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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

A SUMMARY AND ANALYSIS OF THE LOW- SPEED LONGIWDINAL 

CHARACTERISTICS OF SWEPT WINGS AT 

HI GH REYNOLDS NUMBER 

By G. Chester Furlong and James G. McHugh 

SUMMARY 

The low- sp~ed longitudinal characteristics of swept wings deri ved 
primarily from investigations at high Reynolds numbers are summarized 
and analyzed . Two basically different types of flow separation, 
trailing- edge separation and leading- edge separ ation, are identified 
and discussed; and it is shown that in the case of a sweptback wing, 
either type or a mixture of the two types of separation may occur . The 
type of separation encountered on any particular wing is dependent 
primarily on the leading- edge radius , leading- edge sweep angle , Reynold s 
number; and aspect ratio . When the type of flow separation is defined, 
generalized t rends in the lift , drag, and pitching moment can be 
established. 

Methods of stall control applicable to each type of flow separation 
are discussed and the effectiveness of the various methods (devices and 
wing geometry) currently available is indicated . The important influence 
that the verti cal position of the horizontLl.1 tail has on the over- all 
stability of airplane configurations both with and without stall- control 
devices is conside red, and generalized procedur es L)r predicting tail 
effectiveness are presented . 

The effectiveness of various high- lift devices in the linear lift 
range and at maximum lift has been summarized, and the advantages of the 
various types are noted . 

For the convenience of the designer, the more significant available 
data, as of August 15 , 1951 , on the longitudi nal characteristic s of swept, 
delta, and thin straight wings are compiled in convenient tabular form . 
In general, the tabulated data were obtaine d at a Reynolds number of 
6.0 x 106 , but, for a few signifi cant configur ations where such high 
Reynolds number data were not available, the results of tests at Reynolds 
numbers as low as 4 . 0 X 106 have been i ncluded . 

L_ j 
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I N T ROD U C T ION 

At the time the swept wing was first proposed for high-speed flight 
(refs. 1 to 9), it was recognized that the induced angle-of-attack 
distribution and the characteristic boundary-layer growth on such wings 
would promote tip stall. In addition, simple sweep theory indicated the 
lift capabilities of swept wings to be materially less than for compa
rable straight wings. Both the tip-stalling tendencies and low values 
of attainable lift of swept wings constituted landing and take-off 
problems requiring considerable research at low speeds·. 

In an ea rly summary of the longitudinal stability characteristics 
of swept wings, Shortal and Maggin (ref. 10) established a relation 
between wing plan-form parameters and the type of longitudinal stability 
that existed at or prior to maximum lift and, on the basis of such a 
correlation, showed that longitudinal instability due to tip stalling 
was dependent primarily on aspect ratio and sweep angle. With the dat a 
available at that time, .they established an empirica l variation of 
aspect ratio with sweep angle that defined a stability boundary. 

In the ensuing years, the low-speed research effort has been 
directed toward determining the characteristics of swept wings, under
standing the basic flow phenomena, and developing means to improve the 
stability chara cteristics of those wings the geometry of which was such 
as to place them on the unstable side of the stability boundary of 
reference 10. Much work has also been directed toward obtaining satis
factory longitudinal characteristics with horizontal tails in combi
nation with wings falling on either side of the stability boundary. 

As a result of this intensive research effort, a large amount of 
literature has accumulated in which the characteristics of many wings 
are described both with and without various devices for improving the 
characteristics. Inasmuch as the literature is comprised of many 
individual investigations, the present authors have undertaken to pro
vide a comprehensive review of the present knowledge of the low-speed 
characteristics of swept wings. The present paper has two specific 
purposes. The first is to make an analysis and genera liza tion of these 
data in order to show the basic effects and trends of sweep and thus 
provide greater usefulness of the data by permitting rea sonable interpo
lation and extrapolation. The second is to summarize in tabular form 

the basic results obtained at large Reynolds numbers (above 4.0 X 106) 
at low Mach numbers (less t han 0.25). Two deviations from the stated 
purposes are not ed in that unpublished data available to the authors 
have been used to supplement the literature on swept wings and also that 
data available (published and unpubli-shed) on straight low-aspect-ratio 
wings suitable for supersonic speeds have been included with the tabulated 
data on swept wings. Insofar as possible all large-scale data available 
as of August 15 , 1951 have been included in the tables. 
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The static- longitudi nal- stability pr oblem is analyzed in terms of 
the effects of such parameters as aspect ratio) sweep) and leading- edge 
radius . The influence of stall- cont r ol devices , high- lift devices , and 
a horizontal tail on the stability of swept wi ngs is considered in 
detail . The lift char a cter istics of swept wings a r e analyzed with 
respect to the same par ameters and dev i ces . A few remarks have also been 
included concerning the drag of swept wings . The high Reynolds number 
data are summarized with very little discussion in 47 tables located at 
the end of the text . 

Deficiencies and inadequacies may, of course , be noted in the 
present accumulation of data, and the possibility exists that the schemes 
of analysis presented herein may undergo revision as the apparent gaps 
are filled . 

S Y M B 0 L SAN D T E R MIN 0 LOG Y 

SYMBOLS 

CL lift coefficient 

L lift 

6.CL increment of lift coefficient at a. = 00 

C 
Lmax 

maximum lift coeffi cient 

6.CLmax increment of maximum lift coefficient 

CL a. 
lift- curve slope 

cl, section lift coeffi cient 

c 
lmax 

section maximum lift coefficient 

Cm pitching- moment coefficient about 0.25c ' 

CD drag coefficient 

D drag 

I 
J 
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induced- drag coefficient 

minimum-drag coefficient 

profile- drag coefficient 

section profile- drag coefficient obtained by momentum 
method 

pressure coefficient 

suction flow coefficient 

Reynolds number 

Mach number 

rate of rise of wake center location relative to extended 
wing- chord plane with angle of attack 

angle of attack 

angle of attack at maximum lift coefficient 

downwash angle 

trailing- edge-flap deflection 

deflection of leading-edge flap, slat or droop 

aerodynamic center 

center of gravity 

aspect-ratio correction factor (see ref. 11) 

factor depending on aspect r atio, taper ratio, and flap 
span (see ref. 12) 

tail effectiveness parameter (see ref. 13) 

wing efficiency factor 

wing area 
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S' wing area affected by suction 

b wing span 

c' 

-c 

c 

c" 

Y 

A 

z 

v 

i 

Subscripts: 

c/4 
LE 

e 

w 

t 

Abbreviations: 

L.E. 

T.E. 

average chord 

local chord parallel to the plane of symmetry 

ratio of chord of leading-edge flap to local wing chord 

lateral coordinate 

aspect ratio 

angle of sweepback 

taper ratio 

vertical distance from extended wing-chord plane 

tail volume 

incidence 

quarter - chord line 

leading edge 

effective 

wing 

tail 

leading edge 

trailing edge 

TERMINOLOGY 

A certain latitude has been necessary in the definition of various 
terms and in the nomenclature of various devices. For example, some 
references use the term "usable" maximum lift, whereas others use tl}e 
term "inflection" lift. In both cases the terms usable and inflection 
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are used to designate the lift coefficient at which there is a decided 
shift in aerodynamic center. Differences in definition and nomenclature 
have been pointed out where comparison with the reference report might 
not be clearly understood. 

PRE SEN TAT ION 0 FDA T A 

All pitching-moment data} unless otherwise specified} are computed 
about the 0.25 mean aerodynamic chord. For convenience} this moment 
center will be considered the center of gravity and hence the longi
tudinal stability may be referred to as either stable or unstable. 

Insofar as possible} a tabular form has been used to summarize the 
large amount of data available (refs. 13 to 66) . An index to the tabu
lated data has been presented in table 1. The tables 2 to 48 a re for 
the most part self- explanatory; some data which were repetitious and 
overlapping have been excluded . All data have been referenced so that 
the reader may easily refer to the detailed conditions under which the 
tests were made . It will be noted that values of ~x and ~x are 

listed in the headings of each table. These values of Reynolds number 
and Mach number represent the highest values at which the wing was 
tested. Inasmuch as tests of the wing plus gadgets were in most cases 
confined to lower values of Reynolds number and Mach number} the data 

in the tables were restricted to a Reynolds number range between 6.0 X 106 

and 7 .0 X 106 . In some cases data were available only at Reynolds number 

lower than 6 . 0 X 106 and in such cases the values of ~x and ~x 
define the test conditions for the tabulated data. 

The column headings have the following general significance: 

Span L.E. device (b 2) .- The span of the leading- edge device ( slat) 
flap} etc . is given in fraction of wing semispan. The outboard end of 
the device is located between 97 percent and 100 percent of semispan. 

Span T.E. device (b!2). - The span of the trailing- edge high- lift 
device is given in fraction of wing semispan. With few exceptions the 
inboard end of the device is located at the plane of symmetry when a 
fuselage is not present. Some investigators measured the flap deflection 
in a plane parallel to the air stream whereas others measured it in a 
plane perpendicular to constant percent line on the swept panel . Refer
ence to the original paper should be made when such details are required. 

Configuration. - The sketches shown assist in interpreting the table;1 

• 

• 

although plan-form details are unavoidably lacking except in those cases ~ 

where deemed absolutely necessary . 
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CLmax '- In many cases the tops of the lift curves were relatively 

flat and the selection of the maximum value was difficult. In such 
cases consideration was given to the angle-of-attack range involved and 
the value was selected at the angle of attack at which the lift effec
tively leveled off. 

~ax'- Angle of attack at which the tabulated value of CLmax was 

first obtained. 

LID at o.85CLmax '- The values of lift-drag ratio obtained at a lift 

coefficient of O.85CLmax are presented in order to provide a comparison 

among the configurations in the high-lift range. 

Cm characteristics. - The longitudinal stability characteristics are 

quite easily compared from these compressed figures. 

The data presented in the figures attempt to illustrate the trends 
indicated by the tabular data. In addition to the data from the tables, 
data from references 67 to 88 have been used in the preparation of the 
figures. Unfortunately, sweep is only one of the variables· and hence 
its influence on the aerodynamic characteristics cannot be isolated 
quantitatively except in the most general degree. An index to the 
figures is presented on page 64. 

FLO W CON SID ERA T ION S 

Fundamental to the improvement of both the stability a~d maximum 
lift characteristics of swept wings is a knowledge of those factors 
which both influence and induce flow separation. It has been found that 
on certain sweptback wings leading-edge separation may precede or 
accompany trailing- edge separation with the result that the variations 
of pitching-moment coefficient with lift coefficient are quite unlike 
those obtained when only trailing-edge separation is involved. Simi
larly, appreciable differences in the maximum lift characteristics exist 
between swept wings exhibiting trailing-edge separation and those exhib
iting leading-edge separation. Inasmuch as the stability and lift char
acteristics and the required methods of flow control associated with 
leading-edge separation are so different from those associated with 
trailing-edge separation, an attempt has been made, in the following 
sections, to present the basic phenomena of the different types of flow 
separation. 

One effect attributable to sweep is a change in the spanwise distri
bution of induced angle of such nature as to cause the load on the wing 

-.---.-~----- -- ------------ J 
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of a given aspect ratio and taper ratio to be concentrated further out
board when the sweep angle is increased (fig . 1). Flow separation and 
consequent loss in lift over the outboard sections would necessarily 
precede that over the inboard sections. 

The induced camber which exists on either a swept or unswept wing 
is negative at the tip and positive at the root. The negative induced 
camber at the tip sections produces adverse pressure gradients very 
conducive to flow separation whereas the positive induced camber at the 
root sections minimizes the adverse pressure gradients so that the flow 
over these sections is very resistant to flow separation. The more 
significant effect of induced camber is, therefore, its influence on 
the chordwise pressure gradients across the span. 

TRAILING- EDGE SEPARATION 

Another factor which promotes tip stall and which is attributable 
to sweep, or at least accentuated by it, is the way the boundary layer 
flows on the wing . Elementary considerations of the pressures on a 
straight wing indicate an outflow of the boundary layer on the lower 
surface and an inflow of the boundary layer on the upper surface. When 
sweep is introduced, the respective chordwise pressure distributions are 
staggered so that on any line perpendicular to the plane of symmetry the 
pressures, for example, on the upper surface become more negative with 
an increase in distance from plane of symmetry. A pressure gradient, 
therefore, exists from root to tip which induces a boundary- layer flow 
from root to tip. 

The degree to which the outflow is established at any given value 
of lift coefficient is dependent primarily on the sweep angle involved . 
The outflow of the boundary layer produces excessively thick boundary 
l ayers over the tip sections which separate more easily than those of 
normal thicknesses and effectively removes the boundary layer from the 
inboard sections which makes the boundary layer over these sections more 
resistant to separation. 

The combined effects of the induced- angle distribution on the span
wise loadings, induced camber, and boundary-layer growth over the tip 
sections on the section-lift characteristics of a high-aspect- ratio, 
highly sweptback wing are indicated by the data presented in figure 2. 
The airfoil sections incorporated in the wing were 12 percent thick and 
the chordwise pressure distributions indicated that flow separation 
progressed from the trailing edge to the leading edge of the tip sections. 
The maximum lift coefficients of the tip sections fall far short of the 
maximum lift coefficients of the root sections. 
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Some interesting boundary-layer studies made at low Reynolds num
bers on a 350 sweptback wing (refs. 89 and 90) reveal the complexities 
which arise from the outflow of the boundary layer. The results pre
sented in references 89 and 90 show, that the outflow may be as much as 
250 on the surface of the wing whereas the flow at the upper edge of the 
boundary layer may be directed toward the plane of symmetry as much as 
100 • In many investigations of wings having sweep angles greater than 
350 , surface tufts have indicated outflow much in excess of 250 . The 
development, growth, and separation of a turbulent boundary layer, com
plex in two-dimensional flow, becomes even more complex when sweep is 
introduced. 

The variations of pitching moment with lift to be obtained when the 
tip separation is present are indicated in figure 3. The data indicate 
the extent to which the wing will become longitudinally unstable at the 
stall if the sweep angle is increased whereas all other parameters are 
held constant. Further increases in sweep angle for this particular 
wing would result in unstable tendencies at progressively lower values 
of lift coefficient. 

LEADING-EDGE SEPARATION 

When sweep is incorporated in a wing, the airfoil sections of which 
exhibit a pronounced leading-edge-separation bubble, a conical vortex 
lying on the wing surface can be observed (ref. 71). The existence of 
such a vortex flow is not limited to only those wings incorporating air
foil sections which exhibit a separation bubble but its presence on them 
is more easily predicted. For example, if the induced camber effect on 
a swept wing is great enough it may cause an airfoil section which in 
two-dimensional flow stalls from the trailing edge to stall from the 
leading edge. The results may be that a leading-edge-separation bubble 
necessary to the formation of the vortex flow is developed. The span
wise extent of the localized leading-edge vortex due to the induced 
camber over the tip sections probably depends most directly on the values 
of leading-edge radii involved. The influence of leading-edge radius on 
the formation of a leading-edge-vortex flow of sufficient strength to 
affect materially the aerodynamic characteristics of swept wings will be 
discussed subsequently. 

The leading-edge-vortex flow results from both the leading-edge 
separation bubble and the spanwise pressure gradient introduced by sweep 
and has been observed to be conical in cross section perpendicular to 
the leading edge with the diameter of the cone increasing in the tip 
direction. This shape arises from the fact that at the tip sections the 
vortex contains an accumulation of the dead air that has drained from the 
more inboard sections. Probe studies made on the DM-l glider modified to 
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provide a sharp leading edge indicateo the presence of a vortex lying 
on the wing surface (ref. 91); however, the pressure-dis tribution tests 
on a 480 sweptback wing of aspect ratio 3.5 and incorporating circular
arc a irfoil sections (ref. 71) seem to be the first to illustrate the 
mechanics of this type of separation. The results of this investigation 
have been schematically illustrated in figure 4. The presence of the 
vortex flow reduces the leading-edge pressures but a t the same time 
broadens the regions of high chordwise loading and causes rearward shifts 
in center of pressure. Although the section lift characteristics pre
sented in figure 4 do not indicate a strong influence of the vortex flow 
at the outermost station, pressure-distribution data of reference 71 show 
it to exist. It is probable that the concentration of boundary- layer air 
over the rear part of the tip sections separates early and hence tends to 
nullify the effects of the vortex f l ow so that the resulting lift is low 
but fairly linear to the stall for this section. With an increase in 
angle of attack, the vortex becomes stronger over the more inboard 
stations and the boundary-layer concentration is swept off as the vortex 
is shed from the wing . The result is that these stations experience an 
increase in lift-curve slope as indicated by the data of the O.60b/2 sta
tion. With further increase in angle of attack the vortex moves inboard 
along the trailing edge and leaves more of the tip sections in a diffused 
region of vortex flow whereas the inboard sections are experiencing an 
increase in lift- curve slope because of the increased strength of the 
vortex flow. 

These changes in lift characteristics brought about by the vortex 
flow produce rather severe changes in the pitching- moment characteristics 
through the lift range . As can be seen in figure 4, the initial dip in 
the pitching-moment curve occurs when the vortex has formed with appreci 
able strength over the outboard sections. The vortex moves inboard along 
the trailing edge with an increase in angle of attack, thus the tip sec
tions are in a diffused region of vortex flow and their lift- curve slopes 
are decreased. At the same time the inboard sections are experiencing 
an increa se in lift- curve slope. The changes in span loading associated 
with these effects cause a destabilizing pitching-moment variation through 
the moderate lift range. At maximum lift it is possible that the vortex 
has moved inboard sufficiently to cause a rearward shift in the centers 
of pressure, and hence a stable pitching- moment break at maximum lift is 
obtained or that the stable pitching moment merely results from the tend
ency of the wing to assume the pitChing- moment coefficient for the 
stalled flat-plate plan form for this wing. 

Although a sharp leading-edge wing is an extreme case used to illus-

-. 

trate the mechanics of vortex flow, recent pressure-distribution tests • 
on a wing of NACA 64AOo6 series ai r foil sections (ref. 92) permits the 
same analysis. 
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The sweep angle at which vortex flow assumes a contributing role 
appears to be related to the leading- edge r adius of the airfoil sections 
employed. (It is necessary at this point to state that the lift coef
ficient at which the vortex flow is initially formed is also a variable 
to be considered. Of immediate concern, however, is the rather broad 
grouping of those wings which are subject to the influences of vortex 
flow and those wings which are not, and lift considerations will be 
dealt with subsequently . ) The leading-edge radius decreases rapidly 
with airfoil thickness; hence, the thinner the wing, the lower the sweep 
angle at which the vortex flow is observed. Figure 5 has been prepared 
from admittedly meager data, but it does indicate regions influenced by 
vortex flow and not influenced by vortex flow. Although additional data 
could have been used in the preparation of this figure, they were not 
used because probe studies were lacking or there was a doubt as to 
whether or not the two- dimensional section would exhibit a separation 
bubble. It should be pointed out that two values of leading-edge radius 
are shown for several of the wings used to establish this boundary. In 
such cases, the wings were not constructed with their theoretical air
foil sections parallel to the air stream. The smaller leading-edge 
radius shown in figure 5 for each of these wings was obtained by multi 
plying the normal radius of the theoretical section by the cosine of the 
angle through which the airfoil sections were rotated. This result is 
believed to give a fair approximation of the streamwise radius. 

Inasmuch as leading- edge separation is dependent on Reynolds number 
(ref . 93), the vortex flow that results when sweep is introduced is also 
dependent on Reynolds number. For example, in figure 6 the variations in 
inflection lift coefficient with Reynolds number are presented for two 
500 sweptback wings having aspect ratios approximately 2.9. One wing 
incorporates circular- arc airfoil sections, and the other incorporates 
NACA 641-112 airfoil sections. The inflection lift coefficients were 

found to be concurrent with a vortex flow lying along the leading edge 
and of such a size as to be visible in probe studies. Actually, the 
probe studies gave the impression of a rather SUdden formation of the 
leading-edge vortex concurrent with the inflection in lift-curve slope, 
but it is probable that the formation grows over a finite lift range to 
a size great enough to influence the section lift characteristics. The 
results indicate that, whereas the inflection lift of the wing of 
circular-arc airfoil sections is not influenced by variation in Reynolds 
number, the inflection lift for the wing incorporating the NACA 641-112 

airfoil sections is greatly affected. This result implies that the 
boundary of vortex flow illustrated in figure 5 for data at approximately 

6.0 X 106 Reynolds number would probably have a lower slope for data at 
higher test Reynolds number and a higher slope for data at lower test 
Reynolds numbers. 
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It has been indicated that the presence of the vortex flow pro
duces undesirable pitching- moment characteristics. This must be quali
fied , however, as indicated by the data presented in figures 7 and 8. 
Figure 7 shows the influence of sweep on the pitching-moment character
istics of a wing the airfoil sections of which exhibit a separation 
bubble in t wo-dimensional flow and which at 300 sweep would be expected 
to have a spanwise pressure gradient suffiCiently strong to result in 
vortex flow . The data presented in f igure 7 show that the effects of 
vortex f low are benefi cial with rega rd to both the maximum lift and 
pitching-moment characteris t ics at a sweep angle of 300 • Figure 8 shows 
the influence of aspect r atio on the pitching- moment characteristics of 
a wing which exhibits leading- edge vortex flow. The data presented in 
figure 9 indicate that vortex flow can be used to improve the longi
tudinal t rim and maximum lift of the delta type of wing. 

MIXED SEPARATION 

Although those wings which fall far to either side of the boundary 
defined in figure 5 are definitely characterized either by trailing-edge 
separat ion or by leadi ng-edge separat ion, the stability characteristics 
of wings, the geometric characteristics of which place them in the 
vicinity of the boundary conditions of figure 5, will be influenced by 
both types of separation. For example , vortex flow was observed on a 
470 sweptback wing of aspect ratio 5 . 1 and incorporat ing round leading
edge airfoil sections (re f . 72) at a CL of 0.35 for the test Reynolds 

number of 1.1 X 106 (fig. 10) . The increase in stability at this value 
of lift coefficient is, as previously discussed, obtained when the vortex 
flow is present over the tip sections. When the Reynolds number was 

increased to 6 . 0 x 106, the formation of the vortex flow was delayed to 
higher lift coefficients and separation of flow over the tip sections 
produced the unstable break in pitching moment noted at a CL of 0.85. 

The vortex flow did form over the inboard sections at higher lift coef
ficients , as indicated by the probe studies, and pr obably contributed 
to the l a rge positive moments measured in the vicinity of CL . In max 
this particular case, then, Reynolds number great ly influences the type 
of separation obtained. Figure 11 has been prepared to show schemati
cally how the lift coefficients at which l eading-edge vortex flow and 
tip separation become contributing factor s to the variations of pitching
moment coefficient with lift coefficient obtained at various Reynolds 
numbers . The force data ava ilable in re ference 72 and unpublished probe 
studies have been utilized in the preparation of figure 11. The probe 
studies were limited by physical conditions to a maximum Reynolds number 

of 3. 5 X 106 and, hence, it is not possible to state whether the vortex 

.' 
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flow would have been totally eliminated in the Reynolds number range of 
the force tests. It is important to realize that any data obtained on 
thin round-nose airfoils ( fig. 5) at low Reynolds number or, in fact, 
at any Reynolds number below the flight value can be very misleading or 
at least should be interpreted in terms of the Reynolds number effect 
just described, as to the stability changes through the lift range. 

ROUGHNESS 

Although present-day standards for fabricating the leading edges 
of high-speed aircraft approach those for wind-tunnel models in a smooth 
condition, it is necessary to consider the adverse effects of roughness 
on the types of flow separation just discussed . The degree of roughness 
currently employed in wind-tunnel roughness tests is entirely too severe 
to be representative of that found on production aircraft, but it may be 
that the aerodynamic changes are indicative of those to be obtained with 
a lesser degree of roughness. In any case, experimental studies are 
required to determine the effects of various degrees of roughness on 
swept wings. 

From the limited data available on tests of swept wings with rough
ness, it appears that on wings exhibiting trailing-edge separation rough
ness eliminates the beneficial effects to be obtained by an increase in 
Reynolds number. In the case of a ALE = 420 wing having an aspect 

ratio of 4 and incorporating NACA 641-112 airfoil sections (ref. 94) the 

stall progression for the smooth wing at the lowest Reynolds number 

(1.7 x 106) and the progression for the rough wing at Reynolds numbers up 

to the highest (9.5 x 106) were very similar . This similarity was also 
borne out by the force data. 

When roughness was applied to a wing having Ac/4 = 500 , an aspect 

ratio of 2.9, incorporating NACA 641- 112 airfoil section, and exhibiting 

a leading-edge vortex flow when in a smooth condition, the inflection 
lift coefficient remained approximately constant through the Reynolds 
number range tested (ref. 73) . Although probe studies were not made 
when roughness was te sted on the leading edge, the similarity of the 
pitching-moment characteristics with those obtained on the smooth wing 
indicates that the leading- edge vortex was present and was due entirely 
to the effects of the roughness. It is interesting that from these data 
it can be conjectured that a region of laminar boundary layer exists on 
the rough wing which separates and reattaches in order to form the core 
of the leading-edge vortex. In order to illustrate the magnitude of the 
roughness effects on the inflection lift coefficient the results pre
sented in reference 73 are reproduced in figure 6. 
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LON G I T U DIN A L S TAB I LIT Y 

GEOMETRIC CONSIDERATIONS 

Separation on swept wings initially occurs over the tip sections 
and is a result of leading-edge separation, trailing-edge separation, or 
a combination of leading- and trailing-edge separation. Tip stalling 
could obviously result in a loss in lift behind the moment center of 
such a magnitude as to cause a nose-up or unstable pitching-moment vari
ation . The compilation work of Shortal and Maggin (ref. 10) showed that 
whether or not instability would be obtained on a wing of given sweep 
depended primarily on aspect ratio (see INTRODUCTION). Although this 
empirical study did not differentitate between the types of flow sepa
ration encountered on swept wings, the stability boundary constructed 
does provide a general classification of the stability of any particular 
wingj however, inadequacies were to be found. 

In order to provide, at least a qualitative explanation for this 
stability boundary a re-evaluation of the data presented in reference 10, 
together with an evaluation of more current data, has been made (fig. 12). 
It was found that the stability boundary as presented in reference 10 was 
quite adequate for wings having t aper ratios of 1.0, or nearly 1.0 but was 
inadequate for wings having very small taper ratios (see, for example , 
the pointed wing data presented in fig. 12). In an effort to correlate 
this additional effect of taper, it was found that the geometric ratio 
of the area rearward of the 0.25c' to the total wing area could be used 
as a single stability criterion in place of the three parameters sweep, 
aspect ratio, and taper ratio. If this area ratio exceeds 0.69 the wing 
is in the stable region and if it is less than 0.69 the wing is in the 
unstable region. In figure 12 are shown two stability boundaries based 
on this criterion, one for a taper ratio of 1.0 and one for a taper ratio 
of O. The first curve agrees very well with that from reference 10 except 
in the low-sweep range where the experimental data upon which the stabil
ity boundary is based are meager (fig. 12); whereas the second curve, 
which lies above that of reference 10, provides considerably improved 
agreement with the experimental data for wings with taper ratio of O. 

The spanwise distributions of lift coefficient obtained for families 
of wings having taper ratios of 1.0 and 0 and which are defined by this 
area-ratio value of 0.69 (corresponding to the two stability boundaries 
in fig. 12) have been presented in figure 13. The spanwise loadings for 
the family of wings of different sweep but having taper ratios of 1.0 are 
somewhat more similar than for the family of wings having taper ratios 
of zero. 

• 

• 
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The outward shift in the stability boundary for the family of wings: 
having taper ratios of ° indicates that an unbalance of the moment areas 
is the more important factor with regard to stability than the occurrence 
and severity of the tip stall. Inasmuch as the tip sections of highly 
tapered wings operate at higher values of lift coefficients relative to 
the root sections than those on untapered wings, separation occurs 
earlier and thus, the tip-stalling tendencies are more severe on the 
tapered wings. If the severity of the tip stall were of primary concern 
therefore the boundary might be expected to be displaced toward the left. 

STALL CONTROL 

The study of the flow characteristics on sweptback wings makes 
possible a rational approach to the problem of stall control. The delay 
or prevention of flow separation over the trailing edge 'or leading edge 
of a wing may utilize a device attached to or built into the wing or may 
be embodied in the aerodynamic design of the wing itself. In the fol
lowing discussion each approach will be considered separately. Such a 
procedure necessarily results in some duplication because in many appli
cations two or more possible solutions are employed in an attempt to 
obtain the desired pitching-moment characteristics. 

Some remarks pertinent to the attainment of adequate stall control 
on wings exhibiting the types of flow separation previously discussed are 
considered. For example, in the case of a wing having trailing-edge 
separation, it is necessary to prevent trailing-edge flow separation 
over the t ip sections until lift has been lost forward of the moment 
center. In the case of leading-edge separation extending across the 
entire leading edge, a full-span device would be required for its elimi
nation. Obviously, such control would merely create a wing then subject 
to trailing-edge separation at the tip sections and which, in turn, would 
require further control in order to provide satisfactory stability. It 
will be shown later, however, that instead of completely eliminating the 
vortex flow, a simpler and more direct approach would be to direct or 
diffuse the vortex off the tip sections in such a way as to obtain linear 
pitching-moment characteristics . 

Devices 

Fences or vanes.- Data on fences and vanes are presented in table 7, 
20, 21, 22, 26, 27, 30, 34, 35, and 39 from references 14, 19, 27, 34, 
36, 39, 47, 51, and 13. Additional information, obtained for the most 
part at low Reynolds numbers, is contained in references 95, 96, 97, 79, 
and 98. 

---~ ---.- ------- ------
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Preliminar y cons iderations of stall contr ol for either type of flow 
s epa r ation di scussed s ugges t pl acing a r estri ct i on on the outflow of the 
bounda r y- l ayer air on sweptback wings . A fence (vane) can be used to 
provide a physical boundary to the outflow of boundary- laye r air . Thus , 
in t he case of t r ailing- edge s eparat i on the boundar y- layer build- up over 
the t i p sect i ons would be eliminated and hence these sections would not 
stall prematur ely . When leadi ng- edge separ ation is present , the fence 
would be r equired to redirect or to diffuse the leading- edge vortex at 
a spanwise station such that linear moment characteristics are obtained . 

For the fence to be effective in controlling trailing- edge sepa
r ation, the spanwise accumulation of boundary- layer air is shed off the 
wing at t he locat i on of the fence at a rate sufficient to prevent the 
accumulated boundar y layer from spilling over the fence in the spanwise 
directi on . I n some instal lations employing fences of reasonable height , 
it might be necessary to employ several fences in order to pr event the 
boundary- ~ayer build- up over the tip section. Another condition that 
would necessita te the use of a multiple- fence arrangement would be that 
in which the a spect r atio is so gr eat that the distance outboard of a 
single fence ( size not a limiting factor ) is sufficient to allow anot her 
accumulation of boundary- layer ai r to occur at the tip sections . Fr om 
t he literature it is appar ent t hat the fence should be located over the 
rear part of the chord i n order to be effective in controlling trai ling
edge separ ation . J ust h ow fa r fo rward t he fence should extend cannot be 
stated, but it appears f r om avai l able experimental da ta that in order to 
delay the instability to maximum lift the fence should extend to about 
the 5- percent- chord point . Al though restr icti ons to the outflow of the 
boundary- layer air can materially i mprove the pitching- moment charac
teristics through the lift range , the induced downwash effects are still 
such tha t separation occurs fi r st over the tip portions of the wing which 
exhibits trailing- edge separation and, if t he wing plan form is such as 
t o place it above the boundary of figur e 12, an unstable pitching- moment 
break at maximum li f t is obtained . 

For the fence to be effecti ve in controlling the effects of leading- -
edge separation, i t is apparent that the fence must be located over the 
forward part of the chord. Act ually experience has shown that the fence 
should extend a r ound the leading edge to the lower surface . It appea r s 
tha t the size should be large enough to contain the leading- edge vortex, 
but as t here a r e no data ava ilable on the size of such vortices it is 
not possible t o state the size requi r ements fo r s uch a fence . One 
investiga tion ha s been made at low Reynolds numbers to determine t he 
minimum size of fence requi r ed to give the maximum increase in stabi l ity 
for a wing which without fences was sta ble through the stall (ref . 95) . 
These da t a might be applicable as a guide to the s i ze required on an 
uns table wing a t high Reynolds numbers . 

• 
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Inasmuch as the fence has no appreciable effe ct on the spanwise 
variation of induced downwash and must) in most applications) be of 
small height) it serves only as a delaying device for the instability . 
Exceptions have been found where besides delaying the onset of insta
bility) fences have actually caused stable pitching- moment breaks at 
maximum lift. In one case the application of a leading- edge stall
control device to a swept wing reduced a condition of severe instability 
to one of marginal instability which was eliminated by the further addi 
tion of a fence (ref. 51). In another case) a wing- fuselage-tai l combi 
nation exhibited instability through the high lift region. A recent 
analysis of these data offers the explanation that the instability was 
not chargeable to the pitching-moment characteristics of the wing but 
rather to the destabilizing effect of the horizontal tail in the down
wash field of the wing (effect of tail on the over- all stability will 
be discussed in a later section). It was found) however) that properly 
located fences on the wing could so alter the flow characteristics at 
the tail that the instability due to the tail was significantly reduced 
(ref. 95). 

There has been a question raised from time to time as to whether or 
not the improvements in stability obtained in wind-tunnel tests of wings 
with fences are to be realized at flight Reynolds numbers. It would 
appear that any empirical relationship between the influence of fences 
and the effects of variation in Reynolds number would involve the wing
thickness-ratio as a parameter. Thus, on thin wings whose leading-edge 
radii are such as to place them well below the boundary shown in fig
ure 5, large increases in Reynolds number would not eliminate the need 
for fences as determined from wind- tunnel tests. If the wing thickness 
(leading-edge radius) approaches or lies above the boundary of figure 5, 
increases in Reynolds number might necessitate a relocation to maintain 
their effectiveness and in some instances their need might be eliminated. 

The data presented in reference 39 show that fences can be used to 
control the boundary-layer outflow to such an extent that linear pitching
moment characteristics are obtained on a relatively high-aspect-ratio 
sweptback wing. As suggested in the previous paragraph, the required 
number and position of fences may be somewhat different at flight 
Reynolds numbers. The effects of several fence arrangements on the 
pitching-moment and section- lift characteristics of this wing are shown 
in figure 14 (refs. 39 and 69) . These results may appear optimistic in 
light of a similar investigation on a wing of the same sweep but having 
a lower aspect ratio (5.1) (ref. 47) where both single- and multiple
fence arrangements did not provide very significant improvements in the 
pitching-moment characteristics . In the.latter tests , however, leading
edge separation was present as evidenced by the fact that the leading
edge f ence (extended to the lower surface) caused an improvement in the 
pitching-moment characteristics that was not materially changed by an 
extension of the fences to the trailing edee. The data of reference 47 
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may point out that greater d i ffi cul ty i s to be expected in selecting the 
size , number , and position of fence s to control this type of separation . 

For illustrati ve purpose , the effects of fences on the pi tching
moment char a cteristi c s of several s,.eptback wings of various configu
r ations have been shown in f i gur e 15. 

The i nformation now available is not sufficient to allow for ade
quate p r ediction of t he opt i mum number, size, and location of fences fo r 
a ny given wing . In general , it appears that in each case an exploratory 
i nve s tigation is required to determine the optimum arrangement . The 
s kill and understandi ng of the investigator will undoubtedly be reflecteo_ 
i n the adequacy of the arrangement thus obtained. 

Nacelles and stores .- When the a irpl ane design is such that either 
the power plant , fuel , or car go must be l ocated external of the wing and 
fuselage, the bas i c requirement is that the location selected wi ll pro
v i de the minimum inter ference dr ag at high speeds . It is i nteresting, 
however, to conside r the possibility of positioning these external bodies 
so tha t they contribute an improvement to the low- speed longi tudinal 
stability of sweptback wings . 

The literature on external l y mounted bodies (for example, ref . 99) 
is lar ge l y concerned with specific configurations from the drag 
standpoint . 

In the development work on t he Boeing B- 47 airplane , some low- speed 
tests were made with the outboard and inboard nacelles in var ious posi
tions, and a summary of the r esults appears in reference 76. The 
improved pitching- moment characteristics obtained in this investigation 
are shown in figure 16. 

The low- speed considerations appear to indicate that the stabi lizing 
advantage to be derived f r om suitable pl acement of ext e rnal bodie s could 
and should receive the attention of the designer. 

Extensible leading- edge flaps . - Data on extensible leading- edge 
flaps are presented in t ables 6, 7, 9, 20 to 23, 26, 27, 31, 35, 39 , 40, 
45 to 47, from references 13, 19, 27, 34, 36, 39, 47, 51, 18, 21, 29 , 31, 
32, 33, 35, 37, 38, 43, 44, 45, 48, 49 , 53, 54, 59, 63, and 64. Addi 
tional informat ion is contained in references 100 to 102. 

One dev ice which has been used successfully to delay flow separation 
at the tip sections until lift has been lost further inboard is the 
extensible leading- edge flap . This f l ap is patterned after the t ype 
suggested by Krueger ( ref . 100) to i mprove the maximum- lift charact er
istics of high-speed profiles. The difficulties of fabricating and 
installing an extensible leading- edge f l ap on an airplane have never 

• 
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been surmounted so that slats are generally employed and the extensible 
leading-edge flap remains a wind- tunnel tool . Inasmuch as the slat and 
flap may be considered to provide essentially similar relief to tip 
stalling (see fig. 17) the ability to circumvent detailed slat-positioning 
studies by using flaps, however, has allowed a greater scope to be covered 
in wind-tunnel work on sweptback wings than would have been possible 
employing slats. The extensible leading- edge flap is generally a partial
span device with the outboard end located in the vicinity of the wing tip . 
The extension in chord reduces the spanwise flow tendency by partially 
unstaggering the pressure distributions at the inboard end of the leading
edge flap. A vortex also is shed from the inboard end of the flap that 
is of such a rotation as to oppose the outflow of the boundary-layer air. 
The pressure discontinuity at the inboard end of the flap assists in pro
moting the initial separation inboard of the tip . The camber introduced 
by the leading-edge flap allows the tip sections to reach higher angles 
of attack before separation occurs. 

In general, in order to obtain the greatest improvement in the 
maximum lift characteristics while providing longitudinal stability at 
the stall, the inboard end of the leading-edge flap should be between 
O.4b/2 and O.6b/2 so that the initial separation occurs just forward of 
the moment center. If the wing is initially stable then greater gains 
in maximum lift may be obtained with greater spans of leading-edge 
flaps. 

Two factors which can cause appreciable changes in the optimum span 
just described are leading- edge vortex flow and the proximity of the wing 
geometric characteristics to the stability boundary of figure 12. In the 
case of leading-edge vortex flow, the optimum span is generally smaller 
than would otherwise be indicated for a wing exhibiting trailing-edge 
separation and having similar geometric characteristics (see, for example, 
ref. 13) and this reduction will be considered in greater detail in a 
subsequent section entitled HChord Extensions." For wings with aspect 
ratio and sweep angle that approach the boundary of figure 12, longer 
spans of leading-edge flaps may be used (see, for example, ref. 31). 

The influence of a fuselage on the longitudinal stability charac
teristics of a swept wing equipped with extensible leading-edge flaps 
has, for the most part, been negligible; however, a series of tests on 
a 420 sweptback wing of aspect ratio 4 (ref. 31) did show a reduction in 
the optimum span of extensible leading-edge flap when a fuselage was 
present. 

It has been found that trailing-edge flaps may affect the optimum 
span of the leading-edge flap, but of more significance is the fact that 
they can alter the successful application of extensible leading-edge 
flaps. For example, the results obtained in an investigation of a 
470 sweptback wing of aspect ratio 5.1 have been summarized in figure 18 
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to show the influence of both type and span of trailing- edge flaps on 
the longitudinal stability obtained with extensible leading- edge flaps . 
Trailing- edge flaps having spans in excess of 0.57b/2 for the split 
type and 0.45b/2 for the double-slotted t ype nullified the stabilizing 
effectiveness of the extensible leading-edge flap. It is interesting 
that a greate r improvement in stability was obtained when double-slotted 
flaps of 0.40b/2 and leading- edge flaps were used in combination than 
when just the leading- edge flaps were used. Again, the conditions just 
described perhaps depend on t he relative pos i tion of the geometric char
acteristics of the wing to the stability boundary of· figure 12. For 
example, on a 420 swept back wing of aspect rati o 4.0 (reI·. 35), full
span split flaps did not produce any detrimental effect on the longi
tudinal stability characteristics obtained wi th extensible leading-edge 
flaps . 

One modi ficat ion to extensible leading- edge flaps that is suggested 
from time to time is to taper the flap so that the maximum chord is at 
the tip . The r esults that have been obtained (ref. 31) show the t apered 
leading- edge flap to be ineffective . It is believed that the main reason 
for the ineffectiveness of the tapered leading-edge flap is that it does 
not provide the discontinuity in plan f orm with the associated pressure 
discontinuity and flap- tip vortex necessary to promote initial separation 
inboard and ahead of the moment center. 

The available experimental data appear to indicate t hat the exten
sible leading-edge flap can provide an appreciable but definitely limited 
shift in the stability 'au .-la ry of figure 12. Figure 19 hq, s been pre
pared f rom experimental data to show the manner in wh i ch sta ll con~rols 
displace the stability boundary of figure 12. Also included in figure 19 
is an indication of the adJ itional displacement of tre stability boundary 
when fences are used in conjunction wlth extensible leading-edge .laps. 
ActUally no differentiation is made in this figure t'or the tJ-pe<"' or flow 
separa. tion on swept 'Hings lnasmuch as it appears that only the span of 
the device will be affected by the type of fl ow separation. 

Limitations must be attached to the boundaries shown . p fi g lre 19 
which arise from the fact that sweep and aspect ratio a y nvL the only 
variables . The data indicated by t he symbols ( fig. 19) are for wings 
which have taper ratios greater than 0.4, and a comparison of the bound
ary established with t hese data with that indicated in f i gure 12 for 
wings which have taper ratios of 0 indicates that extreme taper has 
a ccomplished the same shift in stability boundary . Thu~> ~ener i zation 
of the effect iveness of extensible leading-edge flaps in displa( ~g the 
boundary shown in figure 19 with the data present ly ava Ha ole is dll 
very much conject ure but probably on the conservative Side. 

There are only limited low-speed data available on the air loads on 
extensible leading- edge flaps (refs . 34 and 103) . 

- - -.-- - ---- - - J 
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Extensible leading- edge slats .- Data on extensible leading-edge 
slats are presented in t ables 7, 20 , and 23 from references 19, 27, 29, 
and 3S. Additional information is contained in r eferences 95 and 104 
to 107. 

As previously stated, the slat provides essentially the same relief 
or alleviation of flow separation over the outer part of the wing as 
does the leading-edge flap (see, for example, fig . 17). It is rational 
to believe that the effects of span and spanwise position are very 
similar to corresponding effects noted for leading-edge flaps. The 
shift in stability boundary due to leading-edge flaps presented in fig
ure 19 is then presumed to apply equally well to slats. 

The available positioning studies of slats on sweptback wings are 
limited (German work reported in ref . lOS and the work reported in 
refs. 109 and 110). It appears from the specific investigations avail
able that slats were designed and positioned on the basis of two
dimensional data with a few "rules of thumb" considered. If the results 
obtained in an investigation corr elating two- dimensional with three
dimensional single- slotted flap positions (ref. 111) can be considered 
indicative of the correlation to be obtained by the use of slats, it 
appears that current design practices need not be assisted by detailed 
positioning studies. This is somewhat substantiated by the fact that 
the slat designed from two-dimensiona l data for a wing of ~/4 = 350 

and a spect ratio of 6 . 0 was cons i dered to have fulfilled its design 
purpose (ref. 27). 

Droop nose.- Data on droop- nose flaps are presented in tables 7, 9, 
10, 13, 14, 20, 22, 30, 35, 40, 42, and 45 from references 14, 19, 27, 
36, 47, 21, 53, 59, 15, 22, 23, 46, and 56. 

The droop nose differ s in one very important aspect from either the 
extensible leading- edge flap or slat . There is no extension in chord; 
hence the vortex shed from t he inboard end of the droop nose is weaker 
and less effective (for example, the vortex may have a rotation such as 
to promote outflow) in providing a barrier to the outflow of boundary
layer air over the rearward por tions of the wing. For this reason, it 
would not be expected that the droop nose would be as effective a stabi
lizing device on sweptback wings as either the flap or slat. The experi
mental results presented in figure 17 show that such is the case. It 
should be pointed out, however, that these results merely imply that the 
shift in the stability boundary would be less for the droop nose than 
either the flap or slat, and, therefore, for wings only marginally 
unstable, the droop nose may be as effective as the leading-edge flap. 
Indications are that in some cases the use of fences with droop nose 
may provide adequate control . 
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Boundary-layer control.- Data on boundary-layer control are pre
sented in tables 4, 32, and 33 from references 44, 45, and 16. Addi
tional information is contained in references 92 and 112 to 115. 

It has been known for a considerable time t hat flow separation can 
be delayed by either adding energy to the low-energy boundary-layer air 
or removing the boundary layer. Numerous two-dimensional tests have 
shown that the power expenditure is less when the boundary layer is 
removed (suction) than when energy is added (blowing). In the case of 
boundary-layer removal, the air is drawn off through either a slot or 
permeable surface. 

Most experimental data have been obtained on wings which exhibit 
leading- edge separation. These experimental data have shown the most 
favorable slot location from flow-separation considerations to be very 
close to the leading edge, in fact , just rearward of the pressure peak 
on the wing. Experimentally, this location is difficult to obtain; 
therefore the slot is usually located so as to include the minimum pres
sure. With the slot located in the immediate vicinity of the minimum 
pressure on the wing a very low pressure is required in the plenum 
chamber in order to induce an inflow into the slot. Actually, a rather 
large chordwise pressure gradient exists across the slot such that when 
the minimum pressure is held an excess in differential pressure occurs 
over the rear part of the slot. The power requirements and rates of 
flow therefore are relatively high. The results presented in refer-
ence 44 (fig. 20) indicate that, as in the case of slats or flaps, 
desirable longitudinal stability characteristics are dependent on the 
span over which control is exercised; that is, the initial separation 
should occur at the inboard end of the slot just forward of the moment 
center. Some attempt has been made to control leading-edge separation 
by means of several short chordwise suction slots located along the 
leading edge, outboard of the 0.56-semispan station (ref. 112). The 
wing had 630 sweepback of the leading edge, an aspect ratio of 3.5, a 
taper ratio of 0.25, an NACA 64A006 airfoil section in a streamwise 
direction, no twist, no camber, no dihedral, and zero wing-fuselage 
incidence. The separation was delayed to some extent, as indicated by 
the fact that the lift coeffic ient at whi ch the pitching moment broke 
in the unstable direction increased from 0.41 to 0.68. Reference 112 
mentions that control inboard could probably have caused a further delay. 
Although this may be true, it should be pointed out that experimental 
data with extensible leading-edge flaps would indicate that the increased 
linear moment range would be accompanied by an increase in the severity 
of the unstable pitching-moment break. 

Because the wings on which boundary-layer control has been tried 
have exhibited leading-edge separation, the effectiveness of suction 
slots located more rearward on the chord in order to control trailing
edge separation may not be defined clearly by the data presented in 
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reference 45. It is stil l to be shown whether spanwise or chordwise 
slots would be more effective in delaying the build- up of low-energy 
air over the rear por tions of the tip secti ons . The low-scale data 
presented in reference 113 for a Ac/4 = 36 . 40 swept wing of aspect 
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ratio 5.85 and incorporating approximately 16.5- per cent-thick airfoil 
sections indicated that a chordwise gap is very effective in the control 
of flow separation over the tip sections. The impr ovement in longi 
tudinal stability obtained with the chordwise gap was r emarkable inas
much as the spanwise location seems to have been a r bitrarily chosen. 

As in the case of suction slots, the leading- edge separation has 
dictated that area suction (porous material) be applied very close to 
the leading edge . The work described in reference 92 was done with the 
idea of delaying separation over the entire wing and hence the configura
tion does not represent an opti mum one from stabili ty considerations if 
it is assumed that the span of por ous suction is as critical a stability 
factor as in the case of leading- edge slats or flaps. The sweep angle 
(Ac/4 = 610 ) and aspect ratio (3 . 5) of the test wing of reference 92 a r e 

such that desirable longitudinal stability would not be expected from 
the use of the stall- contr ol devices consider ed so far (fig. 19), 
although a combination of stall- control devices such as extensible 
leading-edge flaps and fences may provide the desi r ed results. Some 
recent data obtained on the wing described in refe r ence 115 indicated 
that of the chordwise extent of por ous suction cons idered (1, 2, and 
3 percent of the chord) the results obtained with a chordwise extent of 
1 percent were most favorable from longitudinal- stability considerations . 
These results, it should be emphasized, were obtained in an attempt to 
control leading-edge separation and hence are not too applicable to the 
control of trailing- edge separati on. 

It is not possible at presen t to compar e experimentally the suction 
slot with the porous area suction of e qual cove r age because the dra g and 
power evaluations of both a r e not available j howeve r , theory indicates 
t hat porous area suction shoul d r equi r e less powe r t han slot suction. 
From low-speed considerations it appears that for acceptable pitchi ng
moment characteristics the advantages of one over t he other will be 
decided more from power and structural considerati ons than from ae r o
dynamic considerations . 

From the material available at this time , it appears the boundary
layer control may be as effective aerodynamically i n p r oviding de s irable 
pitching-moment character ist i cs as the extensible l eading- edge slat and 
flap and subject to somewhat the same limitat i ons . 

Chord extensions.- Data on chord extens ions f r om reference 52 a re 
presented in tables 39 and 40 . 
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As previously discussed under the section entitled "Fences" the 
problem of obtaining satisfactory longitudinal stability when the 
leading-edge vortex flow is present may not necessarily require a change 
in the effective camber of the tip sections of the wing but may rather 
be a matter of diffusing the vortex flow. In this regard, the results 
obtained by a mere extension of the local chord over the outer portion 
of two highly sweptback wings are very promising (ref. 52). In fig-
ure 21 are presented the pitching- moment variations with lift for two 
Ac/4 ~ 500 wings equipped with extensible leading- edge flaps and chord 

extensions. In the case of the wing which incorporates circular-arc 
airfoil sections, both the extensible leading-edge flap and the chord 
extension improved the longitudinal stability characteristics of the 
wing alone to about the same degree. In the case of the wing incorpo
rating NACA 64-series airfoil sections, the extensible leading-edge flap 
was somewhat better than either a sharp- nose or round-nose chord exten
sion . The differences in pitching moment between the round and sharp 
leading- edge chord extensions i ndicate that nose shape of the chord 
extension is a significant geometric factor in the design of this device. 

The following discussion of the effects of chord extensions on the 
flow over swept wings and on the longitudinal stability of such wings is 
based on force-test results and on visual probe and surface tuft obser
vations of the flow over the wings described in reference 52, and on 
similar unpublished results from anothe r wing of different sweep angle 
and airfoil section that has been investigated in the Langley 300 MPH 
( - by lO-foot tunnel . More precise development of these concepts will 
probably require pressure-distribution studies. 

Chord extensions would be expected to have a beneficial effect on 
the pitching-moment characteristics of any sweptback wing because of the 
fact that, like an extensible leading-edge flap, the plan- form discon
tinuity at the inboard end of the chord extension gives rise to a vortex 
in the stream direction which tends to prevent the low-energy air from 
the inboard sections from influencing the boundary l ayer at the outboard 
sections. The angle- of-attack range through which this improvement in 
flow over the outboard sections is realized and the manner in which the 
pitChing-moment characteristics are improved seems to depend on the air
foil section employed in the wing and to some extent on the wing plan 
form. In the following discussion the flow phenomenon is discussed rela
tive to airfoil section although the influence of wing plan form is such 
that it may increase or decrease the relative importance of airfoil sec
tion for any given swept wing . 

In the case of a swept wing with a sharp leading edge, leading-edge 
separation occurs at very low lift coefficients. I n fact the leading
edge separation vortex arising from leading- edge separation is quite 
strong at lift coefficients very much lower than those at which trailing
edge separation would be expected on a wing of the same plan form but 
incorporating airfoil sections of large leading- edge radius. The action 
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of the chord-extension vortex is such as to alter the direction of the 
leading-edge vortex emanating from the inboard sections of the wing and 
its direction of rotation is such as to oppose the rotation of the 
inboard vortex. Although the diffusion of the two opposing vortexes 
causes them to lose their identity, probe studies indicate that, in con
trast to the case of the wing without chord extension where the spanwise 
drain of the low-energy boundary-layer air trails off at the wing tips, 
the chord-extension vortex causes the low-energy air from the inboard 
sections to trail off the wing at a spanwise station slightly outboard 
of the inboard end of the chord extension. The restriction of the 
inboard leading-edge vortex from the tip sections prevents them from 
experiencing the increase in lift and the attendant increase in stability 
between points A and B of the following sketch A. 

Chord-extension 

A B C D 

Sketch A 

Surface tufts have indicated an improvement in flow over the tip sections 
spanned by the chord extension through the lift-coefficient range from A 
to B. It should be pointed out that this improvement in flow results in 
a decrease in lift rather than the increase that is customarily obtained 
when flow conditions are improved. At lift coefficients only slightly 
greater than point B, surface tufts do not indicate any substantial dif
ferences in flow between the chord-extension on-and-off conditions. This 
result may arise either from the fact that the inboard leading-edge 
vortex is strong enough to break through the chord-extension vortex or 
that the secondary vortex observed to be present on the chord extension 
contributes to the general breakdown of flow at the outboard sections or 
from the combination of both effects. The secondary vortex on the chord 
extension has been observed to occur at approximately the same angle of 
attack as that at which the leading-edge vortex occurred on the basic 
wing. The strength and growth of the secondary vortex is probably 
similar to that occurring over a corresponding length of span at the 
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inboard end of the wing. It has a measurable influence on the pltching
moment characteristics in the lift runge between D and C. (Sec sketch A.) 
This was indicated by the data of figu re 21 where the O.25b/2 chord 
extensions provided slightly more negative pitching moments near maximum 
lift than when the outboard O.19b/2 of the chord extension was removed. 
(In some installations chord extensions having spans greater than O. 25b/2 
may be required and in such cases the secondary vortex may have an even 
stronger influence on the pitching- moment characteristics.) Inasmuch as 
there is an improvement in flow over the outboard sections through only 
a small lift range and the most positive pitching moment measured on the 
plain wing is almost attained with the chord extension on, it can only 
be concluded that the linearity in the variation of pitching-moment coef
ficient with lift coefficient arises from balancing arcas experiencing 
increases and decreases in lift. The stable break in the pitching-moment 
curve at maximum lift (see, for example, fig. 21) is explained by the 
fact that, in the stalled condition both with and without chord exten
sions, the wing has the pitching moment of a stalled flat plate of corre
sponding plan form. 

When chord extensions a re used on a swept wing the airfoil sections 
and sweep angle of which are such as to place the wing near the boundary 
for leading-edge separation (see, for example, fig. 5) the basic flow 
phenomenon appears to be somewhat different from that on the sharp 
leading-edge wing. The round leading edge of the wing delays leading
edge separation to lift coefficients very much higher than on sharp 
leading-edge wings with the result that the leading-edge vortex occurs 
at or only slightly prior to trailing-edge separation. Consequently, 
such wings do not exhibit a very marked stable dIp in the pitching-moment 
curve prior to the unstable break that results f rom tip stalling. (See 
sketch B.) 

Cm 

Chord-extension 
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It is not unlikely that, because the formation of the leading-edge sepa
ration bubble would tend to move the adverse pressure gradient rearward, 
trailing-edge separation and consequent breakdown of flow over the entire 
chord occurs at lower lift coefficients than it would on a similar wing 
having a larger leading-edge radius with no tendency for leading-edge 
separation. Thus, the chord extension diffuses and directs the inboard 
leading-edge vortex as in the case of the sharp leading-edge wing but 
of equal importance it also prevents the low-energy air that is flowing 
outboard along the trailing edge from influencing the flow over the tip 
sections and thereby delays trailing- edge separation on those sections. 
Thus, surface-tuft studies have indicated a marked improvement in flow 
over those sections spanned by the chord extension through the 11ft 
range denoted A to B in sketch B. The improvement in pitching- moment 
characteristics on such wings results primarily from the delay in sepa
ration over the tip part of the wings to higher angles of attack as 
would be deduced from unpublished data which indicate only a slight for
ward shift in aerodynamic center from that obtained in the low-lift range. 
(See sketch E.) At maximum lift the pitching-moment break for these 
experimental data was in the stable direction inasmuch as the pitching 
moment in the stalled condition was more negative than in the stall
controlled condition. In other cases, however, the pitching-moment break 
may be in an unstable direction inasmuch as the induced angle-of-attack 
distribution and airfoi l section characteristics are not greatly influ
enced by the addition of the chord extensions. A further improvement in 
the pitching-moment characteristics may be expected by providing droop 
in the chord extension in order to combine the beneficial effects of the 
chord-extension vortex and leading- edge camber in the same manner as 
does an extensible leading-edge flap. 

When a chord extension is applied to a wing which exhibits only 
trailing-edge separation, improvements in flow over the tip sections 
would still be expected inasmuch as the chord-extension vortex would 
tend to divert the outflow over the rear part of the wing that is 
emanating from the inboard sections. 

It should be realized that the most effective span of chord exten
sions is as critical as the most effective span of extensible leading
edge flap was shown to be. 

Variable sweep .- The information thus far presented emphasizes the 
problems encountered on an airplane using highly swept wings. A possible 
method of avoiding these problems is to provide an airplane with wings 
the sweep angle of which can be changed in flight so that a low sweep 
angle can be used when it is desired to fly at high lift coefficients 
and low speed. Some points of interest in connection with the design 
of such an airplane a re illustrated by the results of an investigation 
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at low Reynolds number and Mach number of a variable-sweep airplane • 
model (refs. 77 and 116). Figure 22 illustrates schematically the model 
used and the longitudinal stability characteristics. As the sweep angle 
is increased by rotating the wing panels about a pivot point in t he fuse -
lage, the wing center of pressure moves rearward and causes a large ~ 

increase in longitudinal stability. In order to overcome this, the wing-
panel pivot point must be allowed to trans late forward as the wings are 
rotated rearward. 

The data of figure 22 are, in all likelihood, subject to Reynolds 
number effects. It would be expected that at ALE = 230 the maximum 

lift of the wing would increase with an increase in Reynolds number and, 
because the strength of the leading-edge vortex flow (as indicated by 
the pitching-moment data) would diminish with an increase in Reynolds 
number, the maximum l ift of the wing at ALE = 63 0 may be less than the 

values shown. Thus, the variations in wing aerodynamic center due to 
variable sweep may a lso be different at flight values of Reynolds number. 

Contra flaps.- Data on contra flaps obtained from references 31 
and 32 are presented in table 21. The contra flap is a flap located on 
the outer part of the wing span in order to provide negative camber in 
the tip sections. The negative induced camber results in a download at 
t he tip sections in the low angle-of-attack range. The nose-up tendency 
due to the download at the tip sections decreases with increases in 
angle of attack and thereby provides a pitching-moment variation with 
lift coefficient that has a stable slope. At maximum lift, however, 
there must remain a nose-up tendency of such a magnitude that when wing 
stalling occurs the pitching-moment break will be in the stable direction. 

The results presented in references 31 and 32 were obtained by using 
upper-surface split flaps on the outer part of the wing as the cont ra 
flaps. The stability characteristics were quite satisfactory through the 
entire lift range; however, in these particular tests large losses in 
l ift and increases in drag accompanied the improvement in stability. 
Inasmuch as no attempt was made in these investigations to see if the 
adverse lift and drag effects could be minimized while maintaining the 
beneficial stability effects, the usefulness of the contra-flap principle 
has not been fully evaluated. 

Wing Geometry 

Camber and twist.- Data on camber and twist are presented in 
tables 18, 19, and 29 from references 26, 41, and 42. Additional infor
mation is contained in references 96, 79, and 78. Although most of the 
swept wings have incorporated some degree of camber or twist or both 
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camber and twist, the references listed are only those that provide 
comparisons with the uncambered and untwisted wings. 

Combinations of camber and twist have been commonly incorporated 
in unswept wings designed for relatively low-speed flight in order to 
obtain, among other things, satisfactory stalling characteristics. 
Recently, there have been advantages found in the use of camber and 
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twist at transonic flight speeds. Although the introduction of camber 
and twist in the amount required to provide the desired load distribution 
at high speed is also in the direction to improve the low-speed longi
tudinal stability characteristics, it must be remembered that from low
speed longitudinal stability considerations the optimum camber and twist 
will be that derived from low-speed design consideration. Hence, the 
data which have been obtained with wings designed to meet a given high
speed requirement are not necessarily indicative of optimum low-speed 
benefits to be derived from camber and twist . 

A study which involved only the effects of camber (constant camber 
changes over the span) indicated that except for the trim changes to be 
expected, the pitching-moment characteritics were not materially affected 
by camber (ref. 26). Somewhat comparable results were obtained in an 
investigation where the effects of increasing the leading-edge radius 
and adding forward camber were studied on a Ac/4 = 350 wing (ref. 84). 
In each of the previous references (refs. 26 and 84) there was no span
wise variation in camber, and the full low-speed advantages of camber 
may not have been utilized. 

The effects of camber and twist on the pitching-moment character
istics of two wings (refs. 79 and 78) are presented in figure 23. In 
both cases, the twist and camber were calculated to provide uniform 
loading at supersonic speeds and at design lift coefficients of 0.4 
and 0.5 for the Ac/4 = 450 and Ac/4 = 60 .80 wings, respectively. 

Actually, a compromise twist was used in the Ac/4 = 450 wing such that 

little resemblance remained between that desired for uniform loading and 
that tested. The compromise twist was in the direction to alleviate tip 
stall, and, as can be seen in figure 23, a small gain in the linear 
pitching-moment ran§e was obtained. The pitching-moment characteristics 
of the Ac/4 = 60.8 wing a re more irregular when twist and camber are 

introduced. It appears from the data available that additional work is 
required before camber and t wis t introduced to satisfy high-speed con
siderations can be evaluated in terms of improvements that will be 
produced in the low-speed stability characteristics of sweptback wings. 

Although camber and twist have not in the limited number of cases 
available solved the low-speed stability problems, they may result in 
the need for fewer and less complicated stall-control devices. A com
parison is shown in figure 24 of the pitching-moment characteristics 
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of wings with and without camber and twist and both with and without 
fences. The combination of fences and camber and twist provided rather 
acceptable pitching-moment characteristics whereas with either the 
fences or camber and twist a very large destabilizing shift in aero
dynamic center occurred at or prior to maximum lift. In the case of 
the Ac/4 = 60.80 wing of reference 79, leading-edge flaps and fences 
were used in order to improve the characteristics. The greatest improve
ment obtained by using these mechanical devices is illustrated by the 
results of figure 25. Unfortunately, these data are limited in lift 
range, and it is not possible to tell whether or not a stable break in 
pitching moment at maximum lift would be obtained for this configuration. 

Inverse taper.- The adverse effects of tip stall on sweptback wings 
can be avoided by causing the initial stall to occur over the inboard 
sections. Theoretical considerations would seem to indicate t hat 
inboard stall could be accomplished by means of inverse taper (ref. 117). 
If it were not for the effects of boundary-layer outflow, inverse taper 
would provide sweptback wings that were longitudinally stable well above 
the stability boundary of figure 12. Because of the boundary-layer out
flow, however, there is a possibility that premature tip stall would 
limit the usefulness of inverse taper as a means of alleviating the low
speed problems associated with sweptback wings of normal taper ratio. 
It should be mentioned, however, that fences should be more effective on 
wings having inverse taper than on wings of normal taper. The low-speed 
and low Reynolds number tests of a model which incorporated inverse taper 
(ref. 118) have indicated very satisfactory longitudinal stability char
acteristics. The sweep angle (Ac/4 = 37.50 ) and aspect ratio (3.0), how-

ever, were such that satisfactory stability would be expe cted for wings 
without inverse taper. 

Cranked win~s.- Data on cranked wings are presented in table 23 
from reference 3. Additional information is contained in references 119 
to 123. 

It has been suggested (ref. 120) that the low-speed longitudinal 
stability problems of sweptback wings can be reduced by using a wing plan 
form in which the sweep angle decreases toward the tip. The reduct ion 
can either be continuous (crescent-shaped plan form) or consist of 
several steps (cranked-shape plan form). There have been arguments that 
the plan-form discontinuities may have adverse effects on the maximum 
lift characteristics; however, the low-speed data avai lable (see, fo r 
example, refs. 38 and 121) indicate that good or acceptable lift and 
pitching-moment characteristics can be obta ined. The high-speed drag 
characteristics therefore dictate its usefulness. The proponents of the 
cranked-wing concept contend that the equivalent sweptback wing has a 
leading-edge sweep angle equal to that of the inboard s ections of the 
cranked wing on the basis that the detrimental compress ibility effects 
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tend to occur first near the root sections. That the root sections are 
the more important in determining the critical Mach number is in agree
ment with the "crest line" concept defined in reference 124. The only 
comparison between a swept back and cranked wing made on the basis of 
equal inboard sweep angles is presented in reference 121. Although the 
scope of these tests is relatively meager, the results were definitely 
promising as regards the use of a cranked wing up to a Mach number 
of 0.84. Two factors which tend to obscure the comparison made are 
(1) the thickness of the sweptback wing was 12 percent and that of the 
cranked wing was 10 percent. These thicknesses are in the range where 
a 2-percent reduction in thickness may be expected to produce rather a 
significant delay in the drag rise. (2) The sweep angle (inboard sweep 
angle 360 ) may be so low that the favorable effect at the test speeds 
might not exist at the higher transonic and low supersonic speeds where 
the decreased sweep of the outboard portions of the cranked wing may 
effect a measurable drag penalty. A further consideration in the com
parison of a cranked wing with a sweptback wing is the effect a body may 
have on the critical nature of the inboard sections. From low-speed 
pressure-distribution data, it appears that, with a body on, the "crest 
line" concept of reference 124 would indicate that the inboard sections 
are no longer as critical. 

The preceding discussion has been very speculative and somewhat 
discounts the favorable cranked- wing results presented in reference 121. 
Actually, the value of a cranked wing is recognizable at low speed and 
perhaps should receive a closer scrutiny at high speeds. 

Composite (A, M, and W) wings .- In the search for a wing plan form 
which would incorporate the benefi+'s to be derived from sweep and yet 
possess acceptable low-speed characteristics, the Germans investigated 
both the M and W plan forms (ref. 125). Recently work has been done on 
swept wings with the center sections filled in to form A wings . Sub
stantial improvements have been obtained at low speeds in the longi 
tudinal stability characteristics of these composite wings. Early swept
wing studies in this country (ref. 126) also established the low-speed 
advantages of the M and W plan forms . There was, however, an implication 
made in reference 125 that, when split flaps were deflected, there is no 
advantage in using an M wing instead of a sweptback wing. The high-speed 
considerations of the juncture drag to be associated with either the M or 
W plan form were instrumental in shelving these plan forms before any 
extensive amount of low-speed work had been done . Recently, it has been 
found that such plan forms may not exhibit the aerodynamic-center shift 
resulting from twist due to bending, which is an unfavorable character
istic of sweptback wings in the transonic speed r ange . At present, tran
sonic tests are needed to see if the drag penalties of M and W plan forms 
are compensated by their structural advantages . 
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HORIZONTAL TAIL 

A horizontal tail is usually employed to obtain damping and control 
in pitch and a desired static margin. In its conventional location it 
is subject to the flow field created by the wing-body combination. 
Whether or not the horizontal tail affects the stability of the combi
nation, other than by the static margin it provides, depends on the 
manner in which the characteristics of the flow field in which the tail , 
operates vary with angle of attack. In the case of straight wings, the 
flow separation which could cause nonlinear variations of the flow with 
angle of attack is restricted to a small angle-of-attack range prior to 
maximum lift. Inasmuch as straight wings are, in general, quite stable 
through maximum lift, any nonlinear flow characteristics due to flow 
separation and of such a nature as to cause the horizontal tail to be 
destabilizing are not too detrimental. Thus, in straight-wing airplanes 
the problem is largely to design a tail (geometry and location) that 
will be capable of trimming the airplane throughout the flight lift 
range. Body effects may cause the tail location to become a major design 
problem and this condition has been shown to be particularly true in 
the case of straight, low-aspect-ratio wings employing sharp ~eading-edge 
airfoil sections. In contrast to straight wings, sweptback wings exhibit 
flow separation at lift coefficients well below maximum lift and, in many 
cases, sweptback wings are either unstable or possess only marginal 
stability through maximum lift. In such cases any destabilizing tenden
cies of the tail resulting from nonlinearities in the flow character
istics may not be tolerable. 

As early as 1946 (for example, ref. 10) it had been illustrated 
that a horizontal tail located behind a stable sweptback wing could 
result in a wing-tail combination that was unstable through maximum 
lift. A considerable amount of low-speed work has been done, therefore, 
in order to determine the most suitable location for a horizontal tail 
behind a sweptback wing. Data on such work are presented in the tables 
from references 13, 19, 36, 51, 29, 49, 54, and 23. Additional infor
mation is contained in references 127, 80, 81, and 128. 

The results of the low-speed tests indicate that, whereas in 
certain locations the horizontal tail may be detrimental, there are 
locations at which the horizontal tail may measurably improve the longi
tudinal stability characteristics over those of the wing alone. In 
order to avoid the adverse effects and to obtain the beneficial effects 
that a horizontal tail is capable of providing, the following general 
rule can be stated: The location of the horizontal tail should be such 
that it is emerging from the wake through the nonlinear lift range of 
the wing (to be discussed later). This rule means that for very short 
tail lengths the tail will lie below the chord plane extended, and for 
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very long tail lengths the tail will lie somewhat above the chord plane 
extended. 

In cases where the airplane configuration exhibits a high degree 
of stability in the maximum lift range, it may be desirable from trim 
and control considerations to locate the tail such that it will have a 
slight destabilizing influence. Other factors such as ground clearance, 
high-speed wake buffeting, and structural considerations may dictate a 
compromise location for the tail. It is necessary, then, to consider 
separately the effectiveness of the horizontal tail operating in the 
flow field behind sweptback wings and the over-all stability character
istics of the sweptback wing-tail combinations. 

Effectiveness 

The variations of horizontal-tail effectiveness with angle of attack 
for several sweptback wing- tail combinations are presented in figure 26. 
The horizontal-tail effectiveness parameter T is a measure of the 
influence of the tail and includes the influence of both the wing and 
fuselage on the downwash and dynamic pressure at the tail plane. A 
derivation of the formula for T can be found in reference 54 and the 
resulting expression is given as 

T = -J~(l _ dE) + "t d(~~ tq da da J 
so that 

da VT ( CL ) 
cxt isolated 

Inasmuch as (CT. ) and V (tail volume) are constant for any 
-'-'Clt isolated 

particular tail and tail location , the variations of 
attack reflect any changes in the linearity of CIDt 

T with angle of 
with angle of 

attack. A minus value of T signifies that the tail is providing a 
stabilizing contribution . 

Data which are representative of the tail effectiveness to be 
obtained behind sweptback wings are presented in figure 26. Sufficient 

I 

J 
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systematic data to permit the construction of comprehensive design 
charts however were not available . The influence of tail location on 
the effectiveness of the tail can be seen by the manner in which T 

varies in the high-lift range for the two tail locations considered 
(fig. 26). Whereas T for the tail in the high position decreases and 
actually becomes destabilizing in the high-lift range, T for the tail 
in the low position remains essentially constant and in certain cases 
becomes increa singly negative. A comparison of the data on parts (a) 
and (b) of figure 26 indicates that the relative tail effectiveness is 
somewhat improved when flow separation is prevented by extensible 
leading- edge flaps although the effect is rather slight. In some other 
available data (ref. 95) the effect is somewhat more pronounced . 

The survey data available behind sweptback wings have been used to 
illustrate in figure 27 the rate of change of wake location with angle 
of attack as a function of sweep angle. These data indicate that the 
wake moves up at a greater rate with respect to the chord plane extended 
as the sweep angle is increased . It should be pointed out that the data 
presented in figure 27 represent, in general, slopes obtained through an 
angle-of-attack range from 00 to 160 ; however, the trends illustrated in 
figure 26 appear to follow to even high angles of attack . The signifi
cance of these wake movements with relation to the downwash field t hrougr.. 
which a particular tail will pass is illustrated in figure 28. The tail 
loca ted in the high position lies well above the wake center through the 
entire angle-of-attack range and, as can be seen in the accompanying plot 
of downwash against angle of attack, experiences an increasing rate of 
change of downwash with angle of attack throughout the greater portion 
of the angle- of-attack range. The tail located in the medium position 
lies above, but relatively close, to the wake center in the high angle
of- attack range. The increasing rate of change of downwash with angle 
of a ttack is less pronounced than that obtained in the high position. 
When the tail is located in the low position, it lies below the wake 
center and experiences a decreasing rate of change of downwash with 
angle of attack as the angle of attack is increased. Although the 
movement of the wake with respect to any fixed tail location seems to 
define the rolling up of the vortex sheet with respect to the variations 
of de/da obta ined, another effect which is very significant in the 
present discussion should be noted . An inspection of figure 28 shows 
that the downwash becomes progressively more unsymmetrical about the 
wake center as the angle of attack is increased. The unsymmetrical 
nature of the downwash field arises from the rolling up of the vortex 
sheet and, to some extent, from the inflow tendencies in the vicinity 
of the wake. Both of these phenomena are described in reference 129 as 
they pertain to straight wings. An additional effect which might be 
expected to contribute to the nonlinearity of the downwash characteristics 
in the high-lift range is the inward displacement of the tip vortices as 
stalling occur s at the tip sections of the sweptback wing. Actually the 
experimental data available seem to indicate that the effect of the inward 
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displacement of the tip vortices is at least partially compensated for 
by the accompanying reduction in wing lift. This result is somewhat 
verified by the fact that, when extensible leading-edge flaps are used 
to prevent flow separation over the tip sections of a sweptback wing, 
the variations of downwash with angle of attack obtained are strikingly 
similar to those obtained on the plain wing. 

The effects just described can be recapitulated as follows: the 
rolling up of the vortex sheet (as indicated by the upward movement of 
the wake) and the inflow tendencies into the wake are both factors con
tributing to an increasing value of d€/da for tails located above the 
wake center and to a decreasing value of d€/da for tails located below 
the wake center. It has been shown that the effect of the displaced 
downwash field (indicated by wake movement) is accentuated by sweep. 
The influence of sweep on the rolling up of the vortex sheet has not 
been extensively studied experimentally. Inflow tendencies into the 
wake would not be expected to be affected greatly by sweep, but even 
this fact has not been established experimentally. It should be 
pointed out that the influence of the wake on the downwash and not 
the absolute values of dynamic-pressure ratios in the wake is the 
significant factor to consider in low-speed tail design considerations. 

Wing-Fuselage-Tail Combinations 

A rational tail location is inherently dependent on the stability 
requirements imposed on the tail by the wing-fuselage combination. Thus, 
for a wing-fuselage combination exhibiting neutral stability throughout 
the lift range, a tail located in a field of constant d€/da can pro
vide an adequate and constant static margin (see case I, fig. 29). For 
a wing-fuselage combination exhibiting an abrupt decrease in stability 
through some part of the lift range, it would be advantageous to have 
the tail so located that d€/da decreased abruptly at the same lift 
coefficient at which the decrease in stability occurred for the wing
fuselage combination (see case II, fig. 29). The linearity in the 
stability characteristics of the complete configuration would, of course, 
be dependent on the degree of instability compensated for by the decrease 
in d€/da. A third condition can be considered in which the wing
fuselage combination exhibits an abrupt increase in stability through 
the lift range of such a magnitude as to be undesirable. A tail located 
SO as to experience an abrupt increase in d€/da at the corresponding 
lift coefficient could conceivably provide linear stability character
istics for the complete configuration (see case III, fig. 29). Although 
the term "abrupt" has been used in these illustrations, any gradual 
changes in the stability characteristics of the wing-fuselage combina
tion would necessitate gradual changes in d€/da at the tail. Further, 
the absolute values of dynamic-pressure ratios occurring in the wake 
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inasmuch as they only 
therefore, only of 
Also ignored is the 

term 

o qt 
q 

at -oa (see equation in section entitled "Effectiveness") which 

under certain conditions can have a measurable effect on the tail con
tribution to the over- all stability. For the tail-on tests available 
at this time, however, conditions of large ~ when entering or leaving 

the wake have not been encountered. 

Condition I of figure 29 represents straight wings and those swept 
wings on the stable side of the stability boundary of figure 12. 
Case II of figure 29 is the typical condition encountered with swept 
wings, and the unstable break in pitching moment may occur at or prior 
to maximum lift depending on the combination of sweep and aspect ratio 
employed. The experimental data available indicated (see fig. 28) that 
a tail located so as to emerge from the wake in the high-lift range will 
provide the greatest improvement in the nonlinear pitching-moment char
acteristics of the wing- fuselage combination. In general, it is hardly 
to be expected that a tail position can be found such that the nonline
arities of the tail will exactly compensate for the nonlinearities of 
the wing-fuselage combination. In this regard, air-stream surveys of 
the downwash and wake characteristics are extremely useful in locating 
the tail position at which the maximum improvement in the nonlinearities 
of the wing-fuselage combination can be obtained. For example, air
stream surveys were utilized in reference 33 to show tha t an inverted 
vee tail could be used to obtain linear pitching-moment characteristics 
for a wing-fuselage-tail combination in which the wing had A c/4 = 40°, 
an aspect ratio of 4.0, and a taper ratio of 0.625. 

In many sweptback-wing cases, the degree of instability is so great 
that even if the full lift capabilities of the tail could be used, an 
undesirable amount of instability would remain . Also, if nearly the 
full lift capabilities of the tail are employed in overcoming the unde
sirable pitching- moment characteristics of the wing- fuselage combination 
the problem of adequate control becomes paramount . These two conditions 
necessitate the use of stall- control devices on sweptback wings. When 
such devices are effective in correcting the deficiencies of the wing
fuselage combination, the use of the maximum effectiveness of the hori 
zontal tail may result in a complete configuration that has such a large 
degree of static margin as to be undesirable (case III, fig . 29). 
Because of configurations such as t hese an optimum tail location cannot 
be defined without attaching numerous qua lifying statements for it is 
quite obvious t hat the use of stall- con~rol devices reduces the tail 
requirements for satisfactory stability and hence allows a wide range of 
useful tail locations. 

---.----
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L 1FT 

PLAIN WING 

Lift- Curve Slope 

There are available at present a number of rapid methods for pre
dicting the lift-curve slopes of swept wings (refs. 11, 75, 83, and 82) 
which do not require extensive calculations of the load distribution in 
order to obtain the required parameters . Figure 30 has been prepared 
to show the relationship between the various methods when they are 
applied to the same set of wings . Considerable scatter around the line 
of perfect correlation exists , except perhaps for the method of refer
ence 11. The amount of data presented does not suffice, however, to 
indicate a definite conclusion. 

The methods available for calculating the span-load distributions 
of sweptback wings (refs . 130 to 133 and 68) provide values of lift
curve slopes from induced angle-of-attack distributions that have been 
more rigorously obtained than in the preceding rapid methods. The 
simplest method of reference 130 has been used to provide the tabulated 
results presented in reference 75. A comparison has been made in refer
ence 133 of the variations of lift- curve slope with aspect ratio obtained 
from several of the more rigorous methods. Although all the methods 
effectively converge below aspect ratio of 3.0, above this value of 
aspect ratio the differences among the solutions obtained by the differ
ent methods become progressively greater. It is argued in reference 133 
tha t the differences arise to a large extent from the manner in which 
the plan-forro discontinuity at the plane of symmetry is handled in the 
calculations. Both references 133 and 68 propose means for the special 
handling of the root discontinuity; however, experimental verification 
of the various concepts is not yet available. Calculations have been 
made and compared with experimental data for a wing of aspect ratio 8 
and Ac/4 = 450 and indicate that the special handling of the root dis
continuity as proposed in reference 111 is of minor significance 
(ref. 134); however, it is necessary to point out that the root dis
continuity may be significant for wings of lower aspect ratio. In this 
particular comparison (ref . 134) even those methods which most closely 
predicted the load distributions underestimated the experimental lift
curve slope. The reason advanced for this underprediction, however, was 
that the effect of wing thickness on the section lift-curve slope had 
not been accounted for and not that the method of calculation was 
inadequate. 
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Maximum Lift 

Simple sweep theory (ref. 3) would indicate that the lift coef
ficient for separ ation, and hence the maximum lift coefficient of an 
infinite wing, will vary approximately as cos 2A This simple rule, as 
it is generally known, has not been found to be consistent with the 
experimental maximum lift coefficients of finite-span wings (ref. 135). 
The maximum lift coefficient is not only a function of sweep but, as 
will be shown in the following discussion, it is also dependent on the 
type of flow separation involved. As shown in figure 5, the type of 
flow separation is in turn dependent on the sweep angle, the leading
edge radius, and Reynolds number. 

Type of flow separation.- The manner in which flow separation may 
occur on sweptback wings has been previously discussed under the section 
on "Flow Considerations" and was shown to exert a controlling influence 
on the longitudinal stability characteristics. As in the case of the 
longitudinal stability characteristics, the type of flow separation that 
prevails also plays a significant role in the maximum lift character
istics. Hence, any attempt to establish an empirical rule to predict 
the maximum lift coefficient that is based on a correlation of experi
mental data must necessarily take into account the type of flow sepa-

ration . Figure 31 has been prepared to show the variations of 
C Lmax 

CT_ 11::=0 
.umax 

with sweep angle for the cases of wings with and without leading-edge 
separation. In the case of trailing- edge separation (no leading-edge 
vortex present) there is a reduction in maximum lift coefficient through
out the sweep rangej however, the reduction is somewhat less than that 

predicted by the cos 2A curve. This variance with simple sweep theory 
has been explained by the phenomena which occur at the tips and at the .' 
plane of symmetry on a finite-span wing. Experimental investigations on 
swept wings (for example, refs. 69, 136, and 137) have shown that the 
root sections do not exhibit leading-edge pressure peaks. In addition, 
the spanwise pressure gradients are such as to cause an outward drain of 
the boundary layer from the root sections. The combined influence of 
these two effects is such as to make the root sections of swept wings 
highly resistant to flow separation and therefore capable of developing 
local lift coefficients of such large magnitude as to more than compen-
sate for the lift losses that occur when the tip sections of the wing 
stall. The high lift potential of the root sections combined with the 
secondary rise in lift of the tip sections that often occurs after they 
have initially experienced flow separation generally allows the sweptback 
wing to experience a maximum lift coefficient in excess of the value to 
be expected on the basis of simple sweep' theory. The upper curve in 
figure 31 applies to wings having circular-arc airfoil sections. Wings 
of this section represent an extreme case of leading-edge vortex flow 

I 
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and a re quite unaffected by Reynolds number variations up to approxi

mately 10 X 106. The appreciable increases in maximum lift coefficient 
wi th an increase in sweep angle indicate that the strength of the vortex 
is increased by an increase in sweep angle . 

The experimental curves shown in figure 31 define the band in which 
the maximum lift coefficient of any particular wing may fall. Experi
mental data were available to determine the maximum lift at zero sweep 
for the sharp-leading- edge airfoils, but estimates in the case of the 
round-leading-edge airfoils had to be used. It is recognized, of course, 
that at a given Reynolds number any particular airfoil section may not 
develop leading-edge vortex flow until moderate angles of sweep are 
reached; hence, the variation of maximum lift coefficient with sweep 
angle for such a wing may follow the lower curve and then gradually 
bend upward and approach the upper curve. 

The ratios shown in figure 31 do not in themselves completely 
illustrate the effects of sweep (as defined by flow separation) on the 
maximum lift coefficient . An attempt was made in figure 32 to collect 
the values of maximum lift coefficient that have been obtained on 
uncambered and untwisted wings. As can be seen, there is a scarcity of 
data for wing thicknesses much in excess of 6 percent. Actually, most 
sweptback wings on which data are available have incorporated various 
degrees of camber and would not, if presented on this figure, correlate. 
At best, figure 32 illustrates that whereas the ratios of maximum lift 
coefficient of figure 31 are diverging with increasing sweep angle, the 
corresponding absolute values are converging. 

Influence of camb~r .- Although it was found when figure 32 was 
prepared that the available maximum-lift-coefficient data were, in most 
cases, obtained with wings incorporating airfoil sections of some degree 
of camber, very little information was found which could be used to 
isolate the effects of camber on the maximum lift of sweptback wings. 

Figure 33 has been prepared to present data on cambered or twisted 
wings or both cambered and twisted wings as well as comparable data on 
uncambered or untwisted wings or both uncambered and untwisted wings. 
It is significant that camber measurably improved the maximum lift coef
ficients over that of the comparable uncambered wings. It has been 
indicated in reference 26 that the improvements due to camber on the 
Ac/4 = 350

, A = 5.14 and 10.07 wings can be estimated from two-

dimensional data. 

Reynolds number and Mach number effects.- An important consider
ation in any discussion of maximum lift coefficients on straight wings 
(see, for example, re fe rence 138) is the interrelated effects of Mach 
number (as low as 0.15) and Reynolds number on maximum lift coefficients 
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at very low speeds. Methods for the quantitative prediction of these 
interrelated effects have not been developed so that data such as that 
presented in reference 138 can serve as a guide in estimating the 
maximum lift coefficient of straight wings only. As far as sweptback 
wings are concerned, the literature is very meager, even qualitatively. 
In figure 33, there are two values of maximum lift coefficient given for 
the A c/4 = 350 , A = 10 . wing incorporating NACA 651A012 airfoil sections 

at a Reynolds number of 6.0 X 106 . The Mach numbers were 0.14 and 0.25 
for the higher and lower values of maximum lift coefficient, respec
tively. The difference illustrates that, whereas simple sweep theory 
indicates a reduction in the local Mach numbers at the leading edge and 
thus minimizes the Mach number effect shown to exist at low speeds on 
straight wings, significant differences in the experimental value of 
maximum lift coefficient can be obtained when the relationships of Mach 
number with Reynolds number are changed such as by changing the wing 
size or altitude. Thus, the data presented in figure 33 for the first 
three wings were obtained at a constant Mach number and therefore show 
the effects of Reynolds number at this value of Mach number. For any 
other value of Mach number or for the condition where the Mach number 
increases as the Reynolds number is increased, the comparison between 
the cambered and uncambered wings may be different. It appears there
fore that any correlation of the maximum lift coefficient of swept wings 
that is founded only on the basis of comparable Reynolds number may be 
fortuitous. 

Effect of aspect ratio.- The effect of aspect ratiO, as determined 
from tests of a family of wings having Ac/4 = 450 and 6-percent-thick 

airfoil sections and three familes of wings of Ac/4 = 350 and 12-

percent-thick airfoil sections, are shown in figure 34. The 6-percent
thick wings are representative of those wings that experience leading
edge sepa ration. Over the range covered, the effects of variation in 
aspect ratio are small, as would be expected from knowledge of straight
wing characteristics. It is interesting, however, that the rate of 
change of maximum lift coefficient with aspect ratio is opposite in sign 
to that for straight wings. Presumably, with increasing aspect ratio, 
it approaches the value for the infinite swept wing, which is of t he 
order of cos 2A times the two-dimensional value. (The cosine rule is 
theoretically exact only if the phenomenon considered involves purely 
laminar flow, and it is not exact when applied to maximum lift, which 
is extensively involved with turbulent boundary-layer flows.) 

Inflection or Usable Lift Coefficient 

The terms "inflection" or "usable" lift coefficient have been com
monly used to define the lift coefficient of sweptback wings at which 
large undesirable shifts in aerodynamic center occur. Although the terms 
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inflection CL and usable CL were previously introduced as synonymous, 

it is desirable to put slightly different interpretations on the two 
terms. The term "inflection lift coefficient" has been used in the 
present discussion to define the lift coefficient at which there is a 
break in the pitching-moment curve without any consideration being given 
to the uncontrollability or undesirability of the shift, whereas "usable 
lift'f connotes a shift in aerodynamic center which could cause serious 
control design problems. In view of the fact that a horizontal tail can 
overcome a considerable amount of instability contributed by the wing
fuselage combination, the term usable lift coefficient in the present 
paper is still somewhat arbitary. This lift coefficient is probably of 
more significance with regard to the maximum flight lift coefficient 
than the absolute value of the maximum lift coefficient in that it 
represents the lift coefficient beyond which stall control is required. 

Available data have been compiled and used to indicate the vari
ations of the ratio of inflection lift to maximum lift coefficient with 
sweep angle for various aspect ratios (fig. 35). It has again been 
necessary to differentiate between wings which exhibit trailing-edge 
s~paration and wings which exhibit leading-edge'separation (leading-
edge vortex flow present). The data presented in figure 35(a) for wings 
having well-rounded leading edges (above vortex formation line of fig. 5) 
appeared to arrange themselves systematically. In figure 35(b), how
ever, some difficulty was encountered in systematizing the data for wings 
having sharp leading edges (wings incorporating circular-arc airfoils for 
the most part). It was found that on low-aspect-ratio wings subject to 
leading-edge vortex flow ( for example, A = 2, AC/ 4 = 450 , fig. 35(b)), 

a stable shift in aerodynamic center occurred at a relatively low value 
of lift coefficient which remained until the maximum lift coefficient 
was reached. For wings of somewhat greater aspect ratio (for example, 

A = 4, Ac/4 = 450 , fig . 35(b) ), the stable shift occurred at higher 

values of lift coefficient and was more pronounced than that observed at 
the lower aspect ratios. The stable shift also was closely followed by 
a pronounced unstable shift in aerodynamic center • 

The preceding discussion has considered representative moment 
curves in the immediate vicinity of 450 of sweep; and as both t he vortex 
strength and the relative area ratios (previously discussed in section 
entitled "Longitudinal Stability") change with increasing sweep angle, 
the discussion is not representative for wings having sweep back angles 
greater or less than 450 • A Ac/4 = 600 wing of aspect ratio 2.0 (ref. 86) 

therefore exhibits an unstable shift in aerodynamic center at a lift 
coefficient between the inflection and maximum lift coefficients that 
was not previously noted at Ac/4 = 450 for a wing of the same aspect 

ratio. 
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The data presented in figure 35( a ) rep r esent not only the inflec
tion lift coefficient but also the usable lift coefficient . The same 
cannot be said for figure 35( b) . The stable inflection obtained for an 
a spect r atio 2 . 0 wing of Ac / 4 = 450 cannot be considered as seriously 

limiting the usable range of lift coefficient at all. At Ac / 4 = 600 

and aspect ratio 2. 0, the stable inflection is again tolerable, but, as 
previously mentioned, an unstable shift occur s at a somewhat higher 
value of lift coefficient , which is of such a magnitude as to be very 
undesirable , and hence defines a usabl e - lift- coefficient range . It is 
quite interesting that the ratio of this lift coefficient to the maximum 
lift coefficient is approximately the same as the inflection lift ratio 
for the aspect-ratio- 4 . 0 wing having the same sweep angle . The inflec
t i on lift coefficient for the aspect-ratio- 4 . 0 wing is also characterized 
by a stable shift in aerodynamic center but , in this case , is of suffi
cient magnitude ( say in excess of an 8- per cent shift) to define also the 
usable- lift- coefficient range . For the case considered, the usable- lift
coefficient range is the same for wings of aspect ratio 2. 0 and aspect 
ratio 4 . 0 , although it is not defined by the inflection lift coefficient 
in both cases . 

The curves presented in figure 35 we r e obtained with wings having 
taper ratios somewhat greater than 0 . 5 . More data would be needed to 
make a similar analysis for delta wings . In general , de l ta wings that 
do not experience leading-edge vortex flow a r e subject to a gradual 
rearward shift in aerodynamic center that adds up to a very large shift 
between zero and maximum lift . The gradual nature of this rearward 
movement precludes the use of the term " inflection lift coeffi cient .1I 
When the leading edge i s sharp and the consequent leading- edge vortex 
forms , the rearward movement of the aerodynamic center i s a r rested in 
the v icinity of 0 . 5 maximum l i ft coefficient, and a zero or slightly 
forward shift in aerodynamic center is obtained between 0 . 5 and 1 . 0 
maximum lift coefficient . The point at which the rearward movement is 
arrested can be considered as an inflection lift coefficient . As the 
aspect ratio for othe r wings having zero tape r ratio approaches the 
stability boundary defined for such wings in figure 12, the forwa rd 
shift in aerodynamic center becomes more pronounced but still occurs in 
the vicinity of 0 . 5 maxi mum lift coefficient . It was found possible to 
obtain by a process of interpolation in figures 34 and 35 the inflec
tion lift coefficients of those wings having round- nose airfoils and 
moderate taper ratios but still subject to the formation of the leading
edge vortex flow. In order to estimate the inflection lift coefficient 
of such wings, a first - order approximation can be made as follows . Esti
mate the percentage of the radius defined by the boundary of figure 5 
and then use this percentage to interpolate between parts (a) and (b) 
of figure 35. For example , the Ac/4 = 500 wing of reference 43 incor-

por ates NACA 641- 112 airfoil sections perpendicular to the 0 . 272- chord 
line and is one of several for which such e s timates were made. From 
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• figure 5 the effective leading- edge radius can be estimated as approxi
mately 80 percent of the boundary radius . For the aspect ratio of 2.9, 
the ratios of inflection lift coefficient for the sharp-nose and round
nose conditions are estimated to be 0 . 25 and 0.80, respectively (fig. 35) . 
If 80 percent of the difference between 0 . 25 and 0 . 80 is added to the 
value of 0.25, the resulting ratio of inflection lift coefficient to 
maximum lift coefficient is 0 . 69 . The experimental value as determined 
from reference 30 is 0.67. The excellent agreement obtained is typical 
for the several cases tried; however, it is still felt that additional 
data are required for a more complete quantitative treatment. It must 
be emphasized that the boundary presented in figure 5 and the curves 
presented in figure 35(a) are subject to Reynolds number effects which 
must be considered when interpreting the present results. The analysis 

. presented, however, does have general application at both lower and 
higher values of Reynolds number . For example, the boundary of figure 5 
would be displaced upward with a reduction in Reynolds number and hence, 
in the case of the Ac/4 = 500 wing, its percentage of the boundary 

radius would be reduced . Also, somewhat lower values would be obtained 
in figure 35(a) such that the combination of the two changes would indi
cate a lower value of the ratio of inflection lift to maximum lift coef
ficient. Actually, the experimental data presented in reference 51 show 
such a reduction. 

The data so far presented and discussed concerning the inflection 
lift on swept wings were obtained on uncambered and untwisted wings. An 
empirical study of cambered and twisted wings would, however, require 
considerably more data than are presently available. As previously 
indicated, there are indications that the effects due to camber are a 
function of sweep and can be estimated from two- dimensional data 
(ref. 26). If such is the case then the effects of camber may possibly 
be additive to the results presented for the uncambered wings. 

Another approach to the general problem of predicting the 
inflection-lift coefficient of swept wings would be to develop a pro
cedure for using two-dimensional airfoil data to predict the three
dimensional characteristics of the wing . Reference 135 presents a first 
attempt at utilizing two-dimensional data to predict the inflection lift 
on swept wings. The comparisons presented in reference 135 show almost 
a consistent underprediction of the pitching-moment breaks obtained 
experimentally in three-dimensional flow. 

HIGH- LIFT AND STALL-CONTROL DEVICES 

An inspection of the data contained in the compiled tables shows 
tha t a considerable number of rather detailed investigations which 
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involved the use of high-lift and st.all-control devices have been 
reported. The data have not been systematic enough to provide a basis 
for generalized design charts . Such a conclusion may appear to be 
restating the same one brought forward in reference 139/in 1947 . 
Actually, however, these specific investigations now permit qualitative 
generalization unavailable at the time reference 139 was written which 
can be judiciously used in design work . 

Linear Lift Range 

Experience has shown that through the linear lift range, stall
control devices do not greatly influence the lift increments produced 
by a trailing-edge high-lift device. In an evaluation of the linear
lift effectiveness of trailing-edge flaps therefore data obtained both 
wi th and without leading-edge devices can be used. 

Figure 36 ha s been prepared to show the variations of linear lift 
effectiveness with sweep angle from the systematic data that are avail
a ble for wings equipped with split flaps . The linear lift effectiveness 
of the half- span split flaps decreases markedly as the sweep angle is 
increa sed . In the case of the wings that exhibit either leading-edge 
or trailing-edge separation, t he l inea r lift increment is closely pre
dicted by applying simpl e sweep concepts (fig. 36 ). In order t o indi
cate the influence sweep has on the linea r lift increment when the flap 
span is other than 0.5 span or the type is a double-slotted flap, the 
data of references 27 and 47 have been pr e sented in figure 37. Both of 
the wings us ed for illust ration in figure 37 exhibited t r a iling-edge 
separation. The comparison between the experimental and calculated 
curves indicates that in the case of split flaps the agreement is good, 
at least up to flap spans of 0.5 span. In either of the examples, how
ever, the linear lift increments obtained experimentally with double
slotted flaps exceed the calculated values for any span of flap. It 
should be pointed out that the ca l culated lift increment s due to flaps 
can be readily obtained by the method of refe r ence 140 which has become 
available since the publica tion ~f references 27 and 47. 

In any case, the loss in linear lift effectiveness in the moderate 
to high sweep-angle r ange is rather severe, and it is of interest to 
consider the effectiveness of a rea-increasing flaps. The data of refer
ences 13, 39, 32, 48, 53, and 59 indicate that incr eases in linear lift 
effectiveness approximately of the same order of magnitude as the per
cent of area increase can be obtained with partial-span extended spli t 
flaps (Zap ). The comparison made in re fe rence 48 between an extended 
flap having a rectangula r plan form a nd one of the same area but having 
a triangular plan form indicates that the increased effectiveness of the 
extended flaps is somewhat independent of the manner in whi ch the flap 
a rea is added . 

• 
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Figure 38 has been prepared to summarize the available data on the 
lift effectiveness of trailing-edge flaps measured at an angle of attack 
of 00 • The data a re presented for the configurations which provided 
acceptable pitching-moment characteristics through the lift range and 
also for the configurations which produced the greatest increments in 
maximum lift coefficient but did not possess acceptable pitching-moment 
characteristics through the lift range . The flap spans were greater 
for the configurations possessing undesirable pitching-moment character
istics but they a re not actually full-span devices. Where comparisons 
are available, it appears t hat the lift effectiveness at an angle of 
attack of 00 is not appreciably increased by sacrificing acceptable 
pitching-moment characteristics through the lift range. 

Maximum Li ft 

Trailing-edge flaps .- The influence of sweep on the maximum lift 
effectiveness of trailing- edge flaps is illustrated in figure 36. The 
data were obtained on two families of wings equipped with partial-span 
split flaps deflected 600 • It can be seen that at moderate sweep angles 
the flaps on the wings incorporating NACA 65AOo6 airfoil sections (pro
nounced leading-edge vortex flow) cause a negative increment of maximum 
lift coefficient . An attempt was made to analyze the data presented in 
figure 36 and other available data, either in terms of the maximum lift 
increment at Ac/4 = 00 or the linear lift increment previously dis-

cussed. No clear correlation could be found . For the two examples 
presented (fig. 36) the difference between the linear and maximum-lift 
increments for Ac/4 = 00 is approximately constant through the sweep 
range for the wings having NACA 230- series airfoil sections, whereas 
the corresponding difference is materially increased with an increase 
in sweep angle for the wings of NACA 65-series airfoil sections. 

The influence of a variation in flap span on the increment of 
maximum lift coefficient for t wo sweptback wings having both split and 
double-slotted flaps is shown in figu re 39 . The results shown are 
representative, although the reduced effectiveness of the full-span 
split flaps on the Ac/4 = 350 wing is quite extreme. 

The data available for sweptback wings equipped with slotted or 
extended flaps seem to indicate that these types of flaps maintain at 
maximum lift a superiority over split flaps of approximately the same 
magnitude previously indicated in the linear lift range. 

An investigation (ref . 111 ) on ALE = 470 wing-fuselage combi

nation shows the increments of maximum lift coefffcient contributed by 
a partial-span single-slotted flap to be relatively insensitive to 
precise flap slot geometry. If the increments, which are admittedly 
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small , are compared, however, on a percentage basis, they are found to 
be as sensitive to flap position as in the case of t wo- dimensional flow. 

Leading- edge stall- control devices. - Gr ouped under the heading of 
leading- edge stall- control devices are such things as leading- edge slats, 
extensible. leading- edge flaps , droop- nose flaps, chord extensions , and 
boundary- layer contr ol . Although the primary purpose of these devices 
is to control flow separation and hence to provide acceptable pitching
moment characteristics , it might also be expected that by controlling 
flow separation increases in maximum lift coefficient would be obtained. 
The gains in maximum lift coefficient obtained with the use of such 
devices are not large; however, in comparison to the effectiveness of 
trailing- edge split f l aps on moderately to highly swept wings, they a re 
significant . 

It has been shown in reference 47 that the optimum span for an 
extensible leading- edge flap from stability considerations is practically 
the optimum wjth regard to the effectiveness at maximum lift. Such a 
generalization is not, however, rigorously substantiated by t he data of 
references 27 and 39. The da ta presented in reference 43 indicate fur
ther that the smallest- chord, smallest- span, extensible leading- edge 
flaps which will provide longitudinal stabili t y over the entire lift 
range will also provide increases (small) in maximum lift coefficient 
of the same order of magnitude as those obtained with l a r ger-chord and 
larger- span extensible leading~edge f laps . 

Trailing- edge flaps in combination with leading- edge stall-control 
devices .- The individual effectiveness of both l eading- and trdiling
edge devices at maximum lift has been discussed. When these devices 
a re used in combination, the increments of maximum lift coefficient are 
not additive except in a few isolated cases as can be seen from an 
inspection of the data presented in the tables . 

Figure 40 has been prepared to show in a more graphic manner the 
incremental va lues of maximum lift coefficient that have been obtained 
through the use of both leading- and trailing-edge flaps on sweptback 
wings . Again as in figure 37, the configurations which possessed 
acceptable pitching-moment characteristics and those that did not but 
gave the greatest ilnprovement in maximum lift coefficient have been 
included. It is interesting to note that the extended split flaps 
compare favorably with the double-slotted flaps for the several cases 
available . 

----~-, 

.. 



7J NACA RM L52D16 

D RAG 

PLAIN WING 

Induced Drag 

The changes in spanwise lift distribution attributable to sweep 
necessarily produce corresponding changes in the drag due to lift 
(induced drag). Inasmuch as experimental data are unavailable, recourse 
has been made to calculations in order to show the influence of sweep 
on the induced drag (fig. 41). The calculations were made by the 
Weissinger method in which 15 spanwise control points were used in pref
erence to the more commonly used seven spanwise control points. (The 
loadings computed by the Weissinger method utilizing 15 spanwise control 
points which correspond to the drag values presented in fig. 41 are 
unpublished.) For wings having taper ratios of approximately 0.25, 
sweep has only a small effect on the induced drag for the aspect-ratio 
range covered. For taper ratios greater than 0.25, sweep has an adverse 
effect on the induced drag which is accentuated by an increase in either 
taper ratio or aspect ratio. For taper ratios less than 0.25, sweep has 
a beneficial effect on the induced drag. 

Profile Drag 

The minimum drag data available from a systematic investigation of 
a family of wings having aspect ratios of 4.0, t~per ratios of 0.6, and 
NACA 65A006 airfoil sections parallel to the plane of symmetry are pre
sented in figure 42. The drag scale has been enlarged from that used 
in reference 14 in order to show more clearly the effects of sweep. This 
enlarged scale appears to be consistent with the accuracy of data 
obtained by semispan testing. As would be expected, these data indicate 
that sweep has a negligible influence on the minimum drag, although there 
is a slight increase indicated between 450 and 600 of sweep. 

An indication of the effect of sweep on the variation of the pro
file drag with lift coefficient is given by the wake-drag measurements 
presented in reference 87. The results of reference 87 are presented 
in figure 43. It will be noted that the minimum wake drag is unaffec:;.ted 
by sweep, as previously indicated to be the case by the data of fig-
ure 42. There is, however, a measurable large increase in the wake drag 
for the swept airfoil as the lift is increased. In this particular com
parison, it should be pointed out that the wing thickness and leading
edge radius of the airfoil section taken parallel to the air stream are 
considerably less for the swept case than for the unswept case. These 
changes in geometry may have had a greater influence than the sweep in 
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increasing the rate of increase in wake ,drag with lift coefficient for 
the swept case over that obtained in t he unswept case . 

With regard to camber, it can be shown from geometrical consider
at ions t hat the design lift coefficient of a swept wing is considerably 
less than that corresponding to t he cambe r of the sections normal to a 
swept refe rence line and is even less than that corresponding to the 
camber of the sections taken in the stream direction . Figure 44 has 
been prepared to show the decrease in lift coefficient for minimum pro
file drag when the panels of an unswept wing employing ai r foil sections 
having a design lift coefficient of 0 . 2 are rotated such that the air
foil sections a re ali ned perpendicular to the 0. 286 chord line on t he 
swept wing . 

Span Efficiency 

The drag of a wing may be considered to be comprised of three 
parts : namely, the minimum profile drag, that part of the profi le drag 
which varies with lift coefficient , and the induced drag . Va ri ous 
investigators have compiled and analyzed experimental data on str a i ght 
wings fo r the purpose of deriving a generalized drag equation for use 
in performance calculations . In this country, t he commonly applied 
drag equation .in per formance calculations contains Oswald ' s efficiency 
factor e and the equation is written 

It can be seen that t he factor e is used to lump the variable part of 
t he profile drag and the percent deviation of the induced drag from that 
of t he elliptical wing into a single term. One can find in the lite r 
ature attempted corr elations of this factor with such parameters as 
aspect r atio and taper ratio ( for example , refe r ence 141) . More 
recently, attempts have been made to extend the ·correlations to include 
the effects of sweep (ref . 142) . Unfortunately, the lift range whe r e 
the parabolic drag variation is applicable is generally small and the 
scatter obtained in such correlations has been of such a magnitude as 
to limi t seriously the usefulness of the factor .e. A cursor y exami
nation of -t he scatter seems to indicate that leading- edge radiUS, thick
ness, and t hickne ss distribution are factors affecting e to the same 
degree as aspect ratio, taper ratio, and swe.ep angle. 

For the convenience of the reader who may find sufficient similari - ' 
ties bet ween one of the wings in the present paper and h~s particular 
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design, values of e and the lift coefficient to whi ch they are appli
cable have been presented in table 49. Only drag data which could be 
r eliably r ead have been used. 

HIGH-LIFT AND STALL-CONTROL DEVICES 

The drag increment attributable to trailing-edge flaps is, in 
general, reduced when sweep is incorporated in the wing. This fact is 
illustrated in figure 45, where the effective parasite drags of t wo 
types of trailing- edge flaps on a sweptback wing are compared with those 
obtained on an un swept wing. When a simple method is used to reduce the 
straight-wing data to that of the sweptback wing, the reduction due to 
sweep is approxi mately a function of t he cosine squared of the sweep 
angle . 

The reduction in profile drag and lift ~ffectiveness of trailing
edge flaps that occurs when sweep is employed means that the principal 
effect of sweep (indicated by applying simple sweep theory) is the 
change in the effective velocity component (V cos A). The relative 
drag-producing qualities a r e then in the same order on swept wings as 
on unswept wings in that spli t , double slotted, and slotted flaps are 
in a descending order of dra g increment. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va . 
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TABLE 1. - INDEX TO TABULATED DATA 

Table A LE A C/ 4 A A Airfoil Trailing- Edge Stal l-Control Fuae- Horizontal 
Section Device Devioe lage T .. n 

2 -43 .2 -45.0 4.00 0.60U NACA 65AOu6 Split n a p 

3 -41.3 -45.0 3.55 0 . 500 NACA 641A112 L.B. droop 

4 - 41 .:5 -45.0 3. 55 0 . 500 NACA 641A1l2 Split flap Bound ary - layer On 
c ontro l 

5 - 40.6 -45. 0 :5.12 0.:580 Root: HACA 0 015 Split fla p 
Tip : NACA 23009 

6 - 3 4 . 0 - 36 . 2 3. 9 4 0 . 62 5 Circular arc Spli t f l ap L . B. fla p On 

Split fl a p L.E. flap 
7 - 32 . 3 - 35.3 5.79 0 .389 NACA 64-210 Sing le - sl o tted flap L.E. slat On Cn 

Double- 81 0 tted flap L.E. droop 
Fence 

8 - 2 5.9 -30.0 4.69 0 .400 
Root: NACA 0015 Split nap 
Tip : NAGA 230 09 

L . E . flap 
9 0 0 3 . 40 1.00 Circular arc Split nap L.E. dro op 

Round L.E. 

10 0 0 4 . 00 1.00 C1rcular arc Plain flap L . E . dro op 

11 3.58 0 4.00 0 . 600 NACA 65A006 Split flap 

12 3.6 0 4.62 0.550 Root: IUCA 0015 Split flap 
Tip : NAC" 23009 

13 9.46 9 .0 4.00 0.500 Double wedge Plain flap L.E. d r oop On On 

14 10.46 5 . 28 2 . 50 0 . 625 Hexagonal h O.06 c Plain flap L.B . droop On On 

15 :52.47 28.4 5.91 0 . 280 RAY 34 Split flap 

16 32.6 30.0 4.00 0.600 NACA 65A006 Split flap 

17 33 . 4 30 . 0 4 . 84 0.440 
Root: NACA 0015 

Split flap Tip : NACA 23009 

NAGA 651A012 

18 36.25 35.0 5 .14 0.713 NACA 641A312 
NACA 641A612 

NACA 651A012 
19 36 . 25 35.0 10 .07 0 . 500 NA.CA 641A312 

NACA 641A612 

37.0 :55 . 0 6 . 00 0 . 500 NACA 641 - 212 Split fl a p L.E. flap 
20 Double-slotted flap L.E. slat 

L . E . droop 
Fence 

, 

J 
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TABLE 1. - INDEX TO TABULATED DATA - Continued 

Table -"u: -"0/4 
! " Airfoil Trailing-Edge Stall-Control Fuee - Hor1zontal 

Secti on Devic. Device lage Ta11 

L.B. flap 

21 42.0 40.0 4.01 0 . 625 NACA 641 -112 Split flap L.B . slat On On 

Fence 

22 42.0 40.0 3.94 0 .625 Circular arc 
L.B . !lap 

Split flap L.E. droop On lIn 
Fence 

23 45-20 • 4.12 0 .360 NAC! 64A009 Split !lap 
L. B. flap 
L.B. alat 

24 45.0 45 .0 4.00 1.00 . NAC'&' 65J.006 Split t'lap 

25 46 .2 45.0 6.00 0 .600 NACA 65A006 Split t'lap 

26 46.33 45.0 8.02 0.450 NACA 631A012 Split flap 
L.B. flap On On 
Fencea 

27 46.33 45.0 8.00 0.450 Cambered 63- 012 Split fl ap 
L.B. flap 
Fenc. 

28 46.55 45.0 5.00 0 .565 NAOJ. 6U010 On 
NACA 6U810 

29 46.6 45.0 6.00 0.500 NACA 6UOIO 
NAOJ. 64A810 

30 46.7 45. 0 4.00 0 .600 NACA 65A006 Split !la p 
L.B. droop 
Fence 

,1 47.5 45.0 3.40 0 . 510 NACA 641A112 Plain flap L.B. flap On 

,2 47.5 45.0 3.40 0.510 NAC'&' 64]. A112 Split flap Boundary-layer 
~ 

oontrol 

33 I 47.5 45.0 3.50 0.500 NACA 641A112 Split flap Boundary-layer 
control 

~ 

L.B. droop 

34 47.5 45.0 3.50 0.500 Circular arc Plain fl a p Round L.B. 
Fenc. 

Split flape L.B. flap 

35 47.7 45.0 5.10 0.383 NAOJ. 64-210 Single-Blotted flap L.B. droop iln On 
Double-slotted flap Fence 
Triangular !lap 

36 48.1 45.0 3.64 0.420 
Root: N!CA 0015 Split flap 
Tip I NACA 23009 

37 48.4 45.0 2 .00 0 .600 NACA 65A006 Split fl ap 

38 48.6 45.0 4.00 0.300 NACA 65A006 Split !lap 

L. B. flap 

39 52.0 50 .0 2.88 0.625 NACA 641-112 Split flap L.E. chord ext . On On 
Fence 

L.E. !lap 

40 52.0 50.2 2.84 0 .616 Circular arc Split flap L.B. droop On On 
L.B. ohord ext. 

• Variabl. 
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.. 

TABLE 1. - INDEX TO TABULATED DATA - Concluded 

Table ALE A A ~ Airfoil Tralling-Edge Stall-Control Fuae- Horizonta.l 
c/4 Section Device Device lag. Tail 

41 60.0 50.6 1.80 0 NACA 0015-64 Plain flap Sharp LB. On 

42 60.0 52.4 2.31 0 Circular arc Plain flap L.E . droop 

43 60.0 52.4 2.31 0 NACA 65-006 .5 Plain flap On 

44 60.9 60.0 4 . 00 0.600 IJACA 65A006 Split flap 

SJ<lit nape 
L.E. nap 

45 63.0 60.8 3.50 0.250. NACA 6U006 L.E. droop On 
Triangular flapa Sharp L.B. 

46 63.03 55 .7 2.04 0 Double wedge Skewed flap L.E. flap On Plain flap 

47 63.43 56.3 2.00 0 Double wedge Split flap L.E. flap 
Round L.E. 

I 48 63.43 56.3 2.00 0 NACA 0005 Plain flap 
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TABLE 2.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

.~. 

43 . 2° SWEPTFORWARD WING 

Ac/4 • .q5° • • ~.o ...... '.0 , 1061 
A 2 0.600 ~u • 0.20 

Atrfoll section. (pudlol to plane or sJllllllotr,1 

Rootl MACA 654006 

Tip: IfACA 6')4006 

0.99 26.0 

CL 

c. , } .4 'jl..l.6'.0 
o c::::::!:::J I I I 

' . 1 

!lono 1--+------------+--1--+---+-------+-----1 

.,00 
SnUt 
P'l.p 1.17 29.0 ?En 
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TABLE 3.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

Spin Span 
:.:. t.E. r T.E 
LlDTlce Device 
{b/21 {b/2} 

None None 

.;00 
L.E. Non. 
Droop 

L7t~ None 
Droop 

1.000 
L. E. None 
Droop 

. \00 
t\.Itb'd 

'. . ;00 None 
tnb'd 
OO~ 

~re None 
Hou 

~~ None 
!fon 

41. 3° SWEPl'FORWARD WING 

R." = 10 . 6 • 1061 
MIII4 " = O.lh 

,Urtol1 Section_ (perpendlculer to 0 . 250 chord l1ne) 

Root: NACA 6L
1 

A112 

Tip : HACA 6b1A1l2 

• = l·l\ 

Conrtgurlt.lon Reference 

1.011 28.0 4 .l' 

1.18 ~3·0 4 .04 }=-v I I 15 

1.21 31.0 4.66 ~II 15 

1.26 30.0 4.70 ~" 15 

1.24 31.0 4·l9 ~" 15 

1.14 31.0 , .26 r~111 15 

1.07 29.0 4.60 ~/I I I 15 

= 1.05 28.0 \ .00 ~'I I I 15 

, 
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TABLE 4.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

41 . 3° SWEPT FORWARD WING 

A,," =~,o , • ,." R~ = 10.6 . 10Gl 
A = 0.;00 IImu = 0 .14 

Airfo1l SeeLion. (pernenclcuhr to 0 . .. .,0 chol"d I1no) 

Root: NAt:A 641A112 

Tip : NM"" 64 1"112 

Spon Spen MOIMInt. 

r L.! . t '1' .£ Conflgurat1on 
Center 

n Cl,n. acLmu CQ 

~/i)' ~i~;· 
Locatlo em Char.eterisLlc, Reference 

Ie) 

o .4
CL

. 8 1.; lob C.O 

c==:=- ==--=:::XJ . 110 1.10 11·0 0 C~~ , 16 
.1 

Hone 

~S10t ~' 
I I 

.1 28 LI S 29·0 0.0121 16 

::XJ 
!fone 

p I I 

C .- ~ =::::0::::1 .2010 1.210 29·0 0 16 

.,,8 
Srll t 
P'-p 

t~ 
I , 

~Slot 
r- =-~:J 

.199 1.29 29·0 0 .ou8 16 

~ 
I , 

C ~ =::X:J .152 1.31 29.0 0 16 

None 

~Slot r '"=\ 
, 

.1 50 1.40 29·0 0.0125 16 

=::::0= :J 
1.'JOO 
L.E. 
Droop 

f~ 
I , 

( .?===\ ~:J . 215 1·19 29·0 0 16 

·5,e 
Spl1 
Plap 

~?!~Sl" l 
I I I , 

16 

.2010 1.51 29·0 0.0121 ----->.. 

~:::J 

L 
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TABLE 5.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

Mone 

.623 
lfone Srl1t 

P'hp 

40 . 6° SWEPT FORWARD WING 

Conflgu.ration 

A,fl, =-LlO 

,,= 0.,80 

II. = ,.12 

A1r(011 eeet l ona (ve r table ) 

Root: HACA 001') (appr oJ. ll11. te) 

Tio : HAC'" 13009 Cappro a llllu,e ) 

CL 
o .L .8 1.2 1.6 2: .0 

1.08 ILl L .Lo 
.1 f 
'0 +...-==;=--"""=-....... ,t.1-t1-0--+ 

.1 

1. 31 26.0 5 .1.0 

17 

17 

17 

------------- --- J 
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TABLE 6.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

~ 
'on. None 

<::::: 

<:::: 

34° SWEPTFORWARD WING 

Conflgurat.1on 

-=- ~ 

~ 

.....,..-- --

JI..!Il =-,6.2° A = '·94 R.o. = 9·6 "0l 
A=- 0 . 625 -!IIU =- 0.22 

Urfoll 3e.ct,lon3 (normal t.o 11ne of lIIaxllllUlII th1ckn" •• ) 

Root: 10 percent thick Circular arc 

Tip: 6.u po?"Cent thick ~1r~ul.r arc 

CL 

0 .77 21.0 , . 85 

o It 8 1.2 1.6 2 .0 

C~lt' . 
0_..,..-") I I I 

-.1 

~ 0.96 26.0 ,.Il ~ I I I 

:=:::::> 0·97 27-0 }.ll ~ I I I 

~ 0 ·92 26.0 ~.22 ~ I I I 

Roference 

18 

18 

18 

~ 

73 
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TABLE 6.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

34° SWEPTFORWARD WING - Concluded 

Conrlguratlon Re(.,..nce 

1.06 21.0 '·99 18 

l.l} 26,5 2·91 " t7" 
Hone S~~t I-------------r_-+--+---+-------+----' 

'lop t~t ' , <:: ~ :::=::::=- 1.11 .8.2 '.14 t,...----' " 

) . 00 t~111 18 

None ~ 1.20 26.5 I:7~ I I 

L~ ~-r_------------t__+-_+--_+-------i---~ 

18 
Pl.. f~' I I I , · 500 

~r!~t ~ l.~ 21 ·0 4.18 

1.>1 .6.0 5.55 T .-/. 18 

J-
.~. ~------------+--+--+---+~------;---~ 

·915 
L.!. 
Fhp 

·500 
Split 
P'h p 

·500 
Upper 

~~rl'aee 
"leo 

L}l 26 . 0 

Lbo z8.o 

1.,1 26.0 

5·19 

iJ" 16 

18 
4 . 48 

k:::, I 

18 
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TABLE 7. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

Span Span 
f L.E. t T.E 

~/i)' '7:/~). 

1.00 

Ion. 

s~~{t 
17hp 

.500 
SpUt 
Php 

.600 
Split 
Flap 

.B67 
Split 
Php 

s~~:? 
'fl~~' 
·500 

SlllfSh 
5lDt .. 
,lap 

32.3° SWEPTFORWARD WING 

Configura tiCR 

====-

<:::: ====-

<::::==-
it = _1.6° 

~-===-
it = _1.,0 

<::::_==-
tt = _l.lo 

<::::: --===-
it = .2.2° 

.- \" 

.- '\ 

.- '\ 

~ 

=~ 

=~ 

A,/b =?5·'· A = 5.79 R.01 • 7 .80 • 10j 

A = 0.,B9 .... = 0 .24 

Airtoil ,e ctlons (perpend1cular to 0.225 chord 11ne) 

Root. NACA 64-210 

Tip: NACA 64-210 

C .... 4c
LillU 

WD at 
0 .8') ct.nu: C. Characterhtica 

°L 
0 .4 .8 1.2 1.6 2.0 

0.96 IB·7 B.15 

~.~p 

=:::::> 1.21 26.0 ,.86 ~ 
~ 

~ :0::=::::> 1 . 20 2').0 --
g", .561 
b 

~ 

~v ::::=:::> 1.21 2,).0 -- , 
~ = .2')2 

~ ~ 1.28" 2').0 --
~ = . 11~ 

r\ ~ 1.,8' 25·0 --

~ = - .lOT 

+--J , , 
1.10 11·0 7.7B 

j~ 
, , 

1.20 18.0 5 · 10 

1.12 16 . 0 B.65 r ~:7' , , 

~ 
, I 

1.'1 le.O 6.20 
- .21 -. , 
! 

, 
1.13 n.o 10 .10 

---.I 

-"j ~ ]'2'/" 18.0 8.1,5 -., 

Reterence 

19 

19 

19 

19 

19 

,. 

19 

1. 

1 • 

,. 
1. 

,. 

75 
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TABLE 7.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

.600 
Singl. "",,_ 

Flap 

·500 
Doubh 
Slotte 

Plap 

.600 
Doubl' 
Slott. 

.. lap 

.967 
Ooul»)' 
Slotte 
?lap 

.~25 
SpUt 
PhP 

32. 3° SWEPTFORWARD WING - Continued 

Conrlguratlon 

1.19 9.0 10.60 

10.20 

1 . 20 10.0 

1.35 18.0 

1.,2 8.0 8·77 

=- 1·56 7.0 

1.20 25.0 

1.'5 26 .0 ,.66 

1.32 25.0 __ _ 

~ '" ,114 

it '" ~2.1 0 ¥" -.107 

:: t ' --J' , 
j ~" :: 

-·,t ' , 'J' , 
-·~t -----J 
I '-=:::::J 

:::1' '~' , 

Referenee 

" 

,. 

" 

" 

19 

" 

" 

" 

" 

" 

" 
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TABLE 7.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

32.3° SWEPTFORWARD WING - Continued 

'pon Sp.n 
Ilc

LIII III X 
LID at r L.t. t T.E Conrlgur. t. lon C .... e lll Chillract.,.,rhtlca Rero~no. 

~i~;· ~i~'· 
0.8; Ct..nu 

cL 

0 .4 .8 1.2 1.6 2 .0 

·SOO 't7-Spl1t <--~ 
1 . 1); 2,.0 4 ·54 c. ,. 

Php 

.. : 
.&00 ~ Spllt <:=~ ~ 1.46 21.0 S · ~9 " Plap 

.e67 - - --- ! ~~ l' SoUt <=:. ~-- ~ --.=:.> 1.61 18 . 0 S.26 
"'ap 

<::~">. --- 1.68 18,0 7·9~ \) 1, 

' -

~~~ <::-====~ :::=:::> 1.78 2loS -- " 
it :: _1.,° ~ :.,61 

==-

J ~ 
·410 .867 <:=.-=, ~ 1.69 11·0 --

I " L.!. 5~~!~~ Flap 
it :: _1.2° ~ " .252 'lillp 

j \r <:::::-=, ~ 1.68 19 ·0 -- l' , 
i.

t 
:: _1.;° ~,. ,114 

IT <::-=~ ~ 1.82' 25.2 -- l' 
it ,. _2.2° ~ :: - .107 

<:::::-=-~ .... :::::::::= 1.16 .... 2 ;·77 U 19 

~ 

I ~' . ;00 <::'-=-" ~ 1.80 23 ·2 -- 1, 
DotIble 
Slotte 1t :: _1.60 ~ " .}61 Php 

~ 

1 ~ 
I 

<::--= =- ~ 1.16 2, . 2 --
" 

i t :: _1.60 ~:: .252 

j\l . -<:::::-=-~ ~ 1.76 23.2 - - " . 
it ,. - 1.So .!!. :: .1lU . 

• C
Lmax 

not re.ched ~ 
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TABLE 7.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

32. 3° SWEPI'FORWARD WING - Cont inued 

S .. n S .. n 

c .... OcL • • ~ L/D at r L . E ~T.E Conf1gura\.1on 0.85 ct.. .. C. Characurht.1c. Rer."'ne. ~i~)· ( yl ee 
b/l) 

CL 

r~ ·5°0 

~ 1.88 ~ \ " Double --=- ~ 25·5 - -Slotte 
Php 

' ·l 
it '" _2.1° ¥ = - .].07 

· .4 

•• ll 

, , , 
.600 

J Double -=- 1.18 Zl.} -- ..• 
20 Slo,. 

'lap 
- 5 

D <:.:::: --==-", ~ 1.85 17 ·2 8.01 " .4 10 
L.E . 
P'lap -=-

<:::::: --==-" ~ 1.e8 17 · 2 -- h 19 < 

.861 
i t a _1.1 0 ~ = .,61 

:::~ c=-

f 
~' Pl a p 

<:.:::: -=-" ~ 1.85 17·2 - - " • ~ =.252 It :: _1.1 0 

t ,~ , <:::::: -=-" ~ 1.8l 16 . 0 -- " , 
it :: _1.4 0 ~ '" J.14 

t 

t :::J;:a= 

{ <:::::: --==-" ~ 1.86 19 · 0 - - - " • 
1t. :: _2.,o ~ == -.101 

~ 
· 515 "on. -==-- 1.28' 29·0 1·27 " 
L.B. 
P'bp 

"one ,<' 1.40 29 · 0 8.80 pi I , 
" 

~::;J ' S~(t ~ 1.48 2,.0 p.e5 
19 n •• 

·750 ·500 

~ 1. 46' 25 .0 1 ·Sl 0' L .!. Spllt 
19 n •• Plap 

.600 
1. 48' 8· l8 ~d, , Sollt ~ 25·0 " 1'1 • • 

. 861 
~ 1.62 2, . 0 1 . l 5 

1 ===:I 1. Split 
Plap 

1= ::7 
, 

si~? rc==--= . 1.62 2,.0 9· 19 1. 
$;;~~ 

.. 

I 

J 
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,. 

TABLE 7.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

32. 30 SWEPTFORWARD WING - Concluded 

'- Span 
CJ.ctIllU: 

1./D at r L.!: r r.E' c .... C. Charact.erht1cI ~(e"'nc. ~.le. ~ig· 
ConflguraUon 0.85 c."", 

(o/>, 

C
L 

-'750 .425 0 ·4 .8 1.2 1 .62 . 0 

L.I. Double -==. 1.'8 22.0 1·94 :~:t I I :J I l' I'l •• Slotted 
Php 

I '~ 
, , 

.... ~ 1.20 25 · 0 6.00 1, 

lone <:::: .... ~ ~ 1.,6 25·0 ' .99 ~ I, 
.425 Y-Split <::::: "'-r '\ :=:::::> 1.42 21.0 5.25 1, 
Php 

.410 ·5°0 1.51° 5·35 t7-L.t. sout. <=: .... ..- '"\ ~ 2,.0 1, Slat Piap 

.600 

~ SpIlt <=: .... .- "\ ~ 1.46 19·0 5·11 I, Plap 

.e61 

t 7
d Split <:::: .... ..-- ~ ~ 1.60 19·0 5·61 

" Php 

...-..... """=:l. .20 26.0 6.31 I ~ " 
I~. 

~ <:::: .... --======= :=::::> 1.36 25·0 4.~8 1, 

·515 .... ==--- 1 . 26 26 . 0 6·90 
" L.!. Ion. 

Sla't 

·750 
26.0 8·11 t=- )I~ L.I. Rone ........... - 1.;; 

" Sht 

1= • <::::: c=:==- :=:::::> 1.28' 26.0 '·70 / " 
. 410 
L.I. 
Droop 

~ Ion. <::::: ~ ~ 1.28 26.0 ; ·15 
" 

.S75 LL L.I. .«1_ <:::: ~ ~ ~ 1.31 26.0 3 ·94 19 
Droop 
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TABLE 8 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

Span Span 
t L.B r T .! 

~/i)· ~iii· 

.62' 
Ift .. ne Spl1 t 

Ph p 

25 . 9° SWEPT FORWARD WING 

~ 
Ac/L =_,0° , : , . 69 

~. ' ",. '1 ,,== 0.400 

'ur t oll u ct l onl (.ariab le ) 

Root: IfACA 0015 (apJ'lro. u.u .. ) 

Tip: HACA 2,009 (approJ;l •• t.e ) 

ConflguraUon C .... CLcLIIIU ; 
LID at 

0.85 ~u; CII! Charac te rts ti c i Ref.rence 

17 

1.41 21.0 6.02 17 
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TABLE 9.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

0° SWEPTBACK WING 

A~:r:l:~::c"on. (n~~.: '~o 11n. or ~::l~~:~:c::"J 
10 ~f'c .. nt th:1ck ct .. euler arc 

Tip: 10 percent tbll"k ci reular aro 

Span Span WD at r L .'! 'I;"i~: Configuration C"', IlcLmu : c.., CharacUr1at.lc. Ref.,..nc. 
7':/~). 0.85 Cltmu 

(b/21 

0 .L L.3 1.2: 1.6 2 . 0 

~ 0. ,8 15 ·9 6·53 .11 21 CmO~1 I I I 

Non. 

~ 0.80 15·5 9·06 ~ ..=f I I I " 
o.o32c reund ludinR-edg. 

.. 1r --) 
, , I 

.480 ~ 
1.00 10.0 L.25 21 

Non. ~r!;t 
· .2 

J 
I I I , 

~ 
1.2'; 15·5 5 ·31 21 

c .o)2c round lead1llc-.d • --= 
.975 ',2+ 

, 
~ 

I I 

Spl1 t ~ 1.2~ e .oo ~ · 40 2l 
Plap · .~ 

!fone ~ 1.20 22.S 7 ·84 b· 4 I , 21 

1.000 .Leo 
1.58 20.0 L.6L ~ t .!. SpIlt. ~ ~ PlaD Plao 21 

.975 ::4 
I I , , I 

Spltt 
~ 

1 .68 17·5 ~ ·~7 

-----
21 

'!'lap 

bOo .. )0° p:7' 
, I I 

Hone 
--~ 

0 ·78 le·S 8.29 
21 

on .. ICC ''It , I , , I 

~ lol; 11. .0 L.66 ---? 21 
• .2 

.LEO 6n -20 .. 1f I , I I , 
Spllt 

-C ~ i.2} 16·5 L·7L -----? " Plap · .2 
btl .. )0 .1r , , , I , 
~ 1.27 18.0 h.90 ~ 21 

.2 
on .. 10 .2t 

I , I I , 
1.000 

~ 
1. )5 12·5 ~.17 -::J 21 

L.E . 
Droop .~ 

·975 bn .. 20 :J I I I I I 

SpI1t. ~ 1.L6 1&.0 ~ .L5 .---1 21 
Plsp 

6n .. JO 
.2I 

I , I , , 
~ 1.Le 16 . 0 ~.,8 '-...-/ 21 

.~ 

btl .. 10 r 
None ..= 1.21 2~ ·5 7.~' I' r " 

0.0)2 rOW}d lead1ng-~. 

6n .. 10° 

t 

I , I , I 

.LSo 
.45 ?o .o 5·14 -~ 5pll t ,-~ 21 

Flap 
0.0)2 TOund lead.1ng-q. 
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TABLE 10.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

0° SWEPTBACK WING 

Ae/4 = o· , = L.oo 0"., = 7.67 ' 'OJ 
A:: 1.000 kmu :: O.l!! 

AIr-toll aacHona (normal to Una of mu.ll1ta1 th1cknes.) 

Root : 10 percent thl~k elrr.ular arc: 

Tlfl : 10 nerc:e "t thick circular arc 

Span Span 
t L.E . t 'I' .E 

~/i)' ~/~ }' 
Conf igur ation C",. 

, 
4Lllla J: 

L/lJ a t. 
0.85 c."u c;. Chu 'acterh\.t C8 Re ( e"nce 

0 
CL .4 .8 1.2 1.6 2 . 0 

30ne -=-=- 0 .62 '4.S 6.56 ·'1 I " CIIIO.c::) I 

-., 

bt .. )00 

! ~ ~ 0.82 1,.4 6.2, I I I 
22 

.450 6.r .. 16" 

I Plaln 
I I I I I !'hp 0.S8 11·5 5·6. 22 ~ -; 

f 

I I 
bt .. 6I:P 

---J ~ 0·94 10 · 5 5·09 " 
lfO!'1' 

6r .. 15° 

f 0 .84 12 . 0 
I I I I 

" -===-- 7·00 ~ 

f 
I I I 

6t " )lf' 

~ 1.00 11 .0 5·59 --J " 
1.000 
PlaIn 

I 
I I I , 

Plap 6( .. 16° 

-===- 1.11 9·S 4 .97 

" ./) 

br .. 60° 

~ ~ 1.16 9· ' 4 . j4 " 

6n .. 10° t4 ~ .82 19 .O a.50 I 

" 
.. 000 
L.E. ,~. 

Droop .. 2<f' 

~4 I 
~ ·95 2,.0 9 .06 22 
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TABLE 10.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

\.000 
L.!. 
Droop 

.~. 

0 0 SWEPTBACK WING - Concluded 

Conr18\1J'. tion 

0.8,) 26.0 

.. . )6' 

Or -600 

1.20 19.7 

.. . ,a, Or · 60° 

6 .00 

5 ·00 

CL 

'I~ 1.21.62.0 
C. 

o I I I 

- . 1 

~, , 

k::' , , , 
f~" 

" 

" 

" 

" 

" I~ " ·~50 Pblnl----::----------:-;;---t-+-+---t--------t-----i 
P'hp 6n • )60 or . 6(fJ f' I I I I I 

~ 1.1017·9 5 ·00 ~ 

0 .98 16.0 4 .02 
f~" , 

... ,.. 
1.~9 17 · 0 

~ 
... JO' 

" 

1.oool--------------+-4--+--~-------~---+ 

~t::"'~ , W ! ~ , " 
~ 1 . )1 15.5 } .SO ~ " 

1.22 14 . S 22 
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TABLE 11. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

SpIn Spon 
r L.!! t T.E 

~/i)' ~/~)' 

Ron. 

Wone 

· 500 
Spltt 
n • • 

3.58° SWEPTBACK WING 

ConrigurlUon 

===-

~ 

A,/4 • 0° . = ~ . o 'I." = 12.~ . 10j 
-x .. 0.600 ..... lI : 0.20 

Airfoll .. ctlen. (p«rIUlt to plane o r 'J1II."!IetrJ) 

Root: PlACA 65"006 

11 D: HACA 65.4006 

C"'. Ooc L .... 
WD It 

0.65 c,.,~ C. Charec Ur-hUe. 

0 .4 C,.6 1.2 1.6 2 . 0 

O·n l~.~ 6.~ 
c.

O t s' I 

.1 

1.2 3 u.8 ~.9~ F 

Rer'"nce 

14 

~ 

J 
I 



.. 
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TABLE 12.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

Spon ' pon r t .! . e T. E 

~i~i· ~i~r' 

' OM 

. 62} 
.~. SpUt 

P'h p 

s~~? t 
Pbp 

3. 6° SWEPl'BACK WING 

lc5 
Conf i gura tlon 

=-==--

<" '\ 

~ 

Ae/4 = 0° 

A", 0 . 550 

A '" 4 . 62 

,UrCol1 s ections (var 1a ble) 

Root : HACA 0015 

Tlo: NACA 23009 

C"" ~LIII.X WD a t 
0.85 c", .. 

l.H 2 1.0 S.of1 

1.98 20 . ' , .4} 

2 . 21 20 .8 4 ·57 

Cas Charac ter1stics ReCerence 

0 
CL 

.4 .8 1.2 1. 6 2 . 0 

F~: l 17 , , 
'7 

, I 

-. 1 

1 
, , , , , 
~ 17 

r= 17 
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TABLE 13. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF 

None .~. 

.~. 

1.000 . 609 
L.E . Plain 
Droop Plap 

WING WITH 9. 46° L.E. SWEEP 

Ae/4 = 4.80 
A = 4.0 " .. , = 10.0 .101 

'»= a·soo "!lin = 0 . 20 

Air-foll netion, (par-diel to plane or ."IUlMttry) 

Root: 4.2 percent th1ck hexaGonal 

Ti p : 4.2 percent t.-"1ek heugonal 

Conf1guration 

~-----=:-----~ 

l!. = 0 
b 

£..! ,. 0 
b 

------ -<::::: ----==-----_0::::::> 

6.12 

5·24 

0 . 97 18 . 0 9 ·70 

l.uO 16.S 5·1l 

6.42 

6 . 02 

\ 

Ro(el'Once 

2) 

2) 

2) 

2, 

2, 

2, 

2, 

• 

.. 
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TABLE 14.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

10.46° SWEPTBACK WING 

~ 
.I\.,A: ~. ?SO .: 2.~ " ... : 7·6 "06

J 

~ : 0 .62~ ..... : .,6 

~
- 10.46° "11'1"011 IIOctlons (nor .. 1 to I1ne of IUlll.111U1a thickn ••• ) 

Root.: Hexagonal tI c:, .06 

T1p: Heugonal t i c z . 06 

... n Span 
~ L.! ~!.£ Configuration Ct", o.c

Llllall 
LID at 

",leI .. leI 0. 8 ') ct.".,~ e .. Char.curt .t.iCI ReC'"tlca 

(bIz) (b/2) 

0 .4 c. .6 1.2 1.6 

-===- ·72~ 14.70 ~.~ .'~ C. On-

-.: publiln.c1 

~ <: -= => Un-
pubU.hoC: 

~ 

Pr--<: ~ => Un-

J/! ." 2: 
pubUshed 

2, _ .40 lt = _2.00° 
T-

:::> Pr-<: -= Un-
publ1.hed 

t/~ '" 2 

¥= ·177 it .. -1.75° 

f\ <: -==- 2 Un-
pubU,hld 

t/! = 2 

lIone ~ = -.171 it = _2.14° 

Fr- Dn-

N.ne <: -= ::::> lN~l1.h.d 

- IT <: ~ ::::> fn-
publllhld 

'I' . I ¥ = .140 it; = - 1'99° 

fT- Un-

<: -=- ::> publll"ld 

l/C = , 

?f = .171 it = -I:n° 

f\ Un· 

<: -=> > pubH,bed 

,(0 : I 

¥ = .177 it = 2.15° 

.40 r T.!. 
-====>.. Pbp.s 

12.9° 
Un-

Or = ,o° ·9~~ 6.93 publl,hed 



88 NACA RM L52D16 

TABLE 14.- SUMMARY OF LONGITUDINAL STABILITY CHARAC TERI STICS OF A 

10.46° SWEPTBACK WING - Continued 

Span 
r t .E 

~i~;' 
Span 

~,T.f 
('oi~i· 

Configura ti c n 

C,-, 
ctcL.~ LID at 

0.85 ~IU C. Charac:terls\.1ca Rere rence 

CL 
0 .4 .6 1.2 1.6 

12·9° COr -==--. 1.02 4 . S~ ":::) In -
publhhed 

Or :: 40° 
.40 
T.!. 
Pla.,. 

)J ~ 1.01' n.oo 4.29 Un-
Or :: 50° pu'oUlhed 

~ 1.16 12,.0° 4.~8 r=;- Un-
Or :: }Oo pu bll.hed 

"one F --===».. 1.20 12.1° }.96 Un-

Or = 40° 
published 

T7t 
f" i.pit 

~ 1.}4 12.2° } ·~9 F lin· 
Or :: 500 pubUahad 

~ <::: ~ ::> Un-

or = 50° oubUah ad 

-==- 0.64 Zl. e ~.2~ r--0 Dn-0 
n 

= 10 publhha d 
Hone 

h-<::--=="- :> Un· 
0 = 10° publl,hed 

n 

.77~ 

p=;-L .!. 
Droop 

4.41 Un -~ 1.09 14 .2 
On = 10° Or :: 50° publl , hed 

T~t 

{~ 
Phpe 

<: ~ :::> Un-
ClUbl hhed 

on :: 10° Or = 50° 

·7~ 

~ Un-T.E . 
~ publl . he d Plapa l.~C 11 • • 2 }.41, 

On :: 10° Or :: 50° 

• ~ not r e ached . 

• 

.. 

I 

I 
, I 

I 
, I 

I 

I 

. j 
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TABLE 14.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

10.46° SWEPTBACK WING - Continued 

,,,,,n SpIn 
eLm. 4c[. ... J. 

LID _t r L.! t T.E C. Characterht.1ce Retereflce 

~iii ' ~/~i' 
conr1S\u,.110n O.SC;~u 

Q 
CL 

.• .S 1 . 2 1.{) 

c.~ i?t <: ...=l\. ::> Cn-
!"lap. -.,~ publhheCS 

On "'" 10° ~r = 'jOo -.' 

r , 
Un-

.Bl IS·5 7 ·10 publteb,d 
~ 

On ,. 20° 

.O~ 

~ Ln-

C ~ :> outlhhtd 

On =- 200 

f-:J Un-

~ 1.10 '.·9 4.92 oubl1llMd 

i~t • n "'" 20° Or = ,0° 

?bpI 

l~ Ln-e ~ ::> pu\11J.",d 

On ::: 20° Or =- 'joo 

F Un-

~ 1.jl. 15·l j·50 pt,Iblhhod 

.115 i?t on ,. 20° Or = 50° 
L.t . 
DroOp !l'bpa 

r=;- "n-

<~ ::> p.u"U,bed 

6n = 20° Or ::: 50° 

F5 Un-r=::» .:!7 16.6 6.SL pu olhhed 
On ,. }Oo 

~ 1 n-e ~ :> pubU,hed 

On =- ,0° 

l/l = 2 - 1 t =- _1. 960 

~ un -
Non' e -=- ::> p.iblllhld 

• n 
=- 30° ~ = .La 

l;C .,. 2 It :: - 1.7') 

1=\ < :5 Un-..c=» pubUlhed 

On :: )0° ¥ = .171 

1/' = 2 It = -2.16° 

F\ Un-e: :> ';IUbl1,hed ..:::=> 

On =- ~OO ~:: - .171 
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TABLE 14.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

10. 46° SWEPTBACK WING - Continued 

Cont1gur. tlon 

CL 
o .4 .e 1.2 1.6 

1.17 16.7 4 . ')2 COF :.1 
-.2 

<: ~ :> 
6n :: ,00 Or :: 'joo 

j----J Un-
publlAhe4 

./0 .2 ~:: .40 
·775 · )5 <: ~ :> it. ;: ·1.96° L.E. T.E. 
Droop Plaps 

on :: ,0° Or = 'jOo ~ Un-
pUblhhe d 

./e • 2 2, _ 
.177 .-

<: ~ :5 it:: ·1.75° 

on :: ,0° Or - 50° ~ Un-
publhhe d 

lie :: 2 i!- = ·.177 

<: ~ ~ \ :: -2 . lho 

On '" 30° Or :: 5.00 0 .. -
publtahed 

<: ~ :> 
or :: 'joo 

1---) Un_ 
publt sbed 

./0 .) ¥= .40 

<: ~ :::> 
1t :: - 1.9So or :: 50· h- Un-

published 

'/f • ) h: .177 
b 

.); 

::> None T.!. <: ~ Flaps 

1 , :::: _1 .70° o~ = 50° PI- Un -
publ1 ahe d 

~ 
Un-

publ t shed 

~:: - . 117 

1.3 16 . , ,.Sl l~ Un-
oubltsbed 

·715 ·75 
t;~~p ;i;~:J ~ 

on :: 30° Or = 50° 

~------ - - - - - -- - - - ----- ---- ----

• 

I 
I 

I 

I 
_--1 
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.. 
TABLE 14.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

10 . 46° SWEPTBACK WING - Concluded 

Span Span 

~LIIIU L/D a t r L .! . ~.r~; ' .... e lll Cha ree tar ll U e a Refere nce 

~i~r' 
Con f iguratio n o.e\ "=~ 

(b/2) 

'L 
0 .. .81.2 1.6 2.0 

< ~ ::::.> -:1) Un-

-.' PubUahed 

"n = '0° Or :: 50° -.} 

II< ~ 2 ~ ~:: .40 

~ e ~ :::> it :: _'.96° Un· 
publiehed 

6
n 

:: }DO ?r :: 50° 

1/5 :: 2 ¥:: .177 r-; e~ ::> it :: _1·70° On-
pubUahed 

C
n 

:: ,0° Or :: ')00 

lfi '" 2 ¥:: - .In 

j=) it :: -2.l..4° Un-e ~ 2 publhhe " 

On :!: 30° Or :: 50° 

.77\ .:t 

M 
L.!. 
Droop Pi.pl On-e ~ :> p.,abU l bid 

On :: }Do Or :: 50° 

lfC :: 3 ~:: .ho 

IT 
b - Un -

e ~ :> pUbU ahed 

On :: ,0° it .=: - 1 .esO Or = 50° 

tIC :: , ~ = .177 

If :::> 
Un -e ~ J"IbUahea 

On :: ,0° it :: _1 .68° Or :: 50° 

,;e :: , ~:: - . 117 

~ Un-
rubl1J1hed 

<: ~ 02 
on :: 30° i t:: _2 . 12° 

Or :: 'jOO 

1.00 I~ I 

1I0ne T.E. Un ' 
Plapa publ l ahl d 

Or :: ')0° 

~ 
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TABLE 15.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTI CS OF A 

32.47° SWEPI'BACK WING 

.".,. 'pon 
~L • • ,; C L .! r T.!' Conrlgure t.1on C,-, 

~i~)· ~.1c. 
(b /21 

Hona c==::::> 1. 19 19 · ' 

~ 1.41 17 . , 
Nona 

.~'f.. t ~ 1. 51 16 .4 
PUp 

c=::::r 1.51> I t:. .4 

LID et. 
0.85 ~u. 

11£ . 00 

6·71 

6.28 

6· 54 

C. Char.curl.Uc. 

CL 
0 .4 .8 1.2 1.6 Z .O 

C.
'! 

-~:. ~ , 

~ 
f~~' , 

I ~ , 

Rar.",ne. 

'S 

'S 

2S 

'S 

I 

I 
I 

I 

I 
_________ J 
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TABLE 16.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

Hone 

32. 6° SWEPTBACK WING 

Configurat1on 

Ae/4 = lOO A = 4.0 R" .. = 12 .0 . 101 
1\:: O.bOO WIIlU = 0.20 

Alrfoll sect10nll (parallel to plane or IIJIIIlII1nryl 

Root! IIACA 6,A006 

Tl-o: HAC" 65.\006 

Oone I--I-----------f-+--+---f---------f-------t 

.~oo 
SoU t 
!'lap 

14 

93 



~----------- ----

TABLE 17. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

33 . 4° SWEPl'BACK WING 

S .. n Span 
r L.E. ~, ToE Configura Uon 
~i~)· .1 ce 

(bIll 

Non. ~ 

.62' ' .no SpIlt ~ Pho 

·970 
Spllt 
~ !"lap 

A: 0 .4110 

,urfoll ,.ctlon, (varhbl o ) 

Root: 1tA'.',J,. 001S (apnro:almat.el 

Tip: !ile A 2~009 lapPT'odmata) 

C..,. IlcLIII.x. 
WD at. 

0.85 c..,,,, 

1..28 zo.o 9.S? 

1.17 18·5 5·81 

1.10 15·5 4 .61 

em Characurlsuc:, Re(",..nca 

0 
CL .4 .8 1.2' 1.6 2.0 

~~l~ 
, , 

17 

t 
I I , I I 

~ 
11 

l=" 11 

~ 

I 
__ J 



NACA RM L52D16 95 
3J 

TABLE 18.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

36.25° SWEPTBACK WING 

R ... = 10.0 x 10] 
A = C.7l} KIIItIJ. == 0 . 25 

Airfotl eect.1ona (plrlUel t.o plane of . ,_etry ) 

.... Spa n 
HAC" GcLmu 

Wo at. r to'S Er ToE Ct"" e lll Che,.e e t.e r ht.lc s Refere nce 
~i~)· Jf:i~ '· 

ConrtguTit lon A1rf oll 0.85 ~u 
SectIon 

CL 

<} 
·4 .8 1.2 1.6 2.0 

65 1"012 0.98 17 · 0 1).6 d I I I 26 

- .1 

None Kone ==-- 64 1A}12 1 . }0 21.0 10 · 5 r~ I I 26 

P' I I 
64 1",612 l .h} 2?O 9.85 26 

TABLE 19.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

36.25° SWEPI'BACK WING 

..... Span 
HAC" ~LDI.~ L/D at. f L .E r 'l'.E Conf lg\1 ret lon Ct"" em Cha,.ac terhUCI Reference 

~i~, ' ~i~i· 
Al r{otl 0 .81) <1..nu: 
sec t. lon 

0 .4°L .8 L2 1.6 2 .0 

651"012 0 . 96 16.0 2, ., l~bd .. C~) 
I I I 

-.1 

Xone Kone ==-- 64 1A}12 1.2L 2 1. 0 17 · 0 ~ 2' 

64
1 

",612 1.32 20.0 16.0 ~ 26 
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TABLE 20 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

37° S\{EPTBACK WING 

A./4 = ~5° A = 6.0 '.ox = 9 . ~5 • 106 ] 
A = 0 . 5 .... u z 0 . 18 

,u rton aecUon. (r;u'pendlcular to 0 . 270 cbord Un.) 

aoot: NACA ~ - 212 

'Mpl N~'" ~-21Z 

,po· Span 
IlcL •• ~ L/D at t L.! r T .! Cr.". C. Charac t.erl.Uca flerarlne, 

~iij· ~ii)· 
Conf1gu.ra tion 0.85 c"" .. 

CL 

Ion. -- ==-- 1.27 19 .0 12 .35 ~F21.62 '0 
" 

· 500 ! ~' I 
.split ~ 1.55 17·1 7.46 " Pl . p 

f-t,t '~ 
I . 975 

~ 6.~6 '0,,, Spllt 1.65 1 '} . 1 " Pl.p 

· 500 r~t 
I 

' ~' Doubl =~, 1.92 14.~ 7. 09 " 10tt" 
Pl • • 

:l I I I 

~ i>~~ =', 2.~ 11.9 6.85 
" lSi~tt" 

Pl.p 

· 500 o t I I I I I 
Spltt .~ 1. }6 15 · 0 1} . " " .250 
Pl . p ·1 ----r 

L. I. 

J 
Pl.p · 500 .-c:===., I '~ I ~OUbh 1.76 11.1 7.75 

" otted .... 

.~F=l 
I I 

lfon. ~ 1.25 19 .9 11.82 
27 

I ) ' I 
.H5 · 500 

~ • 1 t L.'!. Spli t 1.37 21.9 12.10 '; 
Pl • • Pl • • .2 

• 

'-
· 500 ·,t I I I I I 
~blo .-c:===. 1.81 1~.2 7.15 ~ 27 

ttod "'-rh . .2 

°F' I I I I 
Ion. ..-====- 1. :l9 24.0 9 .80 '-, 27 ., 

.500 · 500 t 
I I I I I 

L . !. SpIlt . ...--- '\ 1.46 1 5 · 0 8 . 26 -----r 27 Pl • • n •• 

· 500 :1 
I I I I I 

~~bh -=-~"'- loP7 13. 4 7 .05 ---p 27 
~~U'd . p 

·:f 
I :!: I I I 

Non. ..-====- 1.40 24.0 10·50 1 27 

i.~~ ., .. . 500 

t 
I I I I I Spl it 

,...--- '\ . 6~ 1 8 . 2 7.82 ( 27 n •• 

L 
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TABLE 20 . - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

370 SWEPTBACK Wll-lG - Concluded 

ConCtguratl o n et.... acL . ..... o.~D~.~ c. Ch .... c L.rl . t lc. 

o 
2 .06 16 .4 ~;! 

.2 

CL 
.4 .B , , 1 . 2 1.6 2 . 0 , , , 

(\ 

.700 NOM ,-====-- 1.41 25·0 10.n _: 1 1 1 ; 1 1 

,. 

27 

~i:p r---i----------------------------i---t---i------t----------------t----~ 

i::::: 1 1 \ J 

,0')0 

r;;;" r "p 

·5°0 
pUt 
lop 

• JOO ·500 
L.E. Spl1t 
Sht ' lap 

·500 
Double 
Slotted 
'lip 

.~ 7.75 

1.6~ 2L.~ 

.42 26.0 

8 .06 

7.10 

1.28 2}.O 

1.28 20.0 1l·90 

11.75 

1.26 20 .0 11.88 

" 

27 

On " -1 

2 

27 

27 

'It 'I~' 
.2 " 
-:F=t ' " 

~ ' 27 

~ ' 27 

27 ~ ' 
L~ 1----+~--~----------------------+_--I__--+_-----I-----------------I__----_1 
","oop On - )0' I ~ 'rJ ' 

~ 1.55 lB.l B.o& --,.-
·500 " 
SPlltl~~~----------------------t-~----t-----~~~==~:=~~=i------1 Php 

,, - )00 ~ r~. 1 

~ \ 1.119 16.Q 8 .20 t ----r 27 

j"~' 
· 500 

7.io 27 

D~Ublof--.. ---)O-o.----------------------i---+---;------r----------------+------; 

~~;;' ~o 2.0217·4 6 · 95 ::f' '~ 
" 

97 
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TABLE 21 . - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

42° SWEPTBACK WING 

~~r:,:~:::tl~. 1~~:~::'Ul" t~~':'::::~ :~:'1 
Root.: NACA 641·112 

'%'11' : HACA 64 1-112 s_ 
Span 1./D at t L.! r T.E Contlguratlon CL" .. acL .. u ; C. Charac t.e rla U e . Reference 

~ii)· ~/~). 0.85 c".~ 
I " ) 

0 .4 <L.8 ... 1.6 2.0 

==-- 1. 02 19·0 1l.')2 <t I :Jt I 

" 

t- Il <: ~ l.06 18.0 -- I I 
r" ~ " 

~ 

t~~' <: ~ 1.08 1'7.0 --
c: ~ " it :# _} .7° ¥ = ·509 " 

t~~ <: - ::=-. ~ 1.09 17.0 -- " it s .,.1° ~ z .2~ ,~ 

f'~ 
I 

<:::: c::: --=- ~ 1.11!' 2.2 .0 -- " 
1t :: _4.1° ~ ... 0,1 

.~. <:::::: ==-- ~ 1.05 22 .0 -- t. ( I " 
~ 

===- ::::::::=- 1.08 18.0 -- t~~ " it ~ . ,.6 't •. 417 

<:::: ===- =::::> t::::;'~1 I .- l.08 22.0 -- 2' 
it .. . ,.6° ¥ :=.16l 

} ~ 
I 

<:::::: ==-- ~ 
1.15' 22.0 --

" 1t,. := _4.2° 

<: c ~ 

~ 1.05 18.0 -- ~~ 29 

=-
I ......... <: c:: ~ 

2- 1.08 le.O --
1 "'.:......J " it" . '.5° 

" 

t~ <:: c: ~ 

i3- 1.13 22.0 --
it :: _4.1° " 
~ 1.28 17·' 7 . 26 

1- JO 

<: :::::::::> 1.26 .6., 1------
, 

7·05 )0 
·500 S;;; -=-r 

SoUt 
Php 1----1 <::~"\ ~ 1.26 16 . , 7.28 

JO 

<:: <' 

~ l~ 
, 

'\ 1.28 16 .4 7 ·'5 JO 

a ~ not r oaohed 

b Daah ourvea tor ( or d.istance 0 . 920 .fro. ground 
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TABLE 21.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

42° SWEPTBACK WING - Continued 

'pan ,pan 
WD at r L .E ~.i~; ct", acLlIIu . c. Che ra c terlsUc. Rer."'nce 

rt:i~) · 
Conflguretlon 0.85 <t,,~ 

Ib/2) 

.,00 
0 . 1, CL,S 1 . 2 1.6 2.0 

~' 6.26 c~lt-== raoo =f 1.15 15 ·0 )1 
Pbr , .5<0 
5.,1 1t 

• < 

F'hJ!' 

.450 

I 1I0"Je 1' ,...""'. ==f 1.14 15·1 6 .00 ~" I , 
Jl "0 ·50· 

Srllt 
Phil 

· ~15 

~, 
Mone Ur":ler 

$1r~~ =f lol} 15 · 1 5·96 " "lap 
I , · 5°0 

Spl1t 
!"lap 

·5"" 

~~ 
, , 

!JI;t . 
~ 

1.110 Ib·5 7·09 )2 
~oltt 

,.1111'" 

· 575 

P+-
Upper 

)2 ~r.ce 
P\a1"l ==-< 1 .29 18.4 5·08 
.~oo 
E.t . 
Stliit 
t"hp 

<:::-==- ==::::> 1.10 20 . 2 -- F -.=. , 
II 

~ 

r-~' , <::::,..- ==-===-
lol} 20.2 -- II 

1t = +, .Lo ~,., .417 
!fone 

~~ =-<:::,..- ==::::> 1.1} 20 .2 -- , 
II 

It • +,.4° ~ = .\62 

f~ 
, , 

<:::-==- ~ 1.19 20 .2 -- II 

.425 It = -L.2° ~ = - . ('6 1 L. E . 
!'lap , 

t=-' ' ~ 
, 

<::::::,..- ~ ==-===-
1.2} 17·2 -- II 

~ 

p~ <:::~ :=::::> 1.24 18 .4 -- , , 
II 

It :0 .,.4° ~:: .417 

~ 

~-=t • Sao <::::-========y :=::::> 1.20 16 .2 -- , 
II Spltt 

I"lap It = _}.4° ¥ = .162 

h-~~ ~ 1.26 17·5 -- II 

1t = -L.,o if = -.061 

• 
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TABLE 21.- SUMMARY OF LONGITUU1NAL STABILITY CHARACTERISTICS OF A 

42° SWEPTBACK WING - Continued 

Spon Spon 

Ct". acL . ... 
WO a t. r L . ! r T.E 

C. Ch'rac: t 'rla t.l c , Reference ~i~j' Fc:i~,' 
Conrlgu r.Uon 0.85 c,.,~ 

C. ) 
CL 

0 .4 .8 1.2 1.6 2.0 

c~ r '5 
, , Yone -==-- 1.2" 25·0 1 ' }O )1 

. 1 

6·n ! : 
, , , ,. ~ I. }? 19 .6 

~ ) 

<:::::: < 4"' ~ ~ 
, , 

1. ~6 20 · 5 - - ,. 

t~~ <::::'" ==y ::::::::::::> 1 .1,1 , '0 ·5 -- ,. 
1 t. = - , .Lo ?S .= · 509 

~ ~ <:::::: .< ~ 1.)5 19 ·4 - - ,. 
I t = - , .lo ¥" .2~ 

r~ ' 
, 

<:::::: ..- =.,- ~ 1.L2 20 . 4 -- ,. 
't ::: - 1, .1° ~ = .0,1 

t~ ' 
, 

<::::::~ :=::> 1.42 2 1. 5 -- 2. 
·575 . ;00 
L.S. Spl1t 
Ph I' P'h p 

~ 

t~~ ' <::::::~ :=::> 1.46 21. 5 -- , 2. 
I t ::: - !l.eo ~" .417 

~1' <::::::,-< '=\ ~ 1.44 22 ·5 - - , 2. 
i t " · 5.4" ¥ ::: .162 

r'~' 
, <:::::: ,-< ""\ ~~ · 51 22.0 -- 2. 

it =- _4 . ,0 ~::: - .061 

F ' 
, 

~,-< ""\ ~ .42 22 .4 -- )) 

~ 

~ <:::::::...::--~"\ ---=:=:> 1.4, 21.5 -- )) 

it = .'.5° 4f ::: .417 

~ 

~ )) 

<::::::~ ---=:=:> 1.41 2 1. 5 --
1 t ::: . , .4° ~ = .16? 

~ )J <::::,< -, ~ 1.49 2 1. 8 - -

i t = -~ .0° ¥::: -.061 

' o. sh curve • • re ( or dht.ant'fl 0.92c trca gr ound . 
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TABLE 21 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

42° SWEPT BACK WING - Continued 

... n 'pan 
ot.". acL • ." 

LIt> a" r L.t r '1' . £ C. Ch.r.c".rhUc. ,..r.r-.Ilce 
ti~)· ~i~i· 

COIltlguut1.on 0.8\ c", .. 
( h) 

0 -4 'L.a 1.2 1-' 2.0 <::::::;<--~ 
===== 

1.5<: 2'·5 5· " c~~r '" ., 

<::::~ ~ 1.45a 21.6 -- t~~" 2. 
r 

1t -= :5.50 ~ .. . ~511 

<:::;<--- '\" ~~ t~~' 
I 1. 56" 21.6 -- 2. 

1t = ·4.0° ~ =-.14& 
b 

~ !----j I 
1.,2 18.0 -- 2' 

~ 
I 

~.E 3>;> ...:::::> 1.,1 19.1 -- 2, 
~ =' 

f~~ i~i~ ·500 
<:::::~ ~ 1.~ 19·1 -- I 

Spl1 t 

" Ph9 ., .. 
I

t 
: . 3.40 ¥ =·5°9 

~ 1~~ <::: .E ~ 1.31" 19·1 -- 2. 
I t .. ·,.2 ¥ :..~ 

<::::: . ..E -==.;; ~ 1.l8 19.1 -- J ~ " 1t : _b.l.° ¥ .. 0,1 

<:::~ ~ 1.41 20·5 -- t~ 2. 
J--- ~ 

t~~ <:~ ~ 1.44 20·5 -- 2. 
1

t 
.. _}.h0 ¥ : .417 

h-<:::::~ ~ 1.4' 21.0 -- " 
it .... ,.qO !! ... l'! . 

.975 

f 
I I I I 

SpUt. ~ '·5' ,8,5 -- ,5 
"lap ----, 

i~l~ 
Plap 

1 
I 

~ 
I I 

.jOO 

~ 1. \2 19·1 6.40 Ext . 

:r~~t 
.., )2 

.~. ,=:==- .29' n .~ 1 · 112 r , 
)2 

.12, 

1~ 
I L.I. 

~ 1.58 2 •• 0 6.25 Pl • • Jl 

·500 
1)11t n., 

t~' 
I <:: . ~ l. jO 2,.e -- " -< ~ 

.. Cr.m..x not t'.aohed _ 

b J)lsh cur ..... Ilre lor di,t&!\ce 0 . 928 !'rom ground 
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TABLE 21 .- SUMMARY OF LONGI TUDINAL STABILITY CHARACTERISTICS OF A 

42° SWEPTBACK WING - Continued 

Confi gur ation 

~' :: ·509 

<:::::~ ~ 
it:: _4 .1° ¥:: .0}1 

¥ :: .O}l 

C!.tn. o.cLcn.~ o.~°C;:.:t. c. Chara c terh t l c a 

(b) 

1.52 n.s 

l . 59" 2~ . e __ 

1 · 52 2.4 . 0 

I 

1 ____ 

1.68 25 .8 __ _ 

1.68 2.b . , __ 

Reference 

" 

29 

29 

29 

29 

" 

" 

" 

t~ --t::::: I 

L--- __ ~l~t_· ~·I_. 5~o _____ ~~~'_. _.,_6_2 _~~L_~ __ _L~ _ _ __ ~ \ __ J-_~ 
·~notr".Chod . ~ 
b Duh OUl'VCUI t or diatanc$ 0 .92.e trom groW1d . ~ 

I 
I 

____________________________________________________________________________ J 
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TABLE 21 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERIST ICS OF A 

42° SWEPTBACK WING - Continued 

'pan Span 
G.cLIIIU . 

LID at r t.E r t. E 't", C. Clurac urhtlc . Reterence 

t/~" ~i~r' 
Configuration 0 .8'; ~&X 

L 
0 .. .8 1.2 1. 6 2 .0 

.72S ·500 
~ 1.1) 25 .S 5·88 c;. t.! . !,.t. 

P'htl S"l1e -. ----; )2 
'lap 

-.' 
.on. .-===- 1.60 21· 0 7 ·b6 ~ =;=~ , )l 

·97S 
L.S. 
Php 

t~ '}, ·500 
~ 1.79 2,).0 6.14 

, 
)1 Spl1t 

!"lap 

~~' 0 <:::: r r -=::::> 1.4~ ,1 .0 l ·S7 )1 

'ono 

~' \:' 0 

<::::~ ==::> 1.48 ,1.0 ~.7 6 )1 

t~ 
, 

r.- "'"\ 1." 19·0 6·50 )1 

P' 0 

<::::---~ ~ .::::> 1 .40 22.0 -- 29 

~ <e ~ ::::::> 1.43 21.5 -- 29 

it s _,.,0 ¥ ... ';09 
·575 

_I 

L.! . 
1-......,. 'ht 

~ <::::C-G ""i' l .bl 24 .0 -- t 29 

1t -= _, . 2 0 2 ... 21)4 
b 

· 500 

~ 
Split 
Pla p 

<::::c~ ~ 1.48" 24 .0 -- " , 
1 ". -4.4° h .. . 0,1 

t b 

<:::: r, """ ::::::>- l.uB ,1.0 5·92 P )l 

<:::""--= ~ ~ 1.48 28 . 0 5·7' 1~1 ' )l 

-~ 1.41 25·0 6· l7 I~ )l 

~ 
.. cUI!u: not rea c hed 

, 

~------
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TABLE 21.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

42° SWEPTBACK WING - Concluded 

.pon Spon 
CLoa G.c

LIlU 
L/D at ~. L •• ~.? E C. Cha"ae t.r1 . uc . ,"r.,...nc. . l e. "tea Conf 1gur aUon 0.65 "t,.,~ 

(b Iz ) (b/21 

CL 
0 .4 .8 1.2 1.6 2.0 

<::::: C<' ~ ::=::::> c.o~ I I 
I 

" 1.39 22.,) -- .. ,~ 

=-

~ <::::::: ~ ~ 1.42 20.5 -- ,. 

1t :: _~ . 5° ¥ '" ·509 

=- !'l <::::: C~ ::::> 1.,8 20·5 -- " 
·575 ·500 It '" _,.6° ~ '" .254 
L.! . Spl1t 
Sl. t ' l ap 

~ <:::::::c~ ~ 1.46 21. 5 -- " 
i t '" -h .Oo ¥- = .O}l 

t~ 
I <::::: ~< ' 7=.? :::::> 1.52 H·O 5·19 31 

<:::::?< ~, ::=::::> 1.55 2 6. 0 5· 19 I~ II 

.",a <:::::~- ::::> 1.48 29 ·0 5·00 r 31 

~ .72 \ <:::::~~ ::=::::> 1.51< 28.0 5· 62 II 
L.S. 
Sht 

·500 
~pl1 t 
Pl . p 

<::::::~..-' = ~ :::=:::::> 1.68 28.0 \ .0\ ~ 
)l 

'. 

I 

i 

I 
I 
I 

_______ J 
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TABLE 22.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

S9O. S ... 
fL.! f T.E 

~i~i· ~/~i· 

<::: 

<::: 
it z _1 . 1° 

1t$ 
Ion. 

it S 
<::: 

It '" _2 . 1° 

I on' <=:::::: 

<::: 
.500 

S1'11t 
,lap 

Is~i~ 
Pl.p <= 
sp?~ 
~ 'lap 

.500 
S;i;~ <=:::::: 
I on. 

p~~~ 
Pl.p 

.')50 
.~oo 

L •• . Sol1t ,lap n.p ( Plat) 

42° SWEPTBACK WING 

Conflgure ti on 

-==-

-==- ~ 

-- ~ 

~ ----

= 

--- -.. 

-==-

== 

~ 

---- ~ 

~ 

---- '"\ 

~ 

~ 

~ 

A ' 14 = 40° • • ,.9/1 ..... = 9. 60 x 10
6 J 

A = 0 . 625 -.u ·0 .22 

Alrto ll .. e tlon. (non .. l to Un. of IIIU l lDU3 t.b lc lmeu ) 

Roo t r 10 porG8 t1t thlak e1rcul," ere 

Tip: 6.~ perce nt thic k. c l rcular arc 

CL". a.cLau 
!-ID at 

0.8 ,) Cr.",u; c. Charac terlaUe. 

0 .4L .a 1 .2 1.6 2 .0 

0 .84 21 .0 4.82 C~:1 
, , , , , 

4-

l~ ~ 0 .6~ 19 .0 -- , , , 
~ 

~~! -=::::> 0 .66 19.0 -- , , , 
~ '" .466 

~ 

l~ ~9 
0.8~ 19·0 -- , , 

=21 O . S~ 19 · 0 - -
1 ___ 

./1 

\ 
• 

~ ~ 0 ·9'5 20 . 0 --
~ = -.011 

I~ -=::::> 0 .89 20.0 4.4, , I , 

~ ~ 0 .89 21.0 4.)4 
I I I 

0·9'5 11. .0 ~.18 t :::J» 
, , , 

~ 
0·97 17.0 4.)4 t::7' I , I 

~ 1.00 17·0 4.1,2 p,. , , 

~ 
1. 00 11 · 0 4 . 60 t~ , I , 

0.67 11 ·0 4.27 ~,~ I I I 

5.2 6 
t ~ 

, 
1.02 11· 5 

1.'~ 20.~ 4.4. -----; 
~ 

R.t .... no. 

)II 

J6 

)II 

J6 

)6 

J6 

31 

31 

31 

J7 

31 

31 

)6 

J6 

)II 
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TABLE 22.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

420 SWEPTBACK WING - Continued 

.pon .pon 
GeL ••• WD at r L.E r 'I' .! 

Conflsura U on Ct.". C. Ch u'ac terllUca ~r."'hC. ~i~;· ~/~). 0.85 c"" .. 

cL 
0 .4 .8 1.2 1.6 2.0 

~ 1.\4 21.4 5·07 C~:f~ 
I I 

J6 

<=:..'5 "t =::::> 1.)5 26 ." ".59 
~ 

J6 

ro.~ <=:~ =::::> 1. )1 17.2 - J6 
~ '" .466 it s _1.20 
b 

~ 

r~~ 
I 

<=:: & ~ :::::::::> L~O 11 · 2 -- J6 
·550 ·500 it ~ _1. 2° ~ ~ ·H9 
L.B. Spllt 
'bp 'lap 

f~ I ('he ) 

1 
I 

<=: G ~ ~ 1.,0 17.2 -- J6 
it '"' _1.20 ¥ '" .211 

~ <=:: ,:;;; f ~ 1.'5 17 .2. -- J6 

it :II _2. 1° ~ .. - .011 

~' 
, 

<:::::.::~ ~ 1.4IJ 24·5 4.90 
J6 

~~' 
, 

~ 1 · 52 22.6 4.17 J6 

t~l I I . ..,. ~ 1.19 24." 5.26 J7 '. 
r;>~I . l ona <=: .--==- =::::> 1.40 24· 5 4·95 , 

.695 " L.!. 1'1., 
.~?~ ! I :::::t="= I ('ht) ,., ~ 1·5' 21. 5 4.6) 

" 
·500 
pl1 t <::~ ~ 1'50 
'lap 

21.5 5·27 t ~~ " 

l~ 
, 

J6 
~ 1.52 21.2 5·01 

-
~ 1 .\2 20.6 5·17 ------':> J6 

·700 pp~~ ~' 
, 

L.E . <=:: g;; 4' ~ 1.42 22.6 \ .48 J6 n., 'lap 
(nat, 

~ 

t~' 
I <= ~ =::::> 1.4' le·7 --

J6 
it • -1.50 !!.:: .466 

b 

=-
t~I~1 <;&:4' ~ 1.4, 18 ·7 -- , 

J6 
it z -1.2 ~ '" '''9 

~ 
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TABLE 22.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

42° SWEPTBACK WING - Concluded 

Span Span 
4c

Llllu 
LID at r L.E. r T.E ConriguraUon C"". ell! Cha,.ecterlallca Refe"'ne_ 

~ii;· ~i~;· 
0.85 Cr...nu: 

0 .4 L.e 1.2 1..0 2.0 <:: ~ ~ 1-40 IB·7 --
_~:t~~' I )6 

it = _1.00 ~ I: .211 

t~ <:::: ~ ~ 1.55 22.6 --
)6 

.100 ·500 
~ ~ - .Oll L.E. So11t. it = _2.1° 

",00 ''hp 
('btl 

t~· I <:,.;:;:: ~ ~ 1.54 20.6 \ . 38 )6 

~ 
) )6 

l.\l 20 .2 \.37 
~ 

.69\ 
L.' . 

Mono r=====- 1 . 11 22.4 6.02 r L J7 

Php 
S~{~ t '~' 

, ,""""'I 
~ 1.52 20 · 5 \.04 J7 

Ptap -
I , 

~ 1.16 23·0 j . \8 r / 
)6 

<:::: :=:::> r "i'lY , I 

~ 
1.13 25·0 4.61 )6 

'on. 
~ ~ =-::> 1.28 2l..\ h.n ! ..."" , , 

J6 

-<::::: -;;f :;, =::> t.- __ J t.23 24 '5 4.1.1 )6 
I I 

l~ 
, , 

~ 1.28 20 . ., 4 . 21 )6 

-
~~ 

I , 
~ 1.26 19·' 4 .68 )6 

.600 
L . •. 

""co. I~ 
, 

<::::: f "? ~ 1.25 19·0 4.43 )6 

= 

r~ 
, I 

<::::: r! ? ~ 1.29 18.\ -- )6 

it = _1.20 
b 

.\00 

~ i~~ I I Sollt <:: g:~ .28 18. \ --Plap )6 

it = _1.00 

<: ~ f ~? 
, I 

E Of 1.26 18.\ --
)6 

it c _1.,° b& '"' .211 

-':f 
, 

) 
, , 

<: ; ? ~ 1.,2 18.\ -- - .2 )6 

1t :: _1.90 ~ z •. 011 - .j 

<::::: ~ ~ j-=::;::::J , I 
)6 1.'5 20 ., 1).22 

<:: -;1 if =-::> 20.4 4·87 l~ 
I I 

1.j\ )6 

!lone -====-- 1.12 22.0 5·01 1 I. )6 

.750 ·500 
~ 1.29 19·0 4.91 l~ 

)6 t.!. s~i~: ""00' 
.\00 
~ 1.28 19.4 \ .\8 t= 5 Spl1t 

Php )6 
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TABLE 23 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

20° SWEPl'BACK WING 

, : 4.12 .... ... 0 • 10j 
A= o.}6 "U :: 0.1, 

AirtoU . oet.lon. (pa rallel t.o phne or .~trl) 

Root: KACA 64AOOC] 

T1p: MACA 641009 

Span Span 
!,/D .t r L.!: r T. ! ConrlguraUol'l '"" Cl(:L

lau
. CIII Cha rac ter i_tic s 

~jg. ~i~i· 
0.8,) C1..nu Rer.,. nce 

0 
'L 

.4 .8 1 .2 1.62 . 0 
"0ne - ~ 0.88 17·5 12.06 

~:J~ 
, , ,. 

I 
, 

6r • )015 

~ L17 14·5 6.42 

~ 
,. 

'0,," 

I 
, , , , , 

6r - 45° 
. 6')0 
SpHt 
~ 1.26 1}.1 5·}6 

~ 
,. 

P'h p 

I 
, , 

...- '\" 1.25 12 . 8 4·94 

~ " 
l~ 

, , 
)8 lfone r ==-- 0·90 16.,) 11.10 

. ',)0 

h L.B. 
Pl ap . 6')0 

Spl1t t====\ loB 1}.0 4.77 " Php 

~ 
, , 

Wone r==- 1.17 20.4 9·05 )8 

.700 
L.B. 
Plap .650 

SpUt r '=\ l.60 16.8 4 ·95 )8 
P'h p ---=-
"one r====- 1.25 20 . 0 9·15 ! ' :::; " 

1 .000 
L.!. 

I 
, , , , 

" ' P .650 1.66 11·8 ,. 
Spilt t====\ 5·10 
Flap -----,... 

I~ 
, I 

-c====- 0 · 92 19·5 10 .}O 
)8 

.~. r 
·}5° 
L.E. 
Slat 

5~?~t r '\ LB 1,.0 4·92 ~ " P'hp 

l 
J 

I 
i 
I 

I 
! 

__ J 
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TABLE 24 . - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

45° SWEPTBACK WING 

A,/4 ~ 4SO , ~ 4.0 .... . 9·0 . 101 
7\ = 1 .000 "=U =- 0.2Q 

A1 .. f 011 aeotion. (para ll e l t o pl ane or IIJl11t"LJ'yl 

"Root: HAC'" 65 AOo6 

Tlp. NACA 65 .4006 

.... n Span 

'"" <leL .... 
LI D a t t L.E . r 1' .E Conr1guruton 0.8S ~ .. C. Cha .. acUrl,t1c. Rer ..... ne. 

~/~j. f:/~i· 
0 .4 ' L.a 1.2 1.6 2.0 

~on. .:=- 1.01 :>,.0 ~.7} c~:i~L l!, 

, , , 

IIone 

~ · 500 
1.04 22 . 0 1: . 2 1 l!, Split 

~ 'hp 

• 

I 
J 
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TABLE 25 ·- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 2° SWEPI'BACK WING 

.". Spen 
~ L . E ~ ... Con t1gura t.1on .,lee 'Il ea 
eb/. ) (b / 2 ) 

!lone ===-

lIone 

·500 
S"l1t 
~ r l ep 

A'1b : 45° • • 6.0 .... . 6.0 . 10l. 
~ = 0 .600 wlln ... 0.20 

A1 .. f o11 u etlon. (par, l h l t.o phn. of .,_etl',.) 

Root: /u CA 65"006 

T1p: IACA 65 .\006 

C .... 4cLau 
L/D at 

0.65 c"" .. C. Ch arae hrhUc, 

0 
C

L .4 .6 1.2 1. 6 2 . 0 

'lL-.. 
1.0} 2~.5 }.,l 

C~l 
0 

LOa 22.8 4.'6 LL-

RefeNnce 

14 

'4 

... 
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TABLE 26. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46.33° SWEPTBACK WING 

'pon .pon PeDce ( L.E ( T.! 

~i~)· ~i~)· 
Locat lon 

('/2) 

.on. 

.ono .ono 

~ 
~ 
~ 

Ac/4 = 45
0 

• = 8.02 Ro .. = 4 .9 ' 101 
).. ~ 0.450 "'/lin EO.?, 

UrtoU sectiona (parallel to plane or 81l1D1trr) 

Root: JlJ.C4 6'1.\012 

Tip: NA.CA 6314012 

LIP at c .... ClcLIII •• Con!'l(Uratlon ~.&; "t.. .. C. Char_oter1.Ue. 

CL :w= ===- 1.01 21 . 0 8.40 .2 

.1 

0 

- .1 

{ ~ ==-- } l.lh }l.O 6 .05 

l \. ': 0° 

( 

{ ==- J 1.15 }l.O 6.,0 

I 
... = 40 

/ 

,;.; ~ 1.07 25 · 0 -- W-
c: ~ 1.10 27 .0 --~ 
~ 1.,0 27·0 9 ·60 ~ 

NACA 

Rer.rence 

l' 

l' 

l. 

l' 

l' 

J9 

! 
I 
I 

I 
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TABLE 26. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 
... 

46. 33° SWEPTBACK WING - Continued 

.. 

' .. n '''. Pence 
Ct... Gc

LJD U O .~Dc;:.u r L.E t T.E Conflgurat.lon ell! Character-lst. l es Rererenco ~i~l· ~iil· 
Location 

Ib / 2) 

CL 
0 .4 .8 1.2 1.6 2.0 

'~ .t======== 1.05 19 · 0 - c~2 

" ~ . 1 
.80 

0 .99 

- .1 

Won' ~ 1.09 27 ·0 8 .95 ~ )9 ~ .59 

bL {~ 1 1.19 } 1.0 --
)9 ~ .59 

1. :It 4° 

.150 
Won. ~ 

1.22 16 . 6 10 .~ ~ )9 Split 
I'bp 

'on< 

· 500 
c ~ 1.29 15. 6 10 .25 ~ )9 

Spltt Won. 
I'hp 

'. 
. 600 

c= ~ 
1_ 14 15. 6 10 . 25 ~ )9 

Spl it lCone 
1'1,. 

·150 
15. 6 bL !J:t. 

' 0'" ~ 1 . ,0 11 .05 )9 SpUt 
Plap 

·500 LL "",. ' ono ~ 1.40 15 . 6 10 ·72 ... Split 
Plap 

~ ~ 1.}1 14 .7 - LL ) 9 
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TABLE 26.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 33° SWEPTBACK WING - Continued 

Conr lguratl on ReC'erenee 

39 

CL 
o .4 . 8 1.2 1.6 2.0 

~':[ J IS\ 1.1} Z7 .0 

)9 

~ :~~S~ 
J9 

~ { <=: ::::::;;-., } 1.15 
)9 

22.0 -
1 .. ,. (,0 ' .00 '.00 V 

lJ-- { <::: === J 1.19 29·0 - " r ~ .89 1. = 1£0 

I~ ~ 1.08 27 ·0 - ~ J9 

~ c:5=3= 1.09 25·0 --~ )9 

~ lJ-{ €-==== ] 1 . 21 ,1.0 -- " 
1. = 40 

~ 
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TABLE 26.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

n •• 

46. 33 0 SWEPTBACK WING - Continued 

Pence 
Location 
,./2) 

'.M 

!fone 

S~~t !fone 
"lap 

'.M 

Con rtsurat.lon C. Chareclerhl1c. 

1.46 15.7 11.06 

1 .18 28.6 9.52 l~~ , , 
1.19 26.6 __ 

1.26 1,) . 6 __ 

1.29 14.6 --

l.j~ 14.6 -_ 

Reterence 

" 

" 

" 

" 

)9 

'9 

'9 

'9 

'9 
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TABLE 26. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

Span Span 

~ ... ~~! ·!f!.i~! 
(b/2l (b/2l 

.600 
Split 
I'lap 

46.33 0 SWEPTBACK WING - Continued 

Con r18ura tlcn Rae-renee 

o .4 L.S 1.2 1.62.0 

1.21 2 ~ .6 __ .If c. 
OJ>-..o<:t:;;J--_I+q ~-

-.1 I 

1.2~ 15.6 --

lIona ,. 

"on • 1.22 21.0 ,. ~ .... I---+--------+...-jf---J.---+......:.------+----l 

. 450 
L.I. 
Pl •• 

•• no 

, . 00 

1.28 17 .0 --

1.22 16.6 11.58 

{ ~ ] 1.~9 ~0.1 --

I,L .-0C;;-. ------' 

{ ~ ] 1.14 ~0.1 -

I, L -=~4.------~ 

~ ,. 

I~ ,. 

" 

, . 
,. 

,. 

,. 
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TABLE 26.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46.33° SWEPTBACK WING - Cont inued 

Spon Span 
P!'nee 4c

Llllalt 
LID at r t.E. r T.E C .... COl Characterist.lc, Reference ~i~j· ee .. l c e Loc,tion Con f iguraUon 0. 65 Ct.. .. 

(b iZ ) (b/") 

0 .4c,..8 1'> 1.6 2. 0 

'F==r l~ .~ 1.27 24.6 10.87 .1 
c. 

J' 
. SO -.: 

f~" {,c ~ J 1.40 28 .7 - - J' .~ .8c 
.}5O 

1. '" 0° SpI lt 
?lap 

~ ~ {~ } l.'~ }O · 7 -- J' 

.eO 
1. " 4° 

~ ?\ {~ ] 1.36 30·1 -- " 
. 89 

1 .. " 4° 

~ 1.26 15·6 10.1t0 ~ J' 

None 

l=L .450 
L.!. {= ~ J 1.35 }0·7 --Php 

" 
1. " 1.0 

~~ . ~ 1.28 16.0 ·lO . S2 f~ , , J • 
.,00 

51"'11 t 
Php . 80 

• 

~ l~ {~ } l. }E 2: .7 -- J' 

.SO 
1. '" 4° 

~ A {~ } 1.}6 26 ·7 -- J. 

.89 ". = hIS 

No", ~ . }} 1 ~ . ~ 10 ·27 f~ -# , , J. 

.600 

~ 
Srl1t 

.~ 
Php 

~ ~.H l~.~ 9·92 J, 

.80 

NACA 
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TABLE 26 . - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 33° SWEPTBACK WING - Continued 

'''' Span 
G.c

Llllu 
LID et r L.!. ~ .. i;; !'enee ' .... ~ CherecterllLtce Reru"nce ~"1C:. Locatton Conn gu re t 1 on 0.8'5 Ct.nu 

(b/2) (b/l) (bIz) 

~ 
.2 

'ono ..---==--=-,. 1.}7 11.6 lL6L .1 ,. 
0 

.~o;.o .1 
Ellt. 
Srlit 

F=t-
!'lap 

~ I.J6 16.6 -- ,. .~ .80 

~ 1.42 15·6 1l.39 1~ 1 I ,. 
Oono 

1~/1 {~\ } 1.52 28.6 I ,.. --
I • • 

.1,,)0 f=J , . L.!. . ~ 1.43 16.6 --Plap .~ 
·500 

.80 
Ell t. 
SpIlt 

~ 
I"lap 

{~ } l.52 27 ·0 --
" ~ .eO 

t. :; 0° 

1~)1 {~ } 1.53 26 .6 -- I , . ~ . 80 
1. :; 4° 

.ono ~\ 1.49 22·7 n .08 1"~1 I 

" 
.600 

r.,;t . r=r Spl1t 
!"lIp 

~\ 1. 54 24 .7 -~ " . ~ .80 

M I 
NOM NODe ,c ~ 1.24 26.8 -- J. 

~ -- t~ I I 1.,0 26.8 " I~ .So 

~ 1.29 >6.5 --~ " I~ .80 
.89 

.500 ·'50 NODe ..- " 1.21 16.6 -- F=:+- J. L.E. ~r!;t Plap 

·500 
NOM ..- ~ 1 .29 16.0 -- l~ )9 

~f!;t I 
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TABLE 26.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 33° SWEPTBACK WING - Continued 

Pence 
LocaU on 

(b1>1 

• on. 

rio. "'" S~t~" 
i.:~ ·')75' 
Flap . SO 

.1)7, 
L.E . 
P'hp 

N,"" 

!~~? ~ Split 
Plap 

·$7$ 
.eo 

Hone 

,;:~~ SpUt 
P'lap 

·575 .eo 

!fone 

' ,no .~ 
.~~5~ 

None 

'~5C I~ 
SpUt • 
Plep \, 

.,7> 

.eO 

Con(1gurll t l on 

CL 

1.21 20.1 __ :~:l ~ ':6 ':0 

1.~2 '6.6 _ !~ , 
l.~ 15.B - 1~ , 
1.~2 1$ . 0 -- I ~ , J I , 

l.~B , 6.2 -- 1 ~~Ij I I 

1.4$ 24.0 - 1 ~I I 

1.55 211 .0 - r=r 
1.25 ~ .O -- 1----1 I + I I , , 

1.~' 24 .6 - P-

Rflr.~nce 

J9 

)9 

J9 

J • 

J9 

" 

)9 

J9 

J9 

)9 

" 

~~- ---- --~~ ------ - -- -- ----- ~---
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TABLE 26.- SUMMARY OF LONGI TUDINAL STABILITY CHARACTERISTICS OF A 

46. 330 SWEPTBACK WING - Continued 

,po. Span 'c ~ . ~Dc;,:u ~. L .E ~ ... i~; ""nee C ..... Lilli •• e lll Ch e ra c tar la U C' Re t ere nce ... l ce Locat.ion Cont'lg.lratlon 
(b/2) (b/2) (b/2) 

CL 
0 .4 .8 1.2 1.6 2.0 

Nona 
~ 1.34 24.6 - - c~l--~ 

). 

o 1 I 
·5°0 
Spli t 

~ 
!"hp 

I~ ~ 1.40 24.6 -- ) ' 

.eo 

2).6 -- I~IJ , ,. .... ~ 1.37 I 
.600 

.~ t~~ , SpIlt 

~ 1 .42 2 • . 7 I ). Php - -
.eO 

.~ ~ I~I I ). l .43 24 ·7 - -

.eo 
·575 
L.S. 

I~, 
Php 

'.M ~ 1.56 24 .0 - - ,. 
I 

S\ ~ 1. 59 i2 . ~ -- I~ )' 

. \00 
2llt . 
Spl1t 

~ 
!'lap 

.~ ~ 1.57 25·0 -- )' 

~ 1.62 22 ·7 - - ~ " ~ eO 

. 600 

~ P Ext. 
~ 1.66 22 ·1 -- )9 Split 

Php 

--.~~~--~--- ~---~- --
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TABLE 26.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 330 SWEPTBACK WING - Continued 

hnea 
Lac.at1on 

(bl2) 

Con rlgurat.t on 

~"'.;50 
1. z: 4° 1t ::. _~.7eo 

c~ ::.5 
1.. ::. .,0 ¥ '" .1 4 it ::' _ ~ . 78° 

1 . J 31.1 

-~~-~ C =- --:::> 1.20· 31.\ 

c-~ ~ I .lt/' 31 . U 

c =- ::::>- 1.25 :)1.1 

---------

<L 
o . 4 .8 1.2 

'~ 

u 
u 

( 

LO 

LO 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I 

! 
------.---- J 

---------~ 
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TABLE 26.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 33° SWEPTBACK WING - Continued 

S .. n S .. n 'ance 
Ct... GeL.all: 

1/.0 at r L.'! t T.! LOC~t10D ConnB\l.Tatlon 0.85 c".~ C. Ch.r. c. ... rh tiCI Rar',..nea 

~i~i· ~i~;· (biZ) 

0 .• C;Z;.8 1 .2 1.6 -
'~ 40 

C -=-- ::> 1.40- 28. 8 - - -
~'" .~ 

1w ... 0 It :::t _~.80° -.' 

:5 ~ 40 C ;;e:;: 
l •• ~· .... - - -

10DI ~ . 800 \!- •. 14 0 
1 • ., .. 0 it .. -~ . 88 

~ C """" :? 1.52- .... - -- 40 

~ . - .060 

1" = .0 It z _ ~ .88° 

- 8 40 C ~ :::> 1 ... >0.< - --
1, • 0° 

¥., . 14 
1t ., _3 . 73° 

~ C = :::> 1. •• >0. ' - - - 40 

~ • . 0 46 

L" • 0° it'" _3 .86° ... 
• 

L.I. -

~ 
napa .. C """'" :::> 1.3ge >0 •• ---... t... .. ,0 it = .~ it " _3. ,.° Spl1t lton. 

nlpa 

M => c -==- 1. 4' >0 •• --- 40 

1" :I;: .0 
~ •. 14 

it • _3 .18° 

II 40 C --=- :> L52 30 • • - --

1, 11: .0 ~ . -.<>eo 
it'" -3.78 

- ~ 40 

~ C > 1. . 4& 30.4 - --
.BOO ¥ •. 1<0 

s... .. 0° i t • -3.73 
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TABLE 26.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

... 
L. B. 
Phpa 

46. 33 0 SWEPTBACK WING - Continued 

Configura tio n 

• CL 

o ., . S 1.2 1 . S 

~:~ .1 

-.: 

c __ = ___ => 
~ ,. .045 

it = -3.9zO 

.60 29.8 - --

- --==--- -C ___ -=--.",.-_ __ ::::> 1... 20.0 - - -
¥- . H 

~it ~I-_~~'_-~o._-"""""'_-_\--·_-'_-_.O~··~'t~~_~_'._.'_.+'_ ... -f-_20_.0+-_-_--+_~ ______ r_--""_I 

...... 37. ~ .000 _ 

C =;- --:::> 1. •• 27.' - --

1w ,. to + . . :10 it z -3.72° 

--l 
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TABLE 26.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 33° SWEPTBACK WING - Concluded 

Span Spin 'Inel 
a...: ... ~~; JC! .. i~; Locat\on Conflguratlon 
'(b/21 (bIz I (b/2) 

... ~.~ L.t. S~1t 
Flapi Pla,,1 . 616 

. OOU 

C -=---. =::? 1.70 

¥ ., -.oeo 
1 .. = 4° it '" .~.8~ 

o •• "1. . 81.21 .6 

28 . 6 - -- .'1\ ~: 
-.2 

-.. 
-.. 
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TABLE 27.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 33° SWEPTBACK WING 

!"e ne. 
Location 
(b/~) 

Hone 

Conf1gur ation 

A = 8 .0 

Men = 0 .19 'I. .. -4.2 "0] 
..,lrfol1 seet.lons (ptlralhl 1.0 plane of .7l11111etrJ) 

ROOt.~ } /fACio 6)A aerte_ , 12 percent. th1ct, 
cllaber ""1'1111 fro. 0.13 at root 

T1'P~ to 0 .86 at the Up 

l.~O 27.0° 7 ·5 

CL 
o .U .8 1.2 - 1.6 .'w:-. 2 

. 1 
C. 
o 

-.1 

.~ ~ ." .. ' LL 

I} ~ 
IJr' 

1'+"1 1 f =~ . 

un
published 

un
publbhad 

Un
published 

Un
published 

un
publb hed 

Un
pubUshsd 

un
pllbliahed 

un
publbhed 

""published 

un
publiahed. 

un
pubUahed 

un
publ1 ahe d 

I ""-I.pUb11 
... 

O 

.. 
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TABLE 27.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 330 SWEPTBACK WING - Continued 

Span Spon 'CI'ence 1./0 et r L.~. r T.E Cc", UC
L IllU 

~/~i· If':i~r' 
Locatton Conrtgurat. lon 0.81) ~u. C. Ch.,'.cc,erhUcl Rilrerence 

(b/Z.) 

0 ,L'\ S 1.2 1.6 

I~ ~ ~~ ~ ~ 
Un-

·575 1 .. '9 26 . 5° published 

.eO 

~ d un-~ ~ publ1lhed. 
None ·575 26 . 50 .eo 1.39 

.S9 

~ ~-=d ""-
~ publ1she d 

: 65 
1· '9 27.00 

. 0 

No .. ~ 1. 30 24 .20 b:L ""-publlehed 

·35 
or = 60° 

Sollt 
,lap, 

:~ ~ I~ un-
1.41- 22 . 50 

publhhed 

.eo or :- 60° 

U ""-
Non. None ~ 1. 34 24 .2:0 

publishe d 

ar :- 60° 

·50 

~ l~ ,i11t 

,57>" 
""-

hpe ~ 1.44 22 .20 
published 

.eo Or = 60° 

~ 
Un-

~ l~ 
publhhod 

·575 1.44 27 .00 

.eo or = ,0° 
. r ? 

U ""-
Nono ~ 1.35 24 .20 publ hhed 

or = 60° 

.60 
pUt. 
laPI 

I~ ~ I L 
Un-

1.4B 23.00 publlahed 

.Bo or :- 60° ::::::.. 

·50 
1 . 61 31 .2° . U ""-t )lt,. 'ono ====----. published 

Sl"ltt Or = ,0° !'hpI 

'" Ctm...x not reached. 

I 
I 

I 

I 
I 
I 

J 
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TABLE 27.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 33° SWEPTBACK WING - Continued 

,,,. Span !fence 

'.", ., WD a t r L.! t r .E Loc.,lon Con(1gurallon Llllax 0.8; 0,.,.. C. Characurlattc. IMr.reno. ~/~)· ~i~i· (b/2) 

0 .4 'L.8 1.2 1:6 

~ 1.610 ;1.20 
.2 ! 
~ 

un-~ pubU.ahed .eo 0t :: 30° ~; . 

~ 1.6,40 ,1.2° I ~ \In-I~ publbhed .eo Or :: 30° 
.;0 

MOM Es t. 
Snllt 
!'Iapa 

I~ ~ 1.58 25 .4Q 1 ~ llh-
publiahed · 515 .eo 0t :: ;0 

I~ ~ 1.59 25.40 1 ~ Un-
~~; Or :: 'o° publ1ahe4 

.99 

1.44 21.0° 9 .1, ~ un-.. "" .. ~ r===- publ lahad 

1.4; 2 1. 00 f~ 
\In-N.ne r==r- publhbed 

Or = 60° 
·50 

Sollt 
Plapa 

~ ~ un-
~ 1.49 ~1 .2° 11.0 publllhed 

.90 or :: 30° 

1 . 61 20 .2° I~ un-.4 ; .. ". ~ publlahed L .!. or = 00° Pbp. 
. ;0 

Est. 
SoUL 
Pupa 

1=---=:1 un-
~, 1. 68 24.4· 10 . , publlahed ~ .eo Or :: ,0° 

~ b=::- Un-
None 1.47 26. 5° 9·0 publbhed ~ .eo 

1.111' 31.2° b/ Un-Iton • Honll ...===- publ1ahed 

. ;0 
L . ! . 

Plapa 

· ~5 lr-A ""-Solit Nona 

~ 
1.42 21 . 2° publ1ahed 

'bp. 

o Cr.m.x not reaohed . 

-- -- -- --- - - - - - - - - - - - - -- ----------- -

-I 

__ J 

I 
I 

I 
I 

I 
I 
I 
I 
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TABLE 27.~ SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46.33° SWEPTBACK WING - Continued 

'_n Span '"enee e .. , Gc
Llll aJt 

t./D at. e L.E. r T.E Location Conr1guru.lon o.el) ~ax C. CI,.ra c t..rhllca ~(."nc. 

If:/~). 0..1c. 
Ib/~" (b/21 

0 .l. L.8 1 .2 1.6' 

.50 ·~:I~ 
Un-

Split ~one ~ !.h9 21 .:?o published 
Pia!). Or :: 60° 

.60 l~ 
Un-

Snlit None ~ 1 19 20 .0° publhhe d 
Plar_ 

Or ~ 60° 

I~ ~ 1 . lvl 20 .ho \1-0 Un-
pubibbed 

· J5 
SpIlt 
!'lap. 

~ ~ 1.1,6 21 .2° 10 · 5 j~ Un-
pubUshod 

.So Or :: 60° 

.50 

~ j~ un-Splft 
~ 1.jl 21 .0° publhhed Plap. 

.80 Or :: 60° 

·50 
L .!t. 

.60 

~ 
?lapa 

un-Spl1t 

~ 1 . j5 21.?o l~ P1&.,. publhhod 

.80 Or :: 60° 

• . Jj ~ ~ ~ un-SpUt 2l.zo Pla p. 1 .1a7 u·S publhhed 

.80 Or :: ,50° 

.jO ~ l~ 
Un· Split ~ 1 .1.19 (1)2 .4° publhhod 

?1&p. 
.So 0r= ,0° 

.60 

~ l~ 
Un-Spl1t 

~ I.jI, Z5 ·0o publbhod Plop., 

.80 or :: ,00 

· J5 I~ Un-
Ellt. ~ 1.51 20.'1" publhhod 
SpUt ~ Fla p. .80 Or = 60° 

. jO ~ 1.1J6 lO .lio I ~ un-
SJ:t. ~ publbhod 

S,llt .80 r :: 60° 
Plap3 

.60 I Un-S:;llit. -:-->d S.,llt. ~ 1.72 'O . Oll pubU.bod 
Phnl ~ o~ :: 60° .eo 

.. 

~--------. 
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TABLE 27.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

Sptlrt Span 
r L.E. t T.! 

Pc:ii,· ~i~i· 

·~5 
EJt t.. 
SpIlt 
Plaps 

·50 
!i!J.t. 
Spl1 t 
P'hpi 

No"" 

46. 33° SWEPTBACK WING - Continued 

P'ence 
Loc a Uon 

(b/2l 

'~5 - 575 
. 80 

~5 · 575 .eo 
·69 

'0"" 

Cont1gurat lon 

C
L o .4 .8 1.2 1.6 

1 . 61 28 .00 10 . 9 

tc=:1 

Un
publbhecl 

Un
publhhed 

Un
publ llhed 

Un
publiahe d 

Un
pubUahed 

L;q~ 
!'lapa 'OM ~------t--------------------+--i----t----~~---------------t----~ 

I~ 

.195 
L.! . 
PlaplJ 

.one 
Inboard e nd 

Un
publ1shed 

Un
publhhed ~ 1.39 ,0 .0° 11 . 0 ~ 

or L.E. ".p 
None !--A~·t .40~b/2 --\---t-t------t--i-~-.< -r---1

1Jn

_ 

~ .Id 29 .0° publ1shed 
~~ :~I) of L.S. nap 
at .4Ob/2 

.on. ~ 
·575 ~ . eo 

rE.~ 
Inboar(l end 
or L.E. nap. 
et .S25b/? 

Un
publ1ahocl 

o ~ not re.ched. 

• 
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TABLE 27· -~. SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 33° SWEPTBACK WING - Concluded 

'pon sp.n =>ence C.", Gc
LIIIU 

~D at. r L.! r T.t Loelt1on Conrlgur.t1on 0.85 '1., .. c;. Char. CUrt. Ltc. R.r .... nc. 
~/i)· ~ii)e ('0/2 ) 

~ 
CL 

10 .l .8 1.2 1.6 
Un· e::::::=- 1.39 26.2° ~f=a~ I 

pl,l'olbhed 

P-ence hetrl't. "" 0 .1 ; 1. .. ..: 

~ 26.;° ~ tl>. 
~ 1.41 pU'oUahed 

Pence he t £ht "' O.lljt.IIIU 
0 · 30 1. 

Ll -& ....-:::=-==- 4- l..n 27 .2° 7 ·5 1». 
pu'oltahed 

1. ,; 0 0 

lfono 'ono None 

LL tl>. 

f~--9- 1.32 27.20 publ1ahed 

1 . = 4° 

~ LL f~ -j- Un-lou, 20 .2° 8·5 publbhad 

J~5 . 
1 = 0° . 

~ bJ-&-~ -3? __ ~ 1.1,5 27 .4° Un-
publ 1ahed 

.• 0 
l ", ::: 4° 

~ ~ f~'3 1.68 31 .2° un· .45 ·50 publiah.ed L.S. '" Flaps SoUl. 
1I'1" r" s 

Or = 30° s.. ::: 4° 

.. CLmax not re.ched. 

G-_________ _____ ~ _________ ~ _____ 
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TABLE 28.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 55° SWEPTBACK WING 

Acfl, = 45
0 

A ' 5·00 R .... = 10 .0 • 10J 
). = 0 . ,65 "mu: = 0 .25 

A1 r f ol1 ae etlon, ( per pend i cu lar to 0 .250 chord 11ne) 

... n 5p. n U C-. 
ClcLmu: 

WD at r L . lL r T.E A1rfoll Ct",. C. Charac te r h U e , Referenc. 

~i~i· t':i~ i· Confi gura ti on Se c t lon 0. 85 c,.,~ 

CL :p= ===- 64 40 10 0 .95 2 ~. O 4.)7 C. 

" 0 

-. 1 

<::::- ===- -=::::> 6LAOI O 0 ·95 2~ . O 6.82 ~ '" 
Mone 'OM 

~ '" - ~ 6l.iA8 10 1. 06 n ·O 12.02 

~=-=::::::> ~ " 64 A8 10 1.06 2u .a 12.00 

--

.. 
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TABLE 29 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 6° SWEPrBACK WING 

.1..,/4 = L~O A = 6.0 " .. , = 8.0 . 1061 
'" '" 0.500 

Alrfotl tlect l on. (perpendlcuhr to 0 . 2'50 cho rd l 1ne) 

s~. Spe. H.C~ Ac
Llllu 

WD at r L.! r T.E A1rrol1 C"', c;. Charac Lerht.l e, Reference 

~i~)' ~i~;e 
Con! t gu r. II on 

Seetlon 
a.St; Ct..nu 

CL 
0 ·L .8 1 . 2 1.62 . 0 

~;'~ '" <...::.-.::...~ ~ 6,,"010 O·9fJ 2". . 0 7.60 . 1 

0 

- . 1 

IIone 'on. 

<:::-===- ~ 64 ,,810 1.09 21.5 1'·50 ~ '" 
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TABLE 30.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 7° SWEPI'BACK WING 

/\,/1. : .~O A : • . 00 "0 .. : 11., • 101 
A. - 0 .600 "I!IU :' 0.20 

Air-roll Ject 1001 !perellel to olane or .~. tr,.) 

Root : !iACA 65A006 

Ttt:': 'UCA 6')-'006 

Spa' spa. 
ac

Llll u 
VD at t L . ! ~. T.£ Conn gu r a ticn ct"" ell! Cha rac ur- h tl e , Re t ere nCI ~ii)' (b/~i' 0.85 ct...n1LX 

0 .4 CL •9 1.2 1 . & 2.0 

Hone ===- 1.05 25·0 '.72 c~; r I u. 
I 

·.1 
Itone 

.~ 

1."" •. 66 t =:::::;,L , SpIt t 
~ 

20 . 0 U. P'hp 

6r • '}t/J 

I :tone ~ 1 . 01 2,;·5 ,·n "9 11, 
·HO 
L.E. 
Dr,:,op 

6" • JOO 

·500 !-=L:::;> \' 
, 

Sollt ?===\ 1.0~ 26.6 4.7~ 1. "lap 

lin • 10° 

~ 1.02 2 •. , !> · 9S t I ,f.. , I , U. 

On · 20" 

~~,a l c::::===- 1.06 27.S ,.61 , 1. 

Ifon. 
6n - YJ

o 

f ~ 1.20 }O.O 2 .Sl, ,q. "i I I U. 

6a - 40° 

~ t:===- 1 . IL }0·7 ,.O} U. 

. ~OO 
L.r. 

~, 
nr.:>op 6n . Hie 

C '=\ l .oL 16 . ~ 5 · 20 , I 14 

On · "", 

l~ I , 
~ 1.11 2 1.8 • ·72 U. 

. ~OO 
Sollt 

t~~1 
P'hp On · ,.,. 

?===\ ). . 12 " ·7 ~ ·58 I , 

'. 
6n • UOO 

f ?==\ ).05 ?4 .') • • '17 <t::::l>J. , , u. 

- _---l 
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.. 

TABLE 30 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

46. 7° SWEPl'BACK WING - Conclude d 

'''. '''. ct"" ac
LIIIU 

LID It. 
t I. .l!! !D!.i~; Conflguretton 0.85 Ct",~ e lll Chlrl c ter1sUcl Rerlr."ce 

~i~~· (bI z) 

6n • 20° 
0 .t.. Ci.. 8 1.2 1 . 6 2.0 

}.o6 2'7.0 4.18 c~1~ 14 

c:====-
.. : -

1'(ln., 

1 
6n . ~o J , , 14 

e==- 1.09 2'7 .8 4.22 , 
.620 
L.E. 
Cro!)p 

~ 
6n • 200 

~ 
l.lZ 2' · 5 ,.01 

, , 14 

·500 
Spltt 
l"hp &n • JOO t~q, 

?===\ 
1.14 22 .0 ·97 

, 14 

6n • 20° r2, 
~ 

LOS 26 . , ' ·99 
, 14 

6n • )00 ~f, , 

."'" e==- 1.09 2'7 .8 4·1n 14 

~ . )00 ~, ~ 1.12 25 ·0 6 ·34 
, , 14 

·750 
L.!. 
DrOOll 

6" _ 20° ~~ , , 14 
~ 

1.11& 22 . 8 5·l8 

·500 ." . )t)' 

t=d' 'l'Iltt 20 .0 
, 14 

Php ~ 
1.16 5·l7 

. 
I~ 6" - )0 14 

~ 
1.22 ?1.9 6.12 , , 

6
n 

• ZOO ~, , , 
.c==- 1.0e 26., 5· 11 14 

'one 

~, 6" • JO
O 

~ 
1.15 26.S 6 .ll 14 

1.000 
L.E. 
Droop 

6" • 20° ~, ~ 
1.10 21.'l 6.45 , 14 

·SOO 
Spltt 
l'hp 

~ 6" • )00 
le.6 

?===\ 
1.16 7·35 14 
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.. 

TABLE 31. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47. 5° SWEPT BACK WING 

[~ 
A •• , ,,0 .. ,." ' .. ' ,., '1 

).:: 0 .,10 "au:: 0.01 

AirfoIl sections (perpendIcular to 0.250 chord l1n.i 
Root: "'ACA 641"112 

Tt p : NACA 64 1"11 2 

Span Span 
r L . B , r T. E 

Configur ation 
~i~i· ~i~ie 

~LIIIU; Wo "" ' .... CUI Cha,.acU r h t.1 ca Re rere noe 0.85 Ctmu 

, 
0 .4 L.8 1.2 1.6 2 .0 

Nona None ( C" ~ ~ 0 ·98 22.0 7·S7 ~~,r 1 0' 

6
n 

.. )Do t==t;1 ( ...c :=-. ~ I .au 2}.O 6.}2 h) 

C· " 0.10 

6n • JOO 

( ===--= ~ 1.02 24.0 1 
I 

6.20 

"'"" 0' 
C· .. 0 . 15 

6n .. )00 

!~ ( ~ -=-- ~ I.D} 2} . O 6.04 L, 
Coo .. 0.20 

bn .. ",0 

( ~ I .D} 2} . 'j . ·74 t~ 1 L, == " .. o. 0 

6n .. "$0 

! ( ~ 1.01 11.. .0 S·7> ) ' oj 
Ilone ===-

C· " O.IS r 

6n " ",0 

~ ' ·lOO ( ===- ~ 1.01 22.0 7· 1S LJ L. E: . , 
P'hp 

COl .. 0 . 20 

6n .. 60° 

l~ ~ ~ 1. 0L 2}.O 6.~2 t~ 1 LJ 

Col .. 0.10 

b
n 

.. 6(10 

( ~ 1.02 2u.O 5 ·60 t--=, 0' . == COl .. 0.15 

6n .. 60° 

1~1 C ~ 1.01 24.0 7 ·79 hJ 
C' -=--

I e" .. 0 . 20 

6n .. YJ
o 

1~' .4l0 ( ====-~ l.18 21. 5 ,·91 
OJ 

Pl. 1n , 
Plap C .. .. ouo 

6n .. liS 

( ~ 1.1L! 20 . 0 6 .68 1~' L, = " C" " 0 . 10 

~ .. 
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TABLE 31 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

. ~OO 
t . ! . 
n •• 

·~50 
L.E . Nona 
P'hp 

.655 
1"ht n 

" lap 

47. 5° SWEPTBACK WING - Continued 

ConrlguraUon 

... . .,.0 

c 

C'·· O.lO 

6 n ~ )tOO 

C::--s===-----~ 

C"" 0 .15 

." . ~.,.~O------------------
C~__.<='====---~ 

C', .. 0 . 20 

to., .. MO 

C;...-=-----~ 
C"" 0 . 10 

... ·CL.;..SO _______ --.,_ 

=== ~ 

.. . ;_O-===-------~-
COO . 0 . 10 

t" .. 0.15 

.. ·c~_O---------~_ 
~---Fr===;;:c,,::::;. O~.20=---

6n .. )0 

CL o .4 .8 1 .2 1.62.0 

1.22 20.0; 6. 10 
01 ' , I I I C. 

- .1 --=>0 

1.08 22 . 0; 5·40 1-----=S ' 
1.07 2~ . O 5·l5 

J .06 2' . 5 1~ 1 

1 . 0 6 24 . 0 6 . 12 I --S' 

5·75 

1 .07 21. .0 5·)5 1~ ' 

1·07 2'.5 1 <===S ' 

1 . 06 24 .0 6.24 1 '~ 

LO' u .S 7 ·94 

6. ~6 t~' 

1.26 20 . 5 5.95 I~ 

L, 

L, 

L) 

L) 

L, 

L) 
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TABLE 31. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTI CS OF A 

47. 5° SWEPrBACK WING - Cont i nued 

. ,... Spa • 

c .... ~L • • x 
tiD at. t L. Z . t T .E 

C. Charae t.a rl . t.1c. Re t. Nl ne. ~i~i ' ~i~l· 
Conflgure l. 10n O.So; ~u 

tin ' )00 
C 

0 .4 L.8 1.2 1.& 2 . 0 
( ~ l.tD 2,.0 ~. }~ 

~~,1 
, 
~' I I 

" ..c:: :::::=:-. 

c" - 0 .10 

On - )0° 

1~' ( ~ L I O 2, . 0 ~ . }4 

" = 
" · 0.1< 

611 ' JOO 

t 
I 

( ~ 1.06 22 . 0 ~·29 1 " --=--==-
e'" 0 .20 · bn .. 16 

~ 1-=)' " ( ~ ==-- 1.09 2, . 0 ~ · 4~ 

C" " 0.10 

.• 00 .,, ·16 · t L.t. Mone ( ~ 1.08 22 .0 5·41 =±o::j' 4J !'lI p ~ 

" . 0.15 

6n • 16° 

1 ~ ' ( ,£ ~ ~ ].0'5 22 . 0 5 ·95 " , 
~ .. . 0.20 

·· c 1 ~ ' ~ 1.01 2,.0 6.,. " tC:.....2 ==---
C'" 0 .10 

." • 60' 

1----='; ' C ~ 1.01 23 · 0 5· '5 " . ==-= 
Coo .. 0.15 

6n ' 60° 

r 
I !::: 

" C G=- =-- ~ looh 2, .0 6,80 
1 

.'}O 4· ·C· 
t~' Ph l n 

=~ 1. 18 21.0 6 .28 " !'la p 
C· , 0. 10 

· t . 6,~ 6n ' uS 

" Pl atn ( === ~ 1. 2) 21. 5 6. 15 
--../ "lap ... • C'" 0.10 

~ . )00 

~' " C ...c:..- -----==- ~ 1.10 22 .0 5 · 20 

J.l' . -".,li 

6n ' )00 

) ' " ( ~~ ~ 1.06 22 . 0 ~ . }O 

COl .. 0.2'0 

.'~O 6n • 45° 

l~' 
L .t. . ... 

~ ') P'la p C .c --==-- 1.09 22.0 ~.}O 

C· , 0. 10 

6" • lISo 

1 ~' c ~ 22 . 0 ~ .4~ " ---=-==---- 1.07 . 
C'" 0.15 

6n • 45° 

t 
I 

" ( ~ ~ 1.06 22.0 6.00 , 
c"- 0 . 2'1 

~ 
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TABLE 31.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47.5° SWEPT BACK WING - Concluded 

• po. Spo • 
Clc

LIIIAlt 
1./0 at r L.B . r T.E c"'. C. Cha rac ter-hUe. Reter-nce 

~i~i· I?:/~ j. 
Conngura tion 0.85 ~IU 

'n 0 "". 

CL 
0 .4 .8 1.2 1.6 2.0 

( ~ 1.09 2~·5 5·45 
c~l "" 

L) ===== 
c· .. D.llI .1 

.450 
6n .. 60° 

t ===:::; 
L.!. lone e == ~ 1.09 22·5 5·95 LJ 
Plop . 

COl .. 0 . 15 

6n .. 6(/J 

1 "'ill ' ( ~ 1.08 2~ . O 5·75 LJ 

I ====-= 
c· .. 0.20 

6n .. XJO 

I ( a-= ~ 1.09 22.0 5·jO 'I LJ 

COl .. 0.1 

." oJ<>" 1= ( ~ l.08 22.0 5·10 ) LJ , == COl .. 0.20 

6n .. 10° 1=l=lz:j1 ( x= ~ ~ 1.09 2~.O 5·45 

"' ·500 Ion. L.!. _Co 0 

Plap 
(ill .. USO 

l 
, , 

e 6 ----- ~ 1.09 2~.O 5·45 '1 
LJ 

'n ot ~ 1.08 22 . 0 5·75 l=±::Jo<;; , 
LJ . === Coo .. 0. 20 

6n .. 60° 

1 
IOJ 

( ~ 1.06 2)·5 6 .10 LJ = 
C" .. 0.15 

6n " )tJ0 

~ ')' ( .....<::::::::: -==- ~ 1.08 22.0 6.}O 
LJ 

COl .. 0.15 

(I ")00 

t . c ~ 1.09 22.0 5·80 LJ c===-----
L~r. I,.,. e" " 0.20 

Plap 6n .. 16° 

1~' c e=- ~ 1.10 2~ . 0 5·50 L) 

C" .. 0.10 

6n .. 16° 

1 'r' e ===-= ~ 1 . 09 22.0 5·90 L) , 
" 0 '" 

6n • JOO 1:=h- .. , , 
e ~ l.OB 22.0 6.45 LJ 

...c ==-.. 
c .. .. 0.15 

.600 
6n .. JOO 

l~ r)' L .t. Hone e ~ 1.09 2,.0 5·45 LJ 
Plap . == C" " 0.20 

• 6n " 45° l-=±=I ')' ( ~ 1.10 22·5 6.46 LJ 
~ ~ , 

C" .. 0.20 

~ 
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TABLE 32.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

( 

.440 

47. 5° SWEPTBACK WING 

Con ~ tsur .. tton 

==== 

A,/4 = 45
0 

A l 4 .. 6 ] 

A'~:' :.:::" ... ,per .. :.,:.,,, to 0.:;:: ~o:::~~: 
Root: !fACA 61. 1 ... '112 

Tip: NACA 6L 1 A112 

S~;~i:n eLm .. :'ICL ... c. Cnarae t.lu'h l 1e. 
uelio 

CL 
o .h .8 1.2 1.6 2.0 

c~!~1 , ., 
s .. hd 1.0) -- ---

0.0050 1.20 0.17 "sI> r" 
0.005e 1.12 0.09 Mod e rate :r=' 

Suetton 

I 0.0050 0·98 0.21 Po • • r 
'!'allure 

Out- r===7' Bo.'" 1.1' 0.10 H1gh 
0 . 00')0 

0.0050 r ~ .nd 1.19 0.16 H'" 0.40e 

0.005e I--===-> .n. 1.1, 0.10 ModerUA 
o.UOe 

Out-

~ 
board 
0.0050 1.17 0.,4 ., .. .n. 
0.025e 1.20 0. 11 Hlgh ~ 
0 . 0250 1.1, 0 .10 Mode ra te t '-...J 

0.025e rz:; .n. 1.19 0.16 ., .. 
0 .40e 

0.025e 

1 .nd 1.1, 0.1, lII odu 'ata 
o.bOo ----' 

S •• led 1.06 -- --- 1 ----...J 

~r!~t C __ -'~"-_==""''----__ _ 1 
, , 

~ 0.005e 1.22 0.16 H'" ~ 

1 
, , 

0.0050 1.1, 0.07 liIocI.rata ~ 

~ 

41. 

w. 

W. 

W. 

W. 

W. 

41. 

41. 

w. 

W. 

U 

w. 

41. 

W. 

.. 

• 

• 
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TABLE 32.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47.5° SWEPTBACK WING - Concluded 

Span Span 
suct.1on Ct.". F LIII1.x 

r L.B r T.E ConrtturlUon CQ CGI Chu'ac: t.ar l. U c l Rat. renee 
'c':i~;' ~i~ ~e Slou 

Iretta 

CL 
OU t - 0 .0 .8 1.2 1.6 2.0 

W. bOlrd 1. 18 0.12 H'gh ~~J ---...J O. oo';c 

t--j 0.005e 
1 . 20 0 .11. W. .n. H'gh 

.LIto D.LOe 

'0." S flll t e ~ ~ P" lap 
o.OO,;c I ---.J 

. nd lo U 0 .0, Node". tAt W. 0 . 40c 

OU t- 1----.) , 
b ..... 

W. 0.005e 1 . 20 0 . 11. H'"" 
o~~fc 

seale d l. l ~ - -- r=') W. 

.h70 

~~ L.E. Wone e n .n 
0 . 021)e 1 . 19 0.06 "gh fl W. 

l 
, , , , 

0 .02';e 1.17 o.olo Moderlt.e 1 w. 

S .. h d 1. 18 - -- t~ W. 

· ';90 

~ L.E. "onl e ~ 0.025e 1 . 2 1 0 .03 H16h W. n •• ====--
• t 

I , 

1 
, , 

0 . 025e 1. 20 0.02 lIodl ra te W. 

r~ 
, , 

Soatl cS 1.18 -- -- w. 

l' ~ , 
0.025e 1.26 0 . 08 H' gh W. 

I I I , 
W. 0 . 02';c 1 .23 0.05 Mode r l t.. ~ 

·700 
L.I . Hon. e ~ , lap F 

Sue t.1 on 1- ......,1 , , 
W. 

0 .025c 1.09 -0 . 17 Power 
,. 1hu'. 

O. 02')c l ' S I I W. 
. n. 1.29 0.11 H'"" 

0 .40c 

I 
I , I I I 0 . 025e W. . n. 1.'0 0 .06 Mod era te -.....) 

0.40c 

.Loo 

l~ 
I , 

!pH t ( ~ O.Ol;e 1.32 - Hle;h W. 
php E ~ 
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TABLE 33 .- SUMMARY OF LONGITUDI NAL STABILITY CHARACTERISTICS OF A 

'po. Span 
r L.t ~ ... ~iija (bi~ja 

'OM C 

"one 

.450 
C SpUt 

P'lap 

·780 
C SpUt 

P'lap 

47. 5° SWEPI'BACK WING 

Con figuration 

~= 0 .,)0 0 • = }oj ::: : ~::; 106 j 
.Urfoll aactlons lperpendl cu lar to 0.250 chord 11ne) 

Root: IiIACA 641Al12 

1'lp: NACA 6LIAllZ 

Suctlon C .... 
Slot. ~L ... ax C

Q C. Charact.erlsllc!l 

0 .LCL .8 1.2 1.6 2.0 

Seded 0·96 21.0 0 

~~: ~ 
, 
~ 

, , 

0. 2Oe loll 2,.0 0.026 } 
, 
~' 

, I 

I I I I I 

o . bOc 1.06 22.0 0. 0211 

+ 
-V 

~ 
I I I I 

~ 0·7Oe 1.00 22.0 0 . 026 -0 
= 

0.20c 

t 
I , I , I 

o.bOe l.n 22·5 0.0,4 
~ 

0.2Oc 
O·7OC 

1.1Z 24.0 0 .0" ! I .!v' 
, , 

+ 
I 
~' 

, , 
o .bOe 1.08 zb.o 0.0'5 
0·100 

0.200 1 --=tv' I I 

o .bOe loll z,.o 0.0,6 
0 ·100 

t 
I , I I I 

sealed 1.02 16.0 0 ~ 

~ ===--y } I I I I I 
O.ZOc 
0.400 1.14 19·0 0.0)1 ~ 
0·70,; 

f 
I I I I I 

Se.led 1.09 15 · 5 0 ----.J 
~ ~ I I I , 

f 
I 

0.2Oe 
0.400 1.23 la ·S 0.0'7 
0 · 70c ~ 

~--~------ ------ -

Reference 

~S 

~S 

~S 

~ 

~s 

~s 

~5 

~S 

~ 

~ 

~ 

~ 

• 

I 
I 

----------___ J 
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TABLE 33 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47.5° SWEPTBACK WING - Concluded 
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TABLE 34. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47. 5° SWEPTBACK WING 

Con(lgu.raUon 

Ac/4 : 45° 4' ' .50 ..... 6.S • 10
6 j 

i\ ~ 0.500 

"1.1'(011 seet10na {nol"1r;.\ t.o U.na or •• X1-III\la t.hlclm ••• } 

Root: 10 Pl'J'cent thiok clrc\U,,1' arc 

1'1.p: 10 percent thick c lreuhr erc 

12. 1.6 2. 0 

c • 
• 1 

!fone Itone I-----------t-t--t--i-::-------t-----j 

~o 0.& 2} . 5 4.08 

o.SS 2,.0 '.57 

R~~a., !fone I-----------t-t--t---t-------t----I 
L.!. L 
~ 0.87 25 ·0 '·19 r oj I 

6r - LaO 1 
;~~n ~ 0.94 18 .0 5.00 ~ I I I 
Php 

~------------------~_r--+---_r~--------_r--~ 

t::J" 
lfene I--+-----------+-+-i---t-.-! -----j------j 

lit · zrP 

~ L OI 19·5 5·05 J I I I !,6 

1.000 
Pbln 
Pl.p 

1.05 18 .0 4.e5 

1 .05 16.0 4.69 

I 
I 

I 
I 
I 

I 
I 
I 
I 

_~_J 
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TABLE 34.- SUMMARY OF LONGITUDI NAL STABILITY CHARACTERISTICS OF A 

47.5° SWEPl'BACK WING - Continued 

~~n Spon 
r t.! r T.! Conriguratlon Ct". GcLIIIU . 

L/D It 
Tiee ~i~i· 

0.85 c"" .. Co. Characler1ltt.c. R.r .... no. 
(./21 

6n .. 20° "t 
0 oJ, .a 1.2 1.6 2.0 

~ 0 . 8B 2}.6 ".48 c·~r 
... , , I 

-.1 

.one 
6
n

" )0 

~ .250 
L.t. ~ 0.86 25·6 ~ · 57 

, I , .. 
""=. 

6n " )00 

t .500 ~ 
I I , 

Phlb ~ 0·91 17·0 4.69 .. 
,lap 

6ft .. 10° 

f ~ 0·92 22·5 ~·72 ,=~ I I I .. 
"one bn .. ) 0° 

·500 

1 L.!. ~" I 
I , 

"," .. p ~ 1.02- 26." ).21 .. 
6n .. )O~ 0 

f 
ti t " 60 

·500 I I I I .. 
Phin ~ 1.06 24.2 ~ . 40 
,lap J'\. 

6n .. 'lO0 

~I I I .. 
~ 1.00 26.~ 4.~6 

"on' 
6

n
" )t)0 

~I .750 
1.10 26 .~ ' ·74 I .. t.!. ~ o> .. p 

b
n 

.. )('0 bt " 60° 

t ·500 ::=J I , .. 
l'h1n ~ 1.16 22.0 4,),1 
1'1 •• 

bn " 10° 

t ~ 0·94 24·5 4.17 
I ~c. , I I .. 

6n .. 20 

~ I I 

1.000 ~ 1.00 26., 5·49 .. 
t .'!. !fone 
Dl-oop 

0 

~, 
6n .. )0 

I , 
~ . 05- 26." 6 .61 .. 

6n .. 1.0° 

~' .07 26., 7.28 .. 
~ 

• ~. not ,...cn.4 
~ 
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TABLE 34.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47.5° SWEPTBACK WING - Concluded 

.500 
Pld n 
-lap 

Cont 19ura t ion 

loll 18.2 6.08 

1 .1 S 20 . 0 6.11 

l.06 21.2 5.81 

1.10 20.0 5.~5 

1.10 16 .0 4.86 

<t-
o -4 .8 1..2 1.6 2.0 

cO f I I I I I 

:: -J 

f~" I 

{~'" 

1.000 1.000 6 • • 20· ~ 6

r 
• LO· 1.16 18.0 5.80 t ~ I I 

t.!. Plain 

Droop Plap ~-:-:;;--------:---.:;---t-t--r--t-;::;:::;:::::;::=;:~=I--J 
6. · leo ~ 6

r
• ",. 1.17 16 . 0 5.ll f ~' I I 

6r · 20 

" . )0 

1.23 20.0 5 .91 

1.2, 18.0 5·09 

1.25 2,.0 6.07 

6 r · 6o° 

1.26 22.0 5.16 

1 

I 
I 

I 

I 
~ 
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TABLE 35.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47. 7° SWEPrBACK WING 

'pon .pon 
r L.! r T.E 

~i~) ' De1'f ce Conflsuratlon 
(bIZ) 

==--

~==--

Mono 

<::~ ~ 
it • _4.10. 

~==-
It = . , . 10. 

S~?~t <::~ n • • 

.600 
SpUt <:: ~ l"lap 

M ... 

.618 
Spl1 t e "\ Plao 

·972 
c "\ So11 t 

Pho 

.450 
fii~\gle <:::: =::::;,. , ... 

!'lIp 

·400 
~:1. = -, Ot U 

Plap 

~r . 10 <:::: =--~ ., .. 
Plap 

~,16 
~~t~·d = -" Php 

~~6 
FO~:: 

Pbp 
= -

• Cu.- x not rea ched. 

A'/4 .450 A: 5.10 .. " : 6.00 , 10] 
A :: 0. )8, a&..u :: 0.1.4 

A1rfoll .. cUcn. (~rP41 nd lC\1la r to. 0.286 cho rd 11na) 

Roo t : HACA 64- 210 

1"lPI HACA 64-210 

e .... UCLma• LID lit 

0.85 C1...nu. c.n Character-hUea 

0 .4 "" .S 1.2 1.6 2 .0 

1.16 26 . 1 4·52 ,'~ , , ~~,o ___ l_, 

~ \.16 26 .1 1 ·61 ~ , 

t~ ~ 1 . ,00- 26 . 2 --
~ = - .05' 

==-

~ :=:::::> 1. 1 22.0 --
¥ : .}& 

~ 1.11 2 1 · 7 -- t-=:=f, , , 

!=J , , 
~ 1. 19 2 1.0 --

1.22 21J .O 1.41 

1 ~ 
, , 

I ;) 
, , 

1. 34 24 .3 ---

~ 
1.26 2').0 -- [==:1 

I ~ 
I , 

1.} 2,.0 7 ·21 

to _ )00 l:::? ' => 1·36 25 · 0 5.82 

1 

, , 
1.~9 2, .2 7.62 ---J 

"'f ':] ' , 
1 .42 2,.0 7·54 

•. 2 

Rererence 

" 

"' 

.. 

.. 

"' 

to 

., 

"' 

L' 

L7 

L' 

" 

L7 

- - ~- --~- - - --- --~-
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TABLE 35.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47. 7° SWEPTBACK WING - Continued 

' .. n ' .. n 
c .... 4cLe,u . 

WO a t t L.S . ~.i~: Cont l gura t. 1cn 0.8S ct..nu C. Chal"a e t a r l,.a U c a ~re~l'\e. 

~iii· ('0/2) 

CL 

0 .4 .5 1.2 1.62.0 

.'j , J 
, 

·978 
~bl. 

1.61 24 ·5 - .j tto. = - --- L7 ' lap 

-.. 
- ·5 

,.,.,. . 
jz=:y 6( · JO 

on",,, 
< ~ 1.30 18.0 -- L8 "l a p 

.450 

t~ 
, .on. ~~\~: ~ 1 . 25 19 · 0 -- to 

P' l a p 

.450 

t~ 
, 

~~t. 

<:::=~ ~ 1·3' 21.0 L8 Soli t - -P'h p 

6r • 1&D 

I 
I I , I , 

.600 

-1 ! lIt. <.:::::=: =--==-, ~ l. j9 2 1.0 -- .. :loU t 
P'le p 

.400 
I-~ I , 

SpIlt ~ 1.20 2,.0 7 . 28 "' .275 Flap 

L.!: . 

l~ 
I P'lap . 618 

SDl1t r= ~ 1.21 20.0 7 ·62 L7 
!'l ap 

~ 
, 

27·2 4 .75 L7 ,-co 1.2} 

Won. 

p I 

<:::=,-co ~ ~ 1. ,6· 3·94 L8 29 · ' 

.400 

~~ 
, 

L7 Spll t r= '"\ 1.26 2'j .O 6.92 
Pla p 

I~ 
I I 

.~!'i t <':::::=:,c '"' ~ 1. 32 ' 1.0 -- L8 Flap 

t~ 
, I ·375 · 500 

r= ~ l.H 25·0 6 .18 47 t .! . SplH 
!'lap Php 

l~ 
, , .600 

16.0 SpIlt <.:::::=:~ ~ 1.34 --- .. P'le p 

I~ 
I , 

.618 
1.~5· 2'·5 6 ·72 SDUt ,-co ~ L7 P'lap 

·.50 ~' s tnsle 
<:::=-=~ ~ 1.45 29 · 5 • . 60 

SO ~~!~ 

" etA." not rea che d. 
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TABLE 35.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47. 7° SWEPTBACK WING - Continued 

'pon Span 
I1c

Lmu 
J,./D at . r L. E. r T.t c"', em Charae ter l .ltlce Ret. renee 

~ii~· i7':ii'· 
Confi gurat ion 0 . 81) Ctmu 

c
L 

.400 0 ·4 .8 1.2 L6 2.0 

~::: 1. ,& 22·5 6 ·13 

:<1 
, , , 

-=~, 

~ 
47 1I'lap 

-.2 

.450 br - Jat' 

f~ 
, , 

Doubh <:.-=0,. ~ 1.47" ~;~~ec 29 .4 5·47 .. 
• ')16 

t 
Double -=-, 1. }8 25 · 0 7-l4 47 .!lotte 

~ !'hp 

.626 
-.1 ! , I I I 

