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LATERAL AND DIRECTIONAL DYNAMIC-RESPONSE CHARACTERISTICS
OF A 35° SWEPT-WING AIRPLANE AS DETERMINED
FROM FLIGHT MEASUREMENTS

By William C. Triplett and Stuart C. Brown
SUMMARY

Lateral and directional dynamic-response characteristics of a 35°
swept-wing fighter-type airplane determined from flight measurements are
presented and compared with predictions based on theoretical studies and
wind-tunnel data. Flights were made at altitudes of 10,000 and 35,000
feet covering the Mach number ranges of 0.50 to 0.81 and 0.50 to 1.0k,
respectively. Recorded data consisted of transient responses in yawing
velocity, rolling velocity, and sideslip angle to pulse-type motions of
the rudder and of the ailerons. These transient data were converted
into frequency-response form by means of the Fourier transformation and
compared with predicted responses calculated from the basic equations of
motion. The equations, or transfer functions, that best describe the
various measured responses were evaluated by a curve-fitting process
involving the use of templates and an analogue computer. By this method
it was generally possible to find equations, of simple form, that closely
matched the experimental frequency responses between 1 and 10 radians
per second and at the same time adequately described the recorded time
histories.

Experimentally determined transfer functions were used for the
evaluation of the stability derivatives that have the greatest effect
on the dynamic response of the airplane. The values of these derivatives,
in general, agreed favorably with predictions over the Mach number range
of the test. There were notable exceptions, however, in some cases at
the flight altitude of 10,000 feet. These discrepancies are attributed
to aeroelastic deformations of the wing and tail.

Another departure from theory was disclosed by evaluations of the

spiral root which was many times larger than expeqﬁéd. Classificalion Changed to
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INTRODUCTION #

This report describes the second phase of a flight-test program
being conducted by the NACA for the purpose of determining the dynamic-
response characteristics of a 35° swept-wing fighter-type airplane. The
first phase of this program, which considered only the longitudinal case,
was reported in reference 1. The present report applies the methods of
reference 1 to the lateral- and directional-response characteristics of
the test airplane. Frequency responses and the associated aerodynamic
derivatives are evaluated from records taken throughout the Mach number
ranges of 0.50 to 1.04 at an altitude of 35,000 feet and 0.50 to 0.81
at 10,000 feet.

The test procedures and analysis methods used are essentially the
same as described in reference 1. Transient responses to both rudder
and aileron disturbances are measured and analyzed to give frequency
responses of yawing velocity, rolling velocity, and sideslip angle.
Responses to transient rather than sinusoidal control inputs have been
chosen for analysis because of convenience in making flight measurements.
While certain aerodynamic information can be determined directly from
transient time histories, the use of the frequency response concept
allows a more complete evaluation of the dynamic behavior of the air-
craft. The effects of different modes on the over-all motion can often
be shown more clearly in the frequency plane, especially when these
motions are complicated by structural deformation.

In this investigation, transfer functions with numerical coeffi-
cients are obtained directly from the measured frequency responses.
Supplementary calculations are then made to evaluate those aerodynamic
derivatives that exert the strongest influence on the airplane response.
Data of this type are of particular interest in the study of airplane-
autopilot combinations. Knowledge of the airplane transfer functions is
necessary in the.determination of the dynamic characteristics that are
required of an autopilot to satisfactorily control the aircraft.

Wherever possible the results of these tests are compared with
predictions based on wind-tunnel and theoretical data and also with the
results of other flight tests.

NOTATION 1
Ct, 1ift coefficient
Cy rolling-moment coefficient
CONFIDENTIAL 3
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Cn

Cy

yawing-moment coefficient

side=~force coefficient

th ator (&
e operator <clt>

moment of inertia about the X axis, slug-feet squared
moment of inertia about the Z axis, slug-feet squared
product of inertia, slug-feet squared

real and imaginary parts of a complex quantity

wing area, square feet

velocity, feet per second

weight of airplane, pounds

wing span, feet

acceleration due to gravity, feet per second squared
Na

mass of airplane, slugs

rolling velocity, radians per second

dynamic pressure, pounds per square foot

yawing velocity, radians per second

time, seconds

angle of attack, degrees

sideslip angