
be determined later.

In order to find the forms of the function y = y(x) which will
minimize expressions (5) and (6), it is necessary to find solutions to
the Euler differential equation (see reference 2) :

%f}" -fy =0 . (7)

vhere f = f(y, y') represents the integrand function in equation (5)

9
or (6), and fyr and f, denote, respectively, Sy £y, y")

and gi f(y, y'). It can be readily ver1f1ed that a first integral
v \ . v .
to equation (7) is given by

y' fyr - £ = const. - (8)

*It follows that a first integral to the Euler equation for the given
.volume condition is, then,

,3 . ’ .
K“ 3y.> Eyzz_nyy” : (9)
a2/ (L4y'7)
and for the given sﬁrface-area condition,
| o ' : :
(¢ ) mlree o
Y2 / (1+y'=) 14y -

Solutlons to equations (9) and (10), satisfying terminal condltlons,
represent meridian sections of minimum drag bodies (excluding any finite
section of infinite slope at the nose) for the given conditions, and will
be called minimizing curves.

Since the ordinate of the minimizing curve at the nose of the body
is not specified, a terminal condition must be satisfied (reference 3)
- For the given volume condition this is

= 3&5[ <ﬁ'+-2i14> (i:idzia J . | ‘(ll)

y=y,

x=0
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"and for the given surface-area condition

' a y2 Ay 3y ) _yE
0=<fy,-x—-— =yl|:——-—+ 1+ | = -1
dy 2 X=0 N 1eyt® 22 /' (L+y*?) =y

(12)
Similarly, a terminal condltion at the base must be satisfied, namely,
<f},' + —d—-y2> " =0 (13)
dy -
¥=Yo .
when the base diameter is not given, and
(y' fyr - f)x=x2 =0 (1h)
when the body length is not given.
Condition (13) is, for a given volume,
12 _ .
ya[g' _Z_._'_21'_2.+2} =0 (15)
(1+y'%) =y, .
and for a given surface area,
1 12 _ 5
yo | =237 o -0 (16)
2 2 12\ 2
1+y! (1+y'%) _
: ~ Y=Yz

Equation (14) simply requires that the constant of integration be zero
in equation (8), the first integral to Euler's equation.

In addition to the above, two further necessary conditions of the
calculus of variations are needed in order to show that each of the
various comblnations of given conditlons determines a unique minimizing
curve, namely, the Legendre condition (see reference 2), which requires

fyrgr >0 (17)

everywhere on the m1n1miz1ng curve, and the corner condition (see refer-
ence 2)

-Il F
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(18)

which must be satisfied if the minimizing curvevis‘to.contain a corner.
It can be shown that equation (18) cannot be satisfied by the integrand
function of expression (5) or (6). It follows, then, that there can be

no corners on any of the minimizing curves to be considered, except at
end points.

CALCULATION OF MINIMUM DRAG BODIES
Given Base Diameter and Surface Area
The first integral to Euler's equétion and the terminal condition

at the base (equations (10) and (1k4), respectively) permit the minimiz-
ing curve to be represented parametrically as

3/2 )
A [ (L+y'2) .}
y=22 |2/ __ >
; 3 y,a
: a/2 / (19)
dy  Ays [ 2(14y'®) T W 14yr® 14/ 1492 ] '
X=‘/“y_3':= -’é’z[(?’) N l+.’>’2 "lTll+ 1+y'~ _CJ
v, y y! y' y!
J
The

condition at the nose (equation (12)) requires Y1 =0 ory' = o

For all values of base diameter (and surface area) the former require-
ment gives the drag parameter (see equation (2)) a smaller value. Thus,
1t 1s necessary that y, = O and equation (19) yields

t3 13

-

2y, DY 5

A = -
(147,12)%% (24y,2)/2

(20)

Using equations (19) and (20), the surface-area condition (4) yields

A =121.6 (y,2/5)°

From equation (20) it is seen that the range of A is 0 to 2. The
corresponding ranges for the length 1 and surface area S are ® to
0.32 y, and o to 3.93 y,®, respectively. :
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The minimizing curve for a body of diameter 2 and surface area 31.57
is shown in figure 1. The meridian section of a cone (the corresponding
body obtained with the impact theory) of the same base diameter and
surface area is also shown in the figure. It is seen that the considera-
tion of centrifugal forces results in a body of greater bluntness in the
region of the nose and greater curvature in the meridian section down-
stream of the nose. Calculation of the drag parameters for these bodies,
using equation_(2), indicates that the cone will indeed have the higher
drag at hypersonic speeds, although not by more than a percent or two.
This result and the results of corresponding calculations for the given
fineness-ratio bodies treated in reference 1 indicate that consideration
of centrifugal forces principally influences the shape and not the drag
of minimum drag bodies.