~~~::d -=-, 1. 50 18 .0 7· 52 -.2 '-------f L7 
'lap 

- . ~ 

-., 1 I I , I I 
.978 

0 ~Ibl. 19.6 - .4 L7 ,ted -=-, 1.75 --PlOp 
-·5 

be - )0 

~ 1.4 1 19 · 0 -- L' 

" 
!~ on 
"lap 

S 1~ 
I , 

· )75 
<:~ 1.46 22 · 5 L. L.S . - -'tap 

• .450 

t~ " """" ~ 1.31 2} .8 -- L' 3pU t 
,lap 

r~t::~ 
I , 

-:::::::-= ~ ~ 1.27' H·2 -- L' 
.450 
' tA p 
~pllt 

~ 
I I 

~hp 

<:::'fc ~ ~ 1. ,8 }l.D -- L' 

:> f=; ' 
, 

<::: ,c _____ 
1.4~ }l.O L. --

~ 6$ ~' 1.46 } t.O -- L. 

.450 
!!lI:l . 
Spl I t 

tit - 16 0 

!~ 
, , 

, la p 

<:-= --=--.. ==:::> 1.46 30 .0 -- L' 

J~ 
, 

~-= '"'\ - ~ 1.45 } l.O - - "' ---
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TABLE 35.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47. 70 SWEPTBACK WING - Cont inued 

Spa. spa. 
GeLIIIU : 

LID It. t L.t ~! .• Ct",. e lll Chara c te r 1s tl c. Re tl rll nee ~i~l ' .lc. Conf1gu rlUon 0.85 ct.nu, 
(b / 2) 

6t - ~ 0 J," L . 6 1.2 1.6 2.0 
·H5 .600 -"

1 
' , , , , 

L.K . t lllt . 

<::::~ ~ 1.59 2, . 0 --\~ L. fPh p SpUt 
P'1ap 

~ 
, , 

.-=====- 1.,0 ,0 .0 4 .42 L7 

Rona 

A' 
, 

~ ~ 1.4> 29.0 ' ·75 .. 

r~ 
I I .400 

So Ut ,<' "'\ 1.310 2 5. 0 6 . , 6 L7 
f'hp 

be - 15° 

l~ ' 
, 

~ ~ 1.4 ' 29.0 -- .a 

tit . }/J0 

S ' 
, 

<:~ -=::::> 1.4\ 2'9.2 -- •• 
.4\0 
:Split 
Php 6r • LSo 

t~ 
, , 

<::::~ ~ ~ 1. ,6 2,).0 -- •• 

I~ 
, I 

<:::::.::!-= ~ -=::::> 1. \4 ,1.0 -- •• .42\ 
t.!. 
Ph -p 

+~ 
, , .\00 

Spl i t ,c- "'\ 1. \7 Z2 . 0 \ ·14 L7 
Plap 

l~ 
, , 

. ~oo 

<:.:::::: ,c- "'"' ~ 
1.,8 21 .4 La Split --Pla p 

tlr . )0 

f~' ,,;.':r L' . lo <::::-=~'" ~ 1 . 51 29 · 0 5·94 lottld 
"hp 

l 
, , , , p;,.;;6 

1.49 2 0 ·5 1·19 .a ~O:::d --=-.~ 
~ Ph p 

. 
tit • )0 

~ ~ 1.44 22 .0 -- L' 

Tr,-........ 
Flap . 

t~' 
, 

tIo t • )0 

~ ~ ~ 1.47 ,0 .0 -- .. 
~\~~ 

f~ 
, 

1.44 2' ·5 -- L. 
SpU t ,.- ~ 
n •• 

• C1.ln.I Jt not re . ched ~ 

• 

I 

I 
1 

-- -------- -------- -------~j 
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TABLE 35.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47. 7° SWEPI'BACK WING - Continued 

... n Span 
Ct". GcLllu ; WD It r L.! r T. !! C. Ch .. r . c tlr la t l cu fie rl "'nQI 

~i~}· ~i~}· 
Conr1gurlU on 0.85 c,.,,,, 

C. 
° -4 .8 1.2 1.6 2.0 

<::::::: «" ~ ~ l.~l 29·0 0' I I 
I , 18 ---- -~l ~ 

.450 
Stl P 
Spl i t 

F=\' I ' hp 

<::::: «" =-.;:, ~ loll ,0.0 --- •• 
.425 
L .!. 

.4~ 

{~' 
I Php 

It. t. <:::::::.,.: ~ ~ •• Spli t 1.49 28 .0 --n • • 

b
t

. )00 

f~ 
I 

.600 
Elt t. <::::::: «" ~ "- ~ 1. 65 25 · 0 ---- •• 5pllt 
Pb p 

~ 
I ., 

«" 1.28" 25.0 5·07 

~~ <:::::: «" ~ ~ 1.41 28.0 --- Un -
plbl llhe c1 

.on. 

~ <::::«" ~ 1. 5°' 26·5 -- •• 
It .. _4 . ,0 ¥ .. -.05' 

~ 

r~ 1.40' ~.,.: =- ==:::> 26 .1 --- •• 
.1

t 
... ,.1° ~ .. . ,82 

b 

.475 

t~' 
I 

L .~ . .'7· 5: 69 
., 

Php 
,< "\ . 

25·0 

f~' 
I 

<::::.,.: "\ =====- 1.}5° 2')·5 5.15 '7 

.t.OO 

~ 
5p11 t 
Php 

~-= "\ ~ . 54" 26.4 •• ---
1

t 
.. _~ . lo ?( • -.05l 

~ 

1.'''' ~ •• ~,< '\ ~ 26 . , ----
~ I t '"' .,. 1° ~ .. ,82 

.450 f~1 ~f!~t <:::::~ ~ 1.~9 22 .0 6·14 •• 
• Cuaa. not NIched 
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TABLE 35.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47.7° SWEPI'BACK WING - Continued 

Span spon 
ClcLlllu . L/D at r L .! ~ .... Ce., c. Charac urllt1C. Rat. Nne. ~i~)' (b/~ i' 

ContlguraUon 0.85 ct.. ... 

C
L 

0 .4 .8 1.2 1. 6 2.0 

~ 
1.4, 25 ·0 5·79 

C'Ol~' I " 
-.1 

1 
I I I I 4. 

<:::::E ""\ ~ 1.,8 28 .0 --
---------.'j00 

~ 
SpUt 
Php 

<=~ ~ 1.51 27.' -- 4. 

1
t 

:= ., .,0 ¥ = -·°5' 

.600 ~~' 
I 

SpUt <='" '\ ~ 1.44 26.0 5·S. 48 
'b,p 

.618 I~I 
I 

~~!~t ~ 1.46 "·5 5·64 47 

.450 

~' SlIlS1. 

<::::::-=~ ~ 1.49 25 · 0 5·77 48 &otto 
P!.p 

t~' 
I 

-=~~ 1.48 22·5 6·55 47 
.475 
L.Z. 
Pl'. 

f~' 
I . 

<:::::;-=~l\, ~ 1.42 26 .0 6.85 47 

I~ 
<:::::;-=<==~ 1.54 ?6 .o -- 49 

it .. . ' .9° ~ .. -.05} 

.400 
Double 
Slotte< 

n-
P'lap 

-=-

<:::::;-=-"" ~ .47 26.2 -- 49 

It :II: _~. 9° ~ ... 150 

-=-

~ <:::::: ,=.~ ---====-
1.4, 26., -- 49 

< 
it •• ,.1° ~ .. . ,Sl 

b 

• CUnal! not re ach'lS 

L_ 
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TABLE 35.- SUMMARY OF LONGITUDINAL ,STABILITY CHARACTERISTICS OF A 

47.7° SWEPTBACK WING - Continued 

Span Span 
r L . S t 'r .E Con rlguraU o n 

~i~)' ~i~)' 
eLm. o.cLIIIU, 

LID at. 
0.85 o",~ C. Charac t.er-hU e , Ret.Nne' 

tit · JCf eL 
.40;0 0 .~ .8 1.2 1. 6 2.0 
Doubt. 

<:::-=-0,. ~ ~o f ' ~.~ted 1. 57 26 .0 5·99 " -.,~ 

.2 

.ljl~ 

f 

, 
Double -=0, 1.58 22·5 6.00 L7 Slot.a ~ 

-----------
P'h 'P 

-'j , , , , , 
. 626 -----J ~O:;~~ -=-, 1.70 25·0 6 ·57 -. ., 
Pt.p 

br · 15° n .-= --
1.~6 2 ,.0 - - .. 

tit · ) 0° n ~ 1.46 19·0 -- .5 
,.,.,-.... 
"'l ap or - LSO n ~ 

1.44 19· 0 -- .5 
.41$ 
t.! . 
Plap 

6 t - )00 

I~ 
, , 

<::: r= ~ ~ 1.50 , 0. 0 6.02 .8 

t~ 
I , 

.450 '5 1t;!f~ ,c ~ 1.46 2,.8 --
'11.0 

f~ 
, 

<::::~ ~ 1. H 2 5 · 2 4.9' .8 
.450 
s ... 
SpU t 
Plap 

f~' 
, 

<::::,c ""', ~ 1.49 26 .0 5·49 
.. 

.450 

f~' 
, 

"",. 
!pUt <::::r= ~ ~ 1. 1)1 26 . 0 6 .18 .5 
~ho 

or " LSO 

f~ 
I 

.600 
E:IIt. <::::,c --... ~ 1.70 23·0 

.5 
sPu t. --
Php 

I 

I 
I 

J 

I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 

I 
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TABLE 35.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47. 7° SWEPTBACK WING - Continued 

.5>5 .500 
L.t. !pl1t 
?"hp Php 

Confl£'Urat. lon 

1 . ~5· 27 .0 4 ·99 

1.54 22 .0 __ 

<::::::~ ~ 1.57 2B. } __ 

. 600 

~r; !t ~ ~ 1.1;8 25 .0 ".72 

.400 
Doub le 
Slot ted. 

Pt.p 

. 5.6 
Daub" 
!n!t.te 

n ap 

.. CLm.lll not rea ched 

.. 62 25.0 5 .9B 

1. 60 22 . ., _ _ 

6r · )0 

1.11. 6 1'7.0 __ 

Re f. rence 

t~ " 

1~11 ., 

., 

~" •• 

~" 48 

41 

t===S I 41 

47 

f~" 48 

------ -- -------- -------------

I 
I 

__ J 
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TABLE 35.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47.7° SWEPTBACK WING - Continued 

'''. • .. n 

acL .. u . 
hiD at , r L.r; ~.i~: Ccmflgur. tion Ct",. C. Chanc: tA rhtlc . ~t."'no. 

~iii· 0.85 c"" .. 
,b/') . CL 

b C - )0 0 -4 .S 1.2 1.6 2.0 

Tr' - <:::~ ~ 21.5 ~:f~' 
, 

"' .. ..". 1.55 --
P'hp 

.. 
.450 

f~ 
, , 

;;~i~ r ~ 1.46 18.0 -- "' Pl • • 

r~ 
, , 

<::::,< ~ :::::::> 1.}5 29 · 2 -- "' ·525 .450 L.E . 

