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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

INVESTIGATION AT LOW SPEED OF THE DOWNWASH, SIDEWASH,
AND WAKE CHARACTERISTICS BEHIND A LARGE-SCALE
TRIANGULAR WING, INCLUDING THE EFFECTS OF
YAW, FULL-SPAN TRAILING-EDGE FLAPS, AND
TWO LEADING-EDGE MODIFICATIONS

By Edward F. Whittle, Jr. and John G. Hawes
SUMMARY

An investigation has been made at low speed in the Langley full-
scale tunnel of the downwash, sidewash, and wake behind a large-scale
60° triangular wing having 10-percent-thick biconvex airfoil sections.
The investigation included the effects on the air-flow characteristics
of yawing 10°, deflecting full-span plain flaps 20°, and increasing
the leading-edge radius by the addition of nose gloves having the
NACA 65((6)-006.5 and the NACA 65-010 airfoil sections.

The main trailing vortex behind the sharp-edged basic wing is
graphically shown to move inboard and to rise farther above the wing-
chord plane extended with increasing angle of attack. When the wing was
yawed 10°©, the vortex on the advanced (left) semispan was enlarged and
moved farther inboard while the vortex on the retarded (right) semispan
was reduced in size and remained close to the wing tip with increasing
angle of attack. As compared with the basic wing at the same 1ift coef-
ficient, the trailing vortex was smaller and not spread out as much for
the wing with full-span flaps deflected 20° and the wake was lower.

The addition of nose gloves having the NACA 65(06)-006.5 and the

NACA 65-010 airfoil sections delayed the formation of the trailing vortex
with increasing angle of attack, with the larger-radius glove providing
the greatest delay. After the trailing vortex was formed, however, it
moved inboard at a faster rate than on the sharp-edged basic wing.

Calculations based on downwash and wake measurements indicate that,
for an all-movable horizontal tail having a tail length of about 1.4
tlmes the mean aerodynamic chord of the wing and used in conjunction with
a 60° triangular wing, a location at or near the wing-chord plane extended
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and a tail area from 0.1 to 0.2 times the wing area would provide more £
acceptable static longitudinal stability and trim characteristics than
other tail locations and tail areas for which calculations were made.

triangular wings.
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INTRODUCTION

The results of a number of low-speed investigations of triangular-

wing characteristics have been published (refs. 1 to 9), but there are

few sources of data on the downwash, sidewash, and wake behind full-scale
In order to add to the guantitative knowledge of the
flow field behind triangular wings, extensive surveys were made behind
the 60° triangular wing of references 1 to 3 as part of a general program
to investigate full-scale triangular-wing characteristics.
included measurements made behind the sharp-edged basic wing, the wing
with full-span plain flaps deflected 20°, the wing yawed 10°, and the
wing with the leading edge modified by the addition of two nose gloves
having the NACA 65(06)-006.5 and the NACA 65-010 airfoil sections. The

surveys were made in the Langley full-scale tunnel at a Reynolds number
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These surveys

of 16.0% 106, corresponding to a Mach number of about 0.07. r

Since the completion of this test program, published experimental
results have shown that the trailing-edge flaps of a triangular wing

may be used to advantage as a lift-producing device (vefs 10). PFor

trim, then, the large pitching-moment coefficients of the triangular wing A
indicate the use of an all-movable horizontal tail.
sharp-edged 45° sweptback wing of reference 11 to be an all-movable
horizontal tail, some calculations based on the surveys behind the
sharp-edged basic 60° triangular wing were made to show important trends
of the static longitudinal stability and trim characteristics of an

assumed 60° triangular-wing airplane.

St/8

COEFFICIENTS AND SYMBOLS

1lift coefficient (of wing, unless used with subscript),

Lift/q S

By assuming the

pitching-moment coefficient about 3.25¢ (of wing, unless used ‘

with subscript), Pitching moment/qqSc

area (of wing, unless used with subscript), sq ft

ratio of tail area to wing area
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local chord (of wing, unless used with subscript), ft

mean aerodynamic chord (of wing, unless used with sub-

b/2
seriph), gkjp c®dy, ft
0

span (of wing, unless used with subscript), ft

aCy,
static margin (— at iy = 0°) at Cg =0
acp

static longitudinal stability

lateral distance from plane of symmetry, ft

vertical distance from wing chord plane, positive up-
ward, ft

tail length (distance from 0.25C of wing to 0.25Ct of
tail), ft

free-stream dynamic pressure, % pVe, lb/sq iz

local-stream dynamic pressure, lb/sq Ighr

local dynamic pressure at tail quarter-chord line, lb/sq 2
mass density of air, slugs/cu £

free-stream velocity, ft/sec

angle of attack (of wing, unless used with subscript), deg
tail incidence angle referred to wing chord line, deg

deflection angle of full-span flaps, deg

local downwash angle, deg

yaw angle, deg
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Subscripts:

i tail

A airplane

av average value (incremental values taken at tail quarter-
chord line)

trim trim condition

MODEL AND APPARATUS

The triangular wing investigated had 60° leading-edge sweep,
10-percent-thick sections, an aspect ratio of 2.31, no geometric twist
or dihedral, and the air loads caused no measurable deflection. Three
leading-edge configurations were investigated. Configuration A was the
original wing having biconvex airfoil sections. Configuration B was
obtained by attaching to the leading edge of configuration A a nose
glove having the NACA 65(06)—006.5 airfoil sections faired tangent to

the 25-percent-chord line. Configuration C was obtained by attaching
to the leading edge of configuration A a nose glove having the NACA
65-010 airfoil sections faired tangent to the 50-percent-chord line.
The ordinates and a schematic drawing of these three configurations are
presented in table I and figure 1, respectively. A photograph of con-
figuration A is shown in figure 2.

The five-tube survey rake shown in figure 3 was employed to measure
the downwash, sidewash, and local dynamic pressures. The rake was cali-
brated for *40° of downwash and sidewash. The downwash and sidewash
angles are accurate to within about ¥0.50° up to angles of about +200°
and to a lesser extent at larger angles. The dynamic-pressure measure-
ments are accurate to within about *2 percent except at survey locations
in the region of low values of dynamic pressure. Because very large
values of downwash were expected, the survey rake was given, in some
cases, an up-inclination of 15° in order to extend the range of survey
data beyond the range of angles for which the rake was calibrated.

The pressures acting on the combined pitch, yaw, and dynamic-pressure

tubes were measured on an inclined multiple-tube manometer and photograph-
ically recorded.
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TESTS AND CORRECTIONS

Configuration A was tested through an angle-of-attack range from
about 6° to 28° at yaw angles of 0O° and 10° with flaps neutral and
through an angle-of-attack range from about 10° to 22° at a yaw angle
of 0° with full-span plain flaps deflected 20°. Configurations B and
C were tested through an angle-of-attack range from about 11° to 22°
at a yaw angle of 0° with flaps neutral.

The surveys were made on the left semispan only except when con-
figuration A was yawed 10°, in which case the surveys covered the full
span.

The surveys (fig. 4) were made in 1-foot vertical and horizontal
increments in three vertical planes located at 0.538(0.61b/2),
1.05¢(1.21b/2), and 1.588(1.82b/2) back of the 0.25¢ and parallel to the
wing trailing edge for the basic wing of configuration A; in two verti-
cal planes located at 0.53c and 1.05¢ for the basic wing of configura-
tion A yawed 10°; and in one vertical plane located at 1.05¢ for the
wing of configuration A with full-span plain flaps deflected 200, as
well as configurations B and C. When the wing was yawed 10°, the survey
planes were also yawed 10° to the same position relative to the wing as
for the unyawed case. All tests were made at a Reynolds number of

6.0 x 106 and a Mach number of approximately 0.07.

The air-stream measurements were corrected for Jjet-boundary effects
and blocking. The jet-boundary effects which consisted of an angle
correction to the downwash are given below:

Plane of A€, deg
survey
(back of ¢/4)| ¥ =0° |V = 10°

0.53¢ -2.23Cy, | -2.29C7,
1.05¢ -2.6kcy, | -2.75CL,
1.58¢ -2, Obyiha B o L

The jet-boundary effects were calculated by the theoretical methods
given in reference 12. The experimental downwash correction data pre-
sented in reference 13 indicate that the theoretical Jet-boundary cor-
rection should be adequate for the range of surveys presented.

A correction for tunnel air-stream misalinement was not applied to
the downwash data. These average values were applied to the data,
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however, before the static longitudinal stability calculations were
made and are included in the results. Average values for each survey
plane are given in the following table:

Plane of
survey A€, deg
(back of &/k)

0.53¢ -0.97
1.05¢ =136
1.58¢ —17936

For the cases where the survey rake was given an initial up-
inclination of 150, correction was made so that the downwash was refer-
enced to the horizontal datum plane.

PRESENTATION OF RESULTS

The results of this investigation are presented as follows:

The 1ift and pitching-moment characteristics of the wing configu-
rations investigated were obtained from the force results of refer-
ences 2 and 3 and are presented in figure 5. The downwash and sidewash
angles are plotted as vectors in order to show clearly the vortex pattern
as it developed, with increasing angle of attack, in each survey plane.
These vector plots, together with contours of constant dynamic-pressure
ratio gq/q,, are presented in figures 6 to 8 for the basic wing of
configuration A, figures 9 to 10 for configuration A yawed 10°, fig-
ure 11 for configuration A with full-span plain flaps deflected 20°,
figure 12 for configuration B, and figure 13 for configuration C. The
absence of vectors near the plane of symmetry is due to the physical
impossibility of surveying these positions because of the interference
of the sting and tail strut with the survey apparatus (fig. 2).

The longitudinal locations of the three assumed tails are shown in
figure 14 and the 1ift curve for the tail, as obtained for the sharp-
edged U45° sweptback wing of reference 11, is shown in figure 15. The
variation with the wing angle of attack of the average dynamic-pressure
ratio (qt/qo)av and the average downwash angle ¢€gy 1s shown in fig-

ures 16(a), 16(b), and 16(c) for tail area ratios S¢/S of 0.1, 0.2,

and 0.3, respectively. Presented for each tail area ratio is the effect
on (qt/qo)av and ¢, Oof horizontal-tail heights 2z/b “of 0.2y 0.3,
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and 0.4 for a tail length Z/E» of about 0.7 and horizontal-tail heights
2z/b of -0.1, 0.0, 0.1, 0.2, 0.3, and 0.4 for a tail length of about
l.k. The two equations used in determining (qt/q0>av and ¢gy are

as follows:

o P2 g 5
B e i 5
and
by /2
2 t ol
€av = — Ce dy (2)
o (qt/qo)av St\/; 9o

Calculations were made to show the effect of the wake and downwash
characteristics on the static longitudinal stability and trim character-
istics of the assumed 60° triangular-wing airplane configuration having
an all-movable horizontal tail. The results are présented in figure 17
for the same tail area ratios and tail positions presented in figure 16
and for a center-of-gravity location of 0.25¢. The pitching-moment and
1lift coefficients were determined from the following equations:

S
B 09
CmA , Cm ; ?; g<é;>av CLt i
St /9
Cr, = CL + =2(=%) oLy (k)
S qO av

where CLt was obtained from reference 11 for

U = o - €5y + it (5)

The effects on the airplane pitching-moment coefficient Cmy (eq. (3))
of change in the moment arm of the tail 1ift coefficient due to change
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in wing angle of attack and tail drag were not included in the calcula- .
tions; however, sample calculations made for cases that were most likely
to have a large effect showed that the pitching-moment coefficients were

not appreciably affected except for tail heights of %f = 0.3 and 0.4

for both the forward and rearward tail locations. The largest effect,
of course, was produced for a tail area ratio %? = 0.3. But even where

the effect was appreciable, the characteristic shape of the curves was
not altered.

Since the static margin x/E was large in most cases and the trim
1ift coefficients were low for a center-of-gravity location of 0.25T
(fig. 17), the computations for the more favorable tail heights
A -0.1, 0.0, and 0.1 in the rearward location were repeated for
center-of-gravity locations corresponding to a more realistic static
margin x/¢ of 0.05 at i, = 0°. These additional computations, which

for completeness also include the effects of tail drag and change in the
moment arm of the tail lift coefficient due to change in wing angle of
attack, are presented in figure 16,

DISCUSSION
ATR-STREAM SURVEYS

The development of the flow with increasing wing angle of attack
has been discussed in detail only for the middle survey plane (1.05c back
of the wing ¢/4). The data for the other two survey planes (0.53C and
1.58% back of the wing &/4) are presented to indicate the rearward devel-
opment of the flow field.

Some effort has been made in the present discussion to correlate
the observed flow behind the basic wing of configuration A with the
measured loading on a similar triangular wing as given in reference 5.
The wing of reference 5 had the same plan form and airfoil sections as
the present wing but was tested at a much lower Reynolds number. No
significant scale effect, however, is to be expected for a sharp-edged
wing of this type (ref. 4). The results due to the various configuration
changes have been compared with the results obtained for the basic wing
of configuration A.
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Configuration A

Basic wing.- At an angle of attack of 5.6° (fig. T(a)), the vortex
sheet is clearly evident and is defined approximately by the change in
direction of the sidewash component of the flow vectors. The wake is
indicated by the low dynamic-pressure contours. The wake center is

located approximately on the wing-chord plane extended (%% = O); but

the trailing vortex sheet (indicated by the sharp change in direction

of the lateral velocity component) appears to be concentrated slightly
above the chord plane extended; that is, the wake and trailing vortex

sheet do not quite coincide.

The results of reference 5 show that, at an angle of attack of 4.19,
flow separation had started at the leading edge of the spanwise station

%% = 0.916 and the measured spanwise loading over the outboard stations

is somewhat greater than the theoretical spanwise loading.

At an angle of attack of 11.0° (fig. 7(b)), a weak vortex and a
small wake concentration are located above the wing tip, but a much

stronger vortex and a larger wake concentration are located at A (O35

b
and '%?-= 0.15. For this case, as shown in reference 5, the leading-edge

vortex covers the entire wing chord at about %g = 0.75 and the remaining
tip region, which is essentially immersed in this separated flow, experi-
ences a loss of lift. (It may be noted, however, that the complete stall,
as indicated by the tuft studies of refs. 1 and 5, does not occur over
this region until a much higher angle of attack is reached.) The strong
trailing vortex observed at %g = 0.75 corresponds to the sharp drop in
loading at this point; however, since the strong trailing vortex may be
considered, in a sense, as the continuation of the leading-edge separa-
tion vortex, it is referred to as the "separation vortex" in the subse-
guent discussion. The weaker vortex at the tip is referred to as the

"tip vortex." It should perhaps be pointed out, with regard to the
surveys for a = 5.6° (fig. 7(a)), that the low-1ift tip area is too
small in that case to allow a clear differentiation between the two

types of trailing vortices, even though the data of reference 5 indicate

a separation vortex along the leading edge for a = 5.6°.

At o = 11.0°9, the wake center is located slightly above the wing-
chord plane extended, and the vortex sheet, which is not so well-defined
as it was at a = 5.69, again appears to be located slightly above the
wake center at the inboard stations.
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At the higher angles of attack, the tip vortex is practically no
longer in evidence and is presumably wound up in the larger separation
vortex. In reference 14, which presents similar surveys for a wing of
45° sweep and having the same sharp-edged airfoil sections, but 0.5 taper
ratio (instead of zero taper ratio as for the present triangular wing),
the tip vortex was strongly in evidence at the highest angle of attack
tested (a = 18.0°).

At o = 16.5° (fig. T(c)) the separation vortex is larger than
at ‘o =411.0° apd 1s located laterally &t 2 0.70 and vertically

b
at %? = 0.20. The vortex sheet is not clearly defined. There is no
evidence of a definite wake region over the inboard sections because of
the outward draining of the low-energy boundary layer from the inboard

sections into the separation vortex.

Increasing the angle of attack to 22.1° increased the size of the
vortex and caused an upward movement of the vortex center to about

%? = 0.30 but seemed to have little effect on the inboard movement of

the vortex center. The location of the vortex sheet is not well-defined
and there is no wake observable over the inboard 20 percent of the span.
The wake of the separation vortex, however, extends steadily inboard
with increasing angle of attack.

At an angle of attack of about 24°, pressure distributions (ref. 5)
show flow separation over about the outboard 50 percent of the span.
Tuft studies (refs. 1 and 5) indicate complete stall over about the out-
board 20 percent of the span.

At an angle of attack of 27.70, the vortex center moved inboard to
about %} = 0.60 and moved upward to about %? = 0.40. The vortex wake
covered most of the semispan.