Given Base ﬁiameter and Volume

The first integral to Euler's equation and the terminal condition at
the base (equations (9) and (1k), respectively) permit the minimizing
curve to be represented parametrically by the relations .

y = 2z )
e (14y12). ]
3
v | $ (21)
e
X = —
.y J

Y3

where

2
M, =5y, (L + y,E)

The nose condition (equation (11)) requires either that ' =1, .
or y,' =w, or y; =0, If y' =1, the resulting 1/d ratio would
be limited to values less than one-half, since dy/dy' is positive.

If y," = o, the Legendre condition would be violated. Thus it is con-
cluded that, at least for z/d ratios greater than one-half, y; = O.
It follows in this case from equation (21) that y;' = O. The Legendre
condition, namely,

fy'yr 20
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limits the range of y'a,' to 0<y,' 5./ 3. The corresponding range
of A is from 0 to 3 /3/16.

Given Length and Volume

Using the first integral to Euler's equation (equation (9)), the
following parametric‘representation is obtained for the minimizing

curve:.
'3
-y'® +/y'6 +c (L4y12)° [3;”7- - (1413 ] 1
y‘ =
13 .
3_,’)’2__ - A (l+Y'2)2 ' > (22)
[s
X = —"—
n Y j

The terminal conditions at the nose and base are given by equations (11)
and (15), which yield the values ;' =1 and yo! = 0.27h, respectively,
(it can be shown that y, cannot be 0).t

The range of A 1is - to O, corresponding to the range O to =
for L. For M = O this becomes the given length and diameter case
(see reference 1).

The numerical integration of equations (22) is accomplished by
first evaluating equation (9) at y = y, and y,' = 0.27% and solving
for cfy, in terms of yph. Letting o(y', yo\) represent the resulting
function of y?! and:yax, equations (22) now give :

T
Y = Yo @(y', ¥oM)
0 «274 ( ) >
, Y, dy do(y', y=A
: -Z=f2§T=Yef L2 = v Al
¥y ey Y J

Ry y, were zero, then it would follow that c = O in equation (9).
Equations (9) and (15) would then prescribe the value of A. Thus the
problem would be overdetermined, that is, the above conditions could
not be satisfied for a general body length and volume.

1-le ip



10 cp iy NACA RM A52D2k

and the volume (equation (3)) is given by

' 1 0 .274 d
v
— =¥ f 92 (v', y2)) dX=y2°[ 92 =2
o [ . y
=1
=5.° T (y,0)

The values of the functions A 'and I' are obtained by numerical integra-
tion for various (estimated) values of yéx, to enable interpolation for
that value of y,A, which makes

r V/x
8- 33

The set (y,h, A, I') so determined satisfies the given volume and length
requirements and yields the base ordinate value
y2 = Z/A

Expressions (22) now determine y‘-parametrically as a function of y!
and, by numerical integration, x as a function of y'.

Given Length and Sgrface Area

The first integral to the Euler equation (equation (iO)) enables the
minimizing curve to be represented parametrically by

X 2
M(14572)%2 2y13] 3 s (145222 259212 y 2 4 12 ¢ 313 (Layr2) A

6y °® ©p23)
X = fy d_y
o Y'

The terminal conditions at the nose and base are given by equations (12)
and (16), respectively. As in the previously discussed case, the problem

is overdetermined if Y1 = O. Hence, the body in this case must have a
finite blunt nose. | '
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The range of A is given by

0.6k < < 2 <1+ ENY
. QYE

As ) approaches -0.64, the body length approaches zero.

The procedure used to integrate equations (23) is s1milar to that used
to integrate equations (22) above.

CONCLUDING REMARKS

The modified impact theory of NACA RM A51K27, 1951, was employed to
determine improved expressions for calculating the shapes of bodies of
revolution having minimum pressure foredrag at hypersonic speeds. Vari-
ous combinations of the conditions of given body length, base diameter,
surface area, and volume were treated. A minimum drag body was calcu-
lated for the case of given base diameter and surface area, and was
found to be blunter in the region of the nose and to have more curvature
in the region downstream of the nose than the corresponding shape, a
cone, obtained with impact theory. Centrifugal force effects considered
by the modified impact theory were found to influence principally the
shape and not the drag of minimum drag bodies. '

Ames Aeronautical Laboratory
-National Advisory Committee for Aeronautics
Moffett Field, Calif.
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