' ''' 
.ta. 

t==- :oJ ' 
.spUt , 
Pl •• 

<=:::: r '"" ~ 24 .0 "' 1,49 ---

.450 

t~ 
, 

bt. <=::::,< \ ~ 1.55 ., .4 -- ,. SpUt 
Pla p 

.600 ~r • 4$0 

I~ 
, 

!llt. <=:::: r , ~ 1.67 ".8 -- ,. 51)11t 
Pl • • 

F=~J 
, .- ,< 1.}2 26 .0 5·75 " 

.400 1~' 
, 

5p11t 
t< ~ 

1.,B 2,.0 6·90 

" Pl • • 

t~' 
, 

·500 . ,< '\ 1.42 20 · 5 6.89 " 5pllt 
Pl • • 

.'lB tz::J' , 
1.44 20.0 6.80 " Spllt 

~ "\ Plap 

·5n .400 

1~ L.E. Doubl_ 
-=~, 1.52 22·5 6.80 " Pl" Slotted 

Ptap 

t 
, 

. 516 
DoI,fbh 

22.0 -----J " Slotted -=~, 1.59 --
Plap 

.626 I'~' Double -=-, 1.66 21,0 7.06 " Slotted 
Pl'p 

tit· )0 

f~ 
, 

Tr'- loS} 18.0 Un-q>olar 
~ ~ --

Pl • • pubUabed 

I 
I 

I 
I 
I 

I 

I 
J 

I 
I 
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TABLE 35.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47. 7° SWEPT BACK WING - Continued 

... n Span 
e .... GcLllu . WD at ~,t .• . ~.i~! CIII Char_cur-laUe. Rere",oce Tic. Conflgurat.lon 0.85 ~u 

(biZ) (biZ) 

eL 
0 .4 . 8 1.2 1.6 2.0 

1.21 25·0 8 . 00 ,'~ L7 Non. ----===-
I :~: ____ I 

.!Joo 
1.41 20 ·5 8 . 0 1 I~ I 47 Spli t 

~ ,lap 

.700 
L.S . n., 

f~1 .~O I 
~r!~t ...-- "\ 1.45 20 · 5 7 ·96 47 

.618 f~1 L7 Split ,.-= '\ 1.48 20.4 --'lap 

1~' 
I 

·975 .618 
1.54 19·5 7.65 47 L.a. Split ~ Pbp Plap 

bn • 20° 

~ 1.19 26 . 0 4·59 I I 47 "on. e::===-

6" .. 20° 

t~ 
I I 

. .,j,00 

~ 1.22 2, .0 6.47 L7 Split 
Plap 

6" .. 2U' 

t~ 
I I .500 -

~ 1.25 2}. O 6.65 L7 !pl1t 
P')ap 

bn .. 20° 

1~ 
I I 

?==~ 1. j4 22.0 1·59 L7 

·)75 on " '2() 

t~ 
, , L.S. 

Droop <::::::: ?==~ ... ====== l.H 20.0 -- 4, 

.400 
6" " uP 

~ 
Do\l'bl. 
SlottlK! 

Plap 

4, <:::: ?==.~ ~ 1.44 26.2 - -. 
it = _~ .lo ~ :-.O,;} 

0" .. 20 
. 

~ 

~ <:::: ~""~ ~ 1.,.6 20 .0 -- 4, 

It ~ -h .7° ~: . }B2 
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TABLE 35.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

47. 7° SWEPTBACK WING - Concluded 

Span Span 
ClcLlllu ; 

!Ie a t f L.E r r .E Cont1guraUoI'I Ct",. e lll Cha ra e terl sUcu Refere nce 

~i~)· ~i~)· 0. 80; ~u. 

On " 20° CL 
0 .4 .8 1.2 1.6 2.0 

.}7'; . ';16 c] I I I I I 
L.'!:. ~~;; =-~" 

1.,6 19.0 1.70 41 
Droop 

P"lap 
.:1 
~ 

- .2 

on " 20° 

~ 
, 

None e:===- 1.36 51- OJ , .61 41 

bn .. 20 

t~ 
I I 

.400 
Split ~ 1. ,2 23·0 S·S9 41 
PIal' 

· SOO 
On .. 2rP 

r~' 
I 

Solit ~ l . ,a< 25.0 S·,2 41 
P'hp 

bn _ 20° 

I 
, , I I , 

.47S .618 
t.! . Split ~ 1.41 23 ·0 5·45 ~ 

., 
Droop Plap 

6n .. 20° 

t~' 
I .400 

~:~ ':==-." 1.47 23·S s.67 "' P'le p 

.. - 2r!' 

! 
I I 

.';16 
1.53 20 . 0 6.88 " Double ~." ~ SlottIIC 

PIa l' 

.626 
bn .. 20° 

r=J Doub le 

~-" 
loSS 20.5 7.47 

., 
lOo<t" 
phl'. 

6n • 20° 

I ~' 
, 

.S16 
Doubh =--, 1.49 11 · 0 7 .64 " Slotto 

.700 Ple l' 
L .!. 
Dr~P 

On · ,.. 

I~ .626 47 Double ':==--" 1·S7 15 · 5 7.61 
Slott. 

PIal' 

·,7S ·400 6n " )(/' 

t~ t.!. 

I~':~ ?==' .... 1o}2 20.0 7 .;0 ., 
Dr~P 

.!"oo On .. 3,° 

t~ ~~~ ?==-" 1.47 22 . 0 S·68 47 

.47S Php 
t.!. 
Droop bn .. J(J0 

f 

, I , , 
.626 

Double 
7 . J4 ~ " Slotto ?==- 1.61 2, ·S 

Phl' 

6n .. )00 

N ·700 .626 
L.~. Doubl .. ?=='-, 1.60 2,.0 7.,. 47 
Droop Slottl 

Php 

• C not reached u.u 
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TABLE 36. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

48.1° SWEPTBACK WING 

... n Span 
r L . B r T.E Conflgurat l0n ~'I' lC. ~/~;. (biZ) 

None ====-

.62, 
!fone Split -= '\ 'lap 

·96, 
Spll t -= ~ P' lap 

11.= 0.420 

Airfoil .actlon. Cu r-table) 

Root: NArA 001') l.ppro~lI11H.1 

Tip' HACA 2)009 (apnroll1zut. e ) 

eLm. C1cLlllu ; LID a t 
0.85 "Lou 

1.22 28 . 0 7 ·42 

\.~r; 17·5 ,).lO 

1.,6 16.,) 5.0, 

R.n = 18.0 . 10l 

c.. Charac ter-1st.lea Rererence 

CL 
0 .4 .8 1.2 1.6 Z.O 

17 
O~ I I ~~l~~~ 

t 
I I I , I 

17 

~ 

~ 17 

I 

J 
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TABLE 37.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

48 . 40 SWEPI'BACK WING 

Configuration 

Hone 

A'i4 0 45° , = >.0 R"" = 12.0 • IO'l 
").. = 0.600 )llilln == 0.20 

Al rl"oil o.etlon. (perall e l to plane or a:r==eU",,) 

Root: NACA 6'jA006 

'No: NACA 6,)Ao06 

1.0.5 24.0 

o ./.j cL.g }.2 1.6 2.0 

O '- ~I 
~1 1 

Ref"rence 

!l'one 1---1------------+-4--+---+-------+----1 
·soo 
Scllt 
PhI' F7' I I 



L 

- - ~ ----------l 
MeA RM L52Dlt 

TABLE 38.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTI CS OF A 

48 . 6° SWEPl'BACK WING 

/\,/'< • 45' • • 4 .0 R." • 11.9 • l0l 
).,:- 0 . ,00 N.'U :- 0 .20 

.. lrro11 sect-ions (n.r"ltel LQ ~1an. of .,.m:et.r1) 

R.,) .:. t.: !UCA £'540\.1(. 

Tl!, : N.t.:: A (.;"o",6 

Conf1guraUon 

C
L 

,~. ==- 1.09 24 . ,) 

.1 10 .4 .8 1.> 1.& >.0 
}.e, ell 
o~a. 

- . 1 

'fOne I---+-----------+-t---t----II--------II-----j 

.\00 
~r!~t 

.. 

-. 

I 
_J 
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TABLE 39.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

'''''' Span 
r L .! t '1'. 1: 

~i;)· ~i;;· 

Hona !one 

.<,()O 

5rHt 
"tap 

52° SWEPl'BACK WING 

ConriSUl'atlon 

===--

<:: - ~ 

<:: - ~ 
1

t 
.. _ ~.2° 

<::::: - -=:--

1 t : ·~.lo 

<:: - ~ 
1t t _~ . 2° 

<:: - "'"'-

1
t 

... _4.1° 

<:: =-

<:: ====--
1t. :: _) .2° 

<:: ===--
1 t. '" _ ) .1° 

<:: =-
if :: _3.2° 

<:: =-
1

t 
= _4.1° 

~ 

Aer. = 50° • = 2.88 .... = 11.0 • 1061 
A .. 0 .625 ~u = 0.21 

Alrtol1 .. e tl on. (perpend1cular to 0 . 2e2 chord I1ne) 

Roo t.: Iu'CA 641 -112 

'rlp: HACA 641 -11 2 

Cr.". Ilct ... 
WD at 

0.85 c",,~ C. Chuaeteriat.lee 

CL 
0 .4 .S 1.2 1.6 2.0 

1.12 27 ·1 ').2 6 

c~ 1 =z; 
- .1 

::::> 1.14 26.0 4·97 r' 
~ 

r~1 :=::> I , 
1.11: ;5·0 --

~:: . 61 5 

==-

~~, :=::> 1. 13 26.0 -- , , 
~ = .491 

~ ~~, 1.15 >7 .0 --
!!. = .~O7 

~ ~ 1.25 >7.0 --
~ = .0)1 

F 
, 

:::=:::.::=- 1 .17 26.6 4.45 

t~1 I ::::> 1.15 26 .0 --
1! :: · 502 

=-

~~ ~ 
1. 16° >7 .0 --

b 

~ ~~ 1 . 21 >7.0 -- , , 
~ '" . 196 

~ ~ 1 . 2ao 26 .0 --
if '" - .074 

t~' 
, I 

1.15 22. 1 6 .06 

Rererence 

51 

51 

51 

51 

51 

51 

51 

51 

51 

51 

51 

51 



l 
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TABLE 39. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A ,. 

52° SWEPl'BACK WING - Continued 

'pan Span 
IlcLau . 

LID at r t.E. r T.E C",. C. Chu'.eUrh\.1e. Rere"nce tii)· ~i~)· 
Configurat ion 

O.SS ""'~ 

CL 
1.6 2D o ~ .8 1.2 

~ ::::::::> C:t~o 0 

~ 
1. 10 21. 7 6 . 10 Sl .. 

• )00 
Jone pUt 

. lap 

~ ~ :]0 

0 0 

~5~~ ~ 1.17 24.0 S· es Sl 

r o 
!:7J 

0 0 

r===-- .·07 27.4 j.6S ., 
.2SO 
L.t. 'OM 
!'lap 

j 0 

~r =- ::::::::> l,lS ,0.S 4 .• S " 

! 0 I I I ·,so 
1I0na r===-- 1.10 ,0.0 S·,2 ) 1l t.!. 

~1ap 

r I I ') 
I I 

r ~ 1.19" 29·2 ,.64 1l 

' ono 

t 0 0 ~ I I 

~r =- ::::::::> 1.2, 29·0 4·27 " 

t I ~' I I 

r '\ 1 . 14 24.7 j·S9 " 

F I I 

~r '\ ~ 1.18 ,1.0 5·0, 1l 

-=-

~~ <:::: .< '"'\ ::::::::> 1.15 ,0.0 -- I I II 

1t :z _2.6° 
~ = ·504 

.400 
~ ~~ I 0 

t.E. ~~ 1.25 ,1.0 -- II 
P'lap 

. 400 
1t = _2.9° ¥ = .196 

So11t 
Pla p 

~ ., ~..- '" ~ 1. '5 ,1.0 --

1t :It -h.lo, ~ = -.074. 

po ' ~ I 0 

~,..< ""\ ~ . 21 ,0.4 4 ·29 II 

~ 

~~ ~,E-~ ~ 1. 22 ,0.6 -- I 0 " 
1t .. _2· 9° ¥ .. ·504 
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TABLE 39.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

52° SWEPI'BACK WING - Cont inued 

Conngur.Uon rt.rerenee 

CL 
o .4 .8 1.2 1 .6 2.0 

1.24' ,0.0 -- 1, 
. 1 

~ '" .196 
~n-

It '= -2.eo .2 

S~~, I---t-t-----+-+--['\----t----l ,lap 

<:::::::::~ ~ .. ,6 ,0.4 __ II 

It" _4.}o ~ =- -·074 

.400 .400 
L.E . Ext. 
'lap SpUt 

.450 
L.! . ".p 

Plap 

·500 
Spll t 
!'lap 

·500 
IKt. 
Spllt 
Php 

.-
-400 
'''''it 
' i n 

--=====-, 

<::::::::: --=====-, 
it t _2 .9° 

1.,1 2' · 5 5.50 

=::::::> 1.17 ,0.4 --

~ '" ·504 

=::::> 1.41 ,1.2 __ 

¥ '" .196 

~ 1.59,0.2 --

~ • -.074 

5·5' 

1.,6 zL .o 4.91 

loU 28.6 5.06 

5·66 

" 

" 

I, 

t~" " 

1, 

r===s' " 
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TABLE 39 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

.400 
Ext. 
SplIt 
P'1ap 

.jOO 
!lIt. 
!pll t 
P'lap 

_ CIA.,; not re a che d 

52° SWEPTBACK WING - Continued 

Conri gul'"a'L1on 

o ~ C~e 1.2 1.6 2 . 0 

5·29 _Cn ___ 
1) 

1) 

."---==-- 51 

-..." t I I 
51 

l~ ' 
1.27 24 · 0 5·69 ~~ II 51 

1 .,1 26., 51 

1. '5 26.0 ~'Z:J I I 
51 

1. , 1 26 . 2 51 

51 

p=:=:: II 51 

=-

51 

~ = .615 

1.}O 2lt.0 - - 51 

-------~J 
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TABLE 39. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

52° SWEPTBACK WING - Continued 

Span Span 
c .... o.ct ••• 

1./0 at r t . 1f r 'r.E' Conflr;u.rat.lon C. Cherac tarhl1 ca Rer.rence 
~/~)· t/~)· 0.B5 ~&J: 

CL 
o .ta .8 1.2 lob ' .0 

<::: .E ~ ~ 1.29 24 . 2 -- ~~~ 51 

It =' · , .Zo ~., · )07 - .1 I "-, 

~ 51 <:::: ~ :=:::::> - 1.400 2"/ .4 --

~l " . 4 , 10 -\!" .on 

<::::::~ =::::::> 1.}11 >6 .4 4 ·76 p' 51 

F::~ 
I 

<:::::::: ,E ~ ~ 1.39- 2"/ .4 4 ·70 51 

~ 

r~ 
.1)75 ·S:>o 
L.V. SpHt 

1.'9' 
I I n"r PhI' <:::::::: ,.E ~ 

======-
27 ·11 -- 51 

it " - }.Zo ¥" ·SOl 

~ 

~~ <::::~ ~ 1.3e· n.Jl -- I 51 

1t :: . ,.00 ~ " .372 

~ 1. 41' ~~ ~-=-~ n·la -- I I 51 

I t - _) .2° ¥" .196 

<:::::::: ,< ~ 1.48" ~ 51 
~ ::>0.4 --

It. " _la. I e 
~" -.<n4 

r .,(. 
rene .-===- 1. <4 28.2 'j . 29 

51 

·7!'S 
L.~. 

n • • 

~~ .~O 
1.~6 27·0 5.h4 I I 51 SpIll 

~ POI .. " 
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TABLE 39.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

52° SWEPTBACK WING - Concluded 

Span Span Chord 
WD at r L. E . r T.E or L.E Conrtp:uratlon Ct"" C1c

LIIIU Cm Cha rac tdrhLtc3 Roference lonlce Devi ce Devico o.e., '1...nu 
(biZ) (bIZ) eel 

CL 
.>h 0 .10 .8 12 1.6 2.0 
Round 

4.66 ~,! z:;,' , , 
52 L.E. Oono .15 ===- loll 27 · 0 

Cbo'" 
Ext. • 

. 25 r '=i Round 
1.19 4.67 52 L.E. OonO .15 ===- 29·~ 

Chord 
!1t. 

J::::;; ' 
.075 1.16 20;.0 4.Be 52 

.4, 
Round 

L:S. IIono 
Chord 

£xt. r , I~ .15 ===- 1.2L 26 . 0 L .00; " 

r l 
52 

·075 --===- 1.08 22.0 4.82 

.4' 
Sha rp 

L. !. Oono 
Cho'" 

EJ:t. 

~ .15 --==-- 1.09 26.0 4.jB S2 

~ 



• 
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TABLE 40.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

Sr_n Spa n 
r L.E . r T. E 

~i~i· ~i~ ie 
Conr l gura t ion 

~ 

<:::: ~ 

Nona <: -====-
it, " 2.So 

52° SWEPTBACK WING 

A 'Il " 50 .2· • " >.8L R . .. " 9 ·7 • 106 1 

").. = 0 . 616 Mmu = 0 . 19 

Alrfol1 sections (noMral to llnfl of madlWII thickness) 

Rootl , . 13 percont. th1ck eircular are 

Tt c: t .? percent thick ~lrcul"r arc 

Ct", · C LIII .. ,; 
L/D at 

O.eo; C~u elll Ch l racUr la llca 

0 
C

L .4 .S 1.2 1.6 2 .0 

1.01: 24·5 ~ · 5e ~~: t >=4, , 

=::> 1. 17 21·0 l .Ol I- e . 

c=-

~ -==:::> l.lS )0.0 -- , 

~ = .4h2 

, 
==-

None ~ L~i' l2.0 -- G 
it = ) . 10 ~ = .1,6 

~ <:::: -====::>- -==:::> l. l6 ,1.0 - -
==-

i t = 2 . 2
0 l!. = - . 1,2 

b 

·500 

t~ SoUL 
21.0 4.06 , 

Php 
~ 

1.09 

f 
, , , , , 

·500 
! ,; t. 

1.29 22 . 0 4 .05 -1 Snllt ~ PhD 

. 150 
None .06 26.0 '.2) f~ L. !:. r=-

Pho 

r=- 1. 06 n ·5 , . 2) ~, , , 

. 250 f~1 L.! . Nono <::::: r=- =:> ! .2.6 n ·o 2 ·75 , , 
PlaD 

==-

l~~ <::::: --===- -==:::> l . l l ' }2 . 0 - - , 

it = 2.90 ~ = .41,2 

• CLlllu; not reached. 

Rererence 

5) 

5' 

5' 

5' 

5' 

5) 

5) 

53 

5) 

5' 

5' 
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TABLE 40.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

52° SWEPTBACK WING - Continued 

ConrtguraUon 

CL 
o .1, . 8 1.2 1.62.0 

SL ~~~ 
"4 \ 

None '------------+-1--1---1--------1---

j\ :=:::::> l.ll lO.O -- SL 

1.16 n.C } . 06 l:=!::7 S I I SJ 

l~" SJ 

f~" SL 

<.: ~ ~ 1M')2.0--
SL 

1t :: 2.9:1 i:- :: .~42 

• 



J 
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TABLE 40.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

52° SWEPTBACK WING - Continued 

'po. ' po. a.c
LIIIU 

I,./D at r t.! ~.I~! Configuration Cr.". CIII Charac ter- IlUe. Rer.",nc, 
~i~j· 0.85 c,...~ 

(bI Z) 

, CL 
.4 .8 1. 2 1. 6 2.0 

~ 

1~ <=~ ---==::> 1. 57 ~2 .0 -- 54 

it = , .1 0 ~ = .136 
.250 .,00 
t . ! . l I t. 
Pla p Spll t 

j\ 
!'l'P 

<:::::~ ::::::::::> 1.68' 32 . 0 -- 54 

~ 

I t = 2.20 ~ ., -.1'2 

Hona --=- 1 . 22~ 31.2 l .La ~ I 53 

· 150 ·500 !:::!:7' '5 
, , 

t.E . Spl t t ~ 
1.21 26.0 2.76 53 

Php Php 

f~ 
, , 

. 'j00 
53 Sxt . 

1.16 22 .2 ) .7) S pl1t ~ 
I'lap 

.450 
' OM ~, 53 L .!. --=- .14' 2 9. 1 ,.21 Plap , , 

None 1. 12 21 .2 )·71 t~ , $3 
r-====-

·550 ·500 ~~ 53 t.! . Spltt 
~ 1. 14 24 ·5 , . 61 

Php Ph p 

·500 I~ $3 EIt . 
~ 1·58 21· 5 ) .64 Spltt 

Php 

. 2')0 
!fone ~, I , 5) L . !! . 
~ 1.06 26 . 0 ,.12 

Dr oop 

.450 
'OM I. IS 29 · 5 2.37 t~ I I 5) t . ! . ~ 

Droop 

.600 ~~ L.E. None 
~ 1.19 29 · 0 l-)4 $3 Droop 

. not rea chcc1 
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TABLE 40.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

52° SWEPI'BACK WING - Concluded 

S pan Span Chord 

UcLIII." 
LID at e L.!. r r .! or t.! CLm., C. Ch ara c tertaU e a Rererenc. 

~i~j· ~i~j· o. .. t ee Cont1gurat.lon o.8~ ~u 
( 0 ) 

CL 

0 .L . 8 1.2 1.6 2.0 

-===- 1 .02 >L .O ).L1 

"f -4, S2 
. 00L 

1 1 I 

.06 -~; 
Sn.rp 

L.1. lion., 
Chord 
Ext. 

f~1 1 1 
.lL1 1. 06 >L .O ) .L2 S2 

t-r4 1 1 1 S2 
.00L 1.O} 2 } .O ) · ) 9 

. 1) 
Sharp 
t. !: . 'o~ 

Chord 
Ext. 

t~1 1 I 

" .1L1 - =-- 1.07 24 . 0 ) · )1 

t r=r1' 1 I 
S2 

. 00L 1.11 2 5·0 , . 20 

, 

.25 
Sharp 
L.!. 'o~ 

Chord 
Ext. 

~I 1 I S2 
.1L1 1.12 25· 0 ).18 
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TABLE 41. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

'""n '""n r L . ll: t 'I' .E 

~i~i· f?:i~)· 

Non. 

Yone 

.608 
Phin 
1."on 
!"hp 

Non. 

·lll 
Sharp 
L.E. 

.251 
Ph 1:'1 
Trl. 
P'hp 

60° SWEPTBACK WING 

liS 
Con rt su.rat1on 

A.fI, = 50.6' , = 1.8 R • 5·" 101 
A = 0 IU 1 

A1rfol1 "el1on, (paral le l to phne or 8)'111111Otr}l 

Root : MACA 0015- 64 ( AP.,r oJ:1.ute ) 

Tip: HACA 001; - 64 ( Approx!.mHe ) 

C"". «C
Lllle Jl 

LID a t 
0.8') ot..,. .. Ca! CheractM r h tl c: . 
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TABLE 41 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

. \\~ .60S 
Sharp PlI\n 
L.£. \evon 

Php 

60° SWEPTBACK WING - Concluded 

ConC1guratlon 

~'C- -2)' 
o.SS }}.O --
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TABLE 42.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

'""n .pen 
r t .!: . f T.E 

'i':ii)· ~i~i· 

Ifon. 

P f.~n 
,~:r< 

None 

1 .000 
? taln 
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0,, - 20 
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~ 
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TABLE 42. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

·500 

""'bo.'" 
L·IL 
Droop 

1.000 
L.t . 
Droop 

.on. 
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60° SWEPTBACK WING - Concluded 

Con rlgur. t lon 
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TABLE 43 .- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

Mon. 

60° SWEPTBACK WING 

Conrlguretlon 

A./4 • S2.4° A = 2.}l .... , • 16.4 . 10l 
A= 0 Mmn '= a . l} 

Atr-CoU aeettona (parallel to phn. o f .~etr]'l 

Root: N4C46C;-006 . 5 

Tip: NArA 65 - 006 . 0; 

1 . 1} 21.0 
C.oJO~i2 Ij6 2iO 

- .1- ~ 

_.2 

f!ttC',..nce 

S7 

Mone f--t---------",.,.,----I--I--J.---l--------l----l 
~ 7116, . -10" 

.80;0 
Plein 
Php ___ =-""'::J 1.04 ".0 0-'" S7 
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TABLE 44.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

~one 

60. 9° SWEPl'BACK WING 

Conrtgur8t1on 

=-

A,(4 • 60° A . L.o R .... 6.0.10] 
A = 0.600 xlIIJI = 0 .20 

A1r(011 sect.1ons (parallel t.o ohn. of ::JIII=lotr1) 

Root: Jr( ACA 6,"'006 

Tip: NAC" 65/0006 

1.08 ~5 . 6 2.29 "1 / 
c~:~ 

o .11 L.a 1.2 1.6 2.0 

ReCerence 

1L 

'on, t--t----------t--i--i---+-:o:t-;,--t-------I 
s~~~t O.9L 2'}.0 ~.80 lL 
~l.D . ....., 



------ ----- ---~~~~ 

23 J 
NACA RM L52D16 175 

TABLE 45.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTI CS OF A 

63° SWEPTBACK WING 

.... "B.o , 10] 

A1rto ll .ec tl ona (par. Uel LO phne ot . ,l1111J1tr,.) 

,, = 0 . 2')0 

Roo t t HACA 6L AOO6 

Tip : !l AC'" 64 .1.006 

Span Span 
~LlI\u WD a t. t L.! . l T.E con rtgura t ion Cr.", CIII Cha rac Led a t. lc , ReteNlnce 
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(biZ) 

CL 
0 .4 .B 1. 2 1.6 2 .0 
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TABLE 45. - SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

63° SWEPI'BACK 'lUNG - Concluded 

Spa. Spa. 
C", .. ~L ... x 

L/D H p.!. L . E. r T.E 
Cont1gureUon c. Chu'.c:torlstica Reterence .., lc. 0.,, 1C:8 0.8S ~u 

(b/2) ( bi Z) 

0 
CL .4 .8 1.2 1.6 2 . 0 

<-~ ~ 1. 2, , 8 .0 7 . 15 ~+~~ 5. 
0 I 

~,oo t .... 

~r;{,t 

~A 5. <::=='" ::=::::> \,24 18 .0 1.87 I I 

Mono 
ti t & 0° 
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6r • 2S 
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I 
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1.000 tvC, <:.:::: -===- =:::::::> 18.2 1.95 Sha.rp lIono 1.52 , 5. L.!. 

L J 



• 

NACA RM L52D16 177 

TABLE 46.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERI STICS OF A 

... n Span 
r L.E r T.E 

~/~)' ~/i)· 

'on. 

.6H 
Ron. ~nle .. e d 

np 
PIaI' 

1.000 
Pldn 
PhI' 

1 . 000 
Ske .ed 

.~. L.E. 
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63 . 03° SWEPT BACK WING 

TAFIU' 46,- SlJlI;MARY o!' LOliotroOlNAL STABILTTY CHARACTERISTICS OP' A 6,.03° SWEPTBACK WING . 

Conflgu.rt..tlor 

A :~~:,:'.~~tI~. (.~r~,~.~4,O Ph::~r:.:~: ' ~,:O' J 
Root: 5- J=eTcont thtck at 0 . 20e hOU6onil (tal ,..d) 
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TABLE 47.- SUMMARY OF LONGI TUDINAL STABILI TY CHARACTERISTICS OF A 

o 
63. 43 SWEPTBACK WING 

Spon Span 
r t.E . r T.e: 

~i~l o ~i~ )o 

Nona 

.860 
Non. Spll t 

Plap 
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TABLE 48.- SUMMARY OF LONGITUDINAL STABILITY CHARACTERISTICS OF A 

63 .43° SWEPTBACK WING 

f!!i
61 . .,O Ac/4 = \6.1° , = >.0 R ... = 1\.1 . 10] 

A:: 0 iii :: C. l} 

,\11'(011 ~ee\.lon. Cper_l1e\ \.0 "l'u" o;·:,.......t.rJ) 

Root: NAeA OooS (WodlC1ed) 

TtC : NACA 0000; (ModHl tlC1) 

Span Span 

"'cL • • " 
1./D a t. r L.g ~.i~; Cl", e m Chare c te rl. t lee Re ror.nce 

~i~)· 
Conflgur a t. lon 0.8') ctmu 

(b/2) 

0 
CL .4 .b 1.2 1.6 2 . 0 
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TABLE 49 .- VALUES OF SPAN EFFICIENCY FACTOR e 

FOR SEVERAL SWEPT WINGS 

L.E. c/4 A "-
Airfoil R Up to 

(deg) (deg) section e 
CL of 

9 · 9 5 2. 5 0. 63 Modified 7. 6 X 106 0. 55 0. 2 
double wedge 

37. 0 35 6.0 . 50 NACA 641- 112 6. 8 . 78 1.0 

42 . 0 40 3· 9 . 63 Circular- arc 6. 9 . 37 . 2 

42 . 0 40 4.0 . 63 NACA 64r l12 6. 8 . 82 . 8 

47 . 7 45 6. 0 . 31 NACA 64- 210 6. 0 . 83 . 4 

47 . 7 45 5. 1 . 38 NACA 64- 210 6. 0 . 83 · 3 

46 . 3 45 8 . 0 . 45 NACA 631A012 4. 0 . 68 . 4 

52. 0 50 2. 9 . 63 NACA 64r l12 6. 8 . 80 . 6 

52. 0 50 2· 9 . 63 Circular-arc 6. 8 . 42 . 4 

.... 
I 

________ J 
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1.4 

1.2 

Calculated by method 
of r ef . 67 

A c/ 4 = 0 0 

181 

o --0-
/ ---....:::, ~ ~ Calculate d by method ./ 

/.0 

.8 

. 4 

.2 

o 
o .2 

-........ / of ref. 68 
../l c/4 = 45 0 

,4 .6 
2y/b 

"-
0... 

"-

.8 

\ 
~ Experimental data 

cf (ref. 69) 

\ 
\ 
Q 
\ 
\ 

./l. c/4 = 45° 

1.0 

Figure 1. - Effect of sweep on the load di s tribution of a wing having an 
~ aspect ratio of 8.02 and a taper ratio of 0.45. 
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Figure 2.- Stall progression on a s weptback wing (A c/4 = 450
) ha ving an 

aspect ratio of 8 . 02) a taper ratio of 0 .45 and NACA 631A012 ai r foil 

section~ as indicated by the secti on lift char acteri s tic s. (Data 
obtained from ref . 69 . ) 
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Figure 3.- Variations of pitching- moment coefficient with lift coefficient 
for a family of wings having aspect ratio of 6.0, taper ratio of 0.5, 
NACA 2415 airfoil sections, and various amounts of sweep. (Data taken 
from ref. 70 .) 
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Figure 4.- Schematic view of leading-edge vortex flow and its effect on 
the pressure distribution and the lift and pitching-moment charac
teristics of a swept back wing (Ac/4 = 450 ) of aspect ratio 3.5 and 
incorporating circular-arc airfoil sections. (Data obtained from 
ref. 71.) 

t-' 
OJ 
+" 

~ 

f) 
:to> 

~ 
t-< 
\J1 
I\) 
t:J 
t-' 
0\ 

~I 



• 

1.6 

-1'1l'O 
~ H 1.2 
.,;0 
'O.t:: 
~ t> 
~ 

rl 
q) CIl 
tilt> 
'00 . 8 
r:t:lrl 

t;D+l r 
I:: I:: 
"; q) 
'Ot> 
CIlH 
() CO .4 
HA. 

.0 

f_ 

70 .70 .70 

Predominant trailing-edge 
separa tion. 

.. 

927128 51 ~ 
'27 \\\\\\~~ 28. ~\\\\\ \\\\ 

.14 minant leading-edge separation 

21 

.14 14 I ._..1. -.14 .14 

37_46.L53 
~ 

o 20 40 

AC/4 

60 80 

Figure 5.- An approximate boundary for the formation of a leading-edge 
vortex resulting from leading-edge separation expressed in terms of 
leading-edge radius and sweep angle for uncambered wings. Data 

obtained at a Reynolds number of 6.0 x 106 . Open symbol denotes 
radius perpendicular to cf4 line; solid symbol denotes radius 
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Figure 6.- Effect of Reynolds number on the inflection lift coefficient ~ 
resulting from leading-edge vortex flow for wings incorporating t--< 
round-nose and sharp-nose airfoils. (Data obtained from refs. 53 IJl 
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Figure 7. - An example of the effects of sweep on the variation of 
pitching- moment coefficient with lift coefficient when leading edge 
separation is present . The wings have aspect ratios of 4} taper 
r atios of o. 6} and NACA 65AOo6 airfoil sections. (Data obtained 
from ref . 14.) 
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Figure 8 . - An example of the effect of aspect ratio on the variation of 
pitching- moment coefficient with lift coefficient when leading- edge 
separation is present . The wings are sweptback (Ac/4 = 450 ) have 

taper ratios of 0 . 6) and incorporate NACA 65A006 airfoil sections . 
(Data obtained from re f . 14. ) 
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Figure 9.- An example of the reduction of the longitudinal stability and 
out- of- trim pitching moment of a delta wing (ALE = 600 ) by the leading-

edge vortex flow resulting from leading- edge separation. (Data 
obtained from ref . 55 . ) 
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Figure 10 .- An exampl e of the effect of mixed- flow separa tion r esul ting 

f r om an i nc r ea se i n Reynolds number f r om 1. 10 to 6. 00 X 106 on t h e 
pitching- moment characteristics . (Data obta i ned from r ef. 72. ) 
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Figure 11.- Variation of the lift coefficients with Reynolds number at 
which trailing- edge separation and leading- edge separation occur. 
(Data obtained from re f. 72 and unpublished probe data.) 
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Figur e 33 .- Va ria tion of maximum-lift coefficient with Reynol ds number 
for several sweptback wings with va r ious amounts of camber. Eff ec t 
of Mach numbe r on the low- speed maxi mum- li f t coeffi c i ent is indicated 
for one wing . 
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(b) Wings have an aspect ratio of 4, a taper ratio of 0 . 6, 
and NACA 65A006 airfoil sections pa rallel to the plane 
of symmetry . 

Figure 36.- Varia tion with sweep angle of maximum lift increment and lift 
increment at an a ngle of attack of 00 due to semispan split flaps for 
t wo f amilies of wings. Flaps deflected 600 • 
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Figure 41.- Variations with sweep angle of the ratios of induced drag 
coefficient for elliptical loading to the calculated induced drag 
coefficient for wings of various aspect ratios and taper ratios. 
Calculations made by the Weissinger method using 15 points in the 
solution. 
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Figure 42.- Variation of the minimum-drag coefficient with sweep angle 
for a family of wings having aspect ratios of 4, taper ratios of 0.6, 
and NACA 65A006 airfoil sections parallel to the plane of symmetry. 
(Data obtained from ref. 14.) 
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~igure 45.- An illustration of the effect of sweep on the estimated and 
experimental values of effective profile-drag coefficient at low angles 
of attack for two types of trailing- edge flaps . (Data obtained f rom 
refs. 47 and 88.) 
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