Examination of figures 6 to 8 shows that the development of the
flow in each plane of survey, with increasing angle of attack, is the
same for all three planes of survey. At a given angle of attack, the
vortex center moves higher above the wing-chord plane extended as it
passes downstream through each plane of survey. Dissipation of the
vortex as 1t passes downstream is indicated by a reduction in the area
enclosed by contours of the lower values of q/qO (0.50 and lower) in

the rearmost plane of survey (fig. 8) as compared with the middle plane
of survey (fig. 7).

Effect of yawing 10°.- Yawing the basic wing 10° caused an enlarge-
ment and a farther inboard movement of the vortex on the advanced (left)
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semispan (figs. 9 and 10) as compared with the unyawed wing (figs. 6

and 7) at corresponding angles of attack. The vortex on the retarded
(right) semispan, in general, seems to be smaller as compared to the
unyawed wing at corresponding angles of attack, and the spanwise loca-
tion of the vortex core remained close to the wing tip for all angles

of attack tested. In general, the span load distribution (ref. 5)
shifted inboard, with increasing angle of attack, faster on the advanced
(left) semispan and slower on the retarded (right) semispan when compared
with the unyawed wing.

Full-span plain flap deflected 20°.- As would be expected with the
flap deflected 20°, the entire wake is shifted downward (relative to the
original chord plane extended) and the vortex is shifted outboard as
compared with the basic wing at equal values of C1, (figs. 7 and 11).
At the same time, the size of the vortex is less and not so spread out
and the wake is smaller.

Configuration B

The primary effect of rounding the basic-wing leading edge to a
radius of approximately 0.0028c by the installation of a nose glove
having airfoil ordinates corresponding to the NACA 65(06)-006.5 airfoil

sections appears to be a delay in the formation of the separation vortex
(fig. D). This delay resulted in an improvement in the static longi-
tudinal stability characteristics as seen in figure 5. Although the
vortex was delayed in forming on configuration B, its progression inboard
with increased angle of attack was faster than for configuration A. The
vortex sheet is well-defined at an angle of attack of about 11.0°

(fig. 12(a)) though it is not well-defined for configuration A at the
same angle of attack (fig, T(b)).

Configuration C

Increasing the wing leading-edge radius to approximately 0.0069c
by installing a nose glove having airfoil ordinates corresponding to
the NACA 65-010 airfoil sections delayed the formation of the separation
vortex even more than did configuration B and resulted in alleviation
of the abrupt force breaks in the longitudinal stability curves charac-
teristic of configuration A and configuration B (fig. 5).

As seen in figure l3(a), the vortex sheet is well-defined and the
vortex is weak at an angle of attack of 11.1°, as compared with the
sharp-edged basic wing (fig. 7(b)), and is confined to the wing-tip

region with the vortex core located at approximately %g =R A
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an angle of attack of 16.5° (fig. 13(b)), the separation vortex probably
exists but has not gained enough strength nor moved far enough inboard
to distinguish it from the tip vortex. At the highest angle of attack
attained (a = 22.1°) the separation vortex has spread out and the vortex

core is now located at approximately %? =00,

STABILITY AND TRIM

As previously mentioned, the curves of downwash angle and dynamic-
pressure ratio plotted in figure 16 for the basic wing of configura-
tion A represent averages over the areas of the assumed tails. It might
be observed that the downwash curves do not all seem to extrapolate to
zero downwash angle at zero angle of attack. Part of the difference
from zero no doubt results from the inaccuracy of readings. Part of the
difference, however, is probably due to the field of the wing, which had
an appreciable thickness, and to the inflow into the wing wake; the var-

iation of the discrepancy with tail height roughly correlates with this
suggestion.

The curves indicate that the downwash variation with angle of

attack is stabilizing (gﬁ < 1) for a range of tail heights 22/b from
(04

-0.1 to 0.1 for all tail area ratios St/8 in the rearward tail location.

The higher tail positions, in general, are destabilizing either in the

lower or higher angle-of-attack range, in both the tail forward and tail
rearward locations.

In general, the variation of (qt/qc))av with angle of attack is

unfavorable in the high a range for all tail area ratios St/S at

%? = 0.2, 0.3, and 0.4 for both the tail forward and tail rearward

locations. The decrease in (qt/qo)av with increasing angle of attack

is due to the effect of the wake as the tail passes through the wake
with increasing angle of attack.

Since the static margin, in most cases, was large and the trim

1ift coefficients were low for a center-of-gravity location of O.25¢

(fig. 17) the computations for the more favorable tail heights (QTZ =0T,

0.0, and 0.1) in the rearward tail location were repeated for center-of-
gravity locations corresponding to a more realistic static margin
x/c of 0.05 at it = 0° (fig. 18). The results show that trim 1ift
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coefficients of about 1.0 were obtained for tail incidence angles of
dc
m

— of =010
aCL, trim

il 0 with values of

about -8° at a tail height %T

S
and -0.23 for (5 < 0.1 and 0.2, respectively. Other tail heights and

S
¥ dac
tail area ratios show either (1) large values of (..E) , (2) maxi-
dCL/trim

mum CLAtrim at rather small negative tail incidence angles, or

(3) undesirable reversals in the pitching-moment curves (in particular
S
for —*=0.1). Since a static margin x/3 of 0.05 at iy = 0° is

about the lowest value that will be generally acceptable, not much can

dac
be done to reduce large values of (EEE) . At the expense of
L/trim
acpy
increasing - somewhat, however, conditions (2) and (3) above
L/trim

(o]

can be improved by increasing x/c from 0.05 to, say, 0.08 at ig =0".

For a static margin x/E of 0.08 at it OO, it is expected that the

S
results for ?} = 0.1 at %? = -0.1, 0.0, and 0.1 would be the most

attractive tail-on configurations.

CONCLUDING REMARKS

An investigation at low speed of the downwash, sidewash, and
dynamic-pressure ratio behind a large-scale 60° triangular wing indi-
cates the following conclusions, of which the first two corroborate
previous investigations.

1. A separation vortex formed near the apex of the sharp-edged
basic wing at a low angle of attack and moved over the wing just behind
and parallel to the wing leading edge. It left the wing near the tip
and passed downstream. As the angle of attack was increased, the down-
wash angles and sidewash angles became larger and the dynamic-pressure
ratios in the vicinity of the vortex became smaller, while an inboard
and upward movement of the vortex occurred relative to the chorad plane.

2. The effect of yawing the sharp-edged basic wing 10° primarily
was to increase the wing area affected by the vortex on the advanced
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semispan because of a broadening of the vortex with increasing angle of
attack. The vortex on the retarded semispan moved inboard only slightly
with increasing angle of attack.

3. As compared with results for the sharp-edged basic wing at equal
values of the 1lift coefficient C1, deflecting the full-span flaps 20°

delayed the formation and inboard movement of the separation vortex and
caused a downward displacement of the wake relative to the chord plane.

4. The addition of a nose glove having NACA 65(06)—006.5 sections

had little effect on the flow characteristics of the basic sharp-edged
wing except to cause an initial delay in the formation and inboard
movement of the separation vortex.

5. The addition of a nose glove having NACA 65-010 airfoil sections
delayed still further the developement of the separation vortex flow
over the wing, but, at an angle of attack of about 220, the flow char-
acteristics were about the same as for the sharp-edged basic wing.

6. The flow surveys behind the wing generally correlated well with
the measured pressure distributions and spanwise load distributions on
a smaller-scale wing having the same plan form and airfoil sections.

T. Calculations for several tail areas, tail lengths, and tail
heights showed that a horizontal all-movable tail having an area ratio
St/S of 0.1 to 0.2, a tail length of about 1.4E, and a vertical loca-
tion at or near the wing-chord plane extended would have the more
acceptable static longitudinal stability and trim characteristics for
the plain 60° triangular-wing configuration investigated.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va.
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(a) Basic biconvex wing.
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(b) Wing with 65-0065 nose glove. (c) Wing with 65-0OI0 nose glove.
Configuration B. Configuration C.

Figure 1l.- Geometric characteristics of basic and nose-glove wing
configurations. All dimensions are in inches.
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Figure 2.- The basic low-aspect-ratio triangular wing mounted in the
Langley full-scale tunnel. Configuration A.
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Figure 3.- The five-tube survey rake. ‘
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| pressure ratio behind a 60° triangular wing. Longitudinal plane
of survey at 1.05C back of &/4. Configuration A; ¥ = 0% &p = 0°.
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Figure 9.- Vectors of downwash and sidewash and contours of dynamic-
pressure ratio above a 60° triangular wing. Longitudinal plane of
survey at 0.53C back of &/4. Configuration A; ¥ = 10°; &f = 0°.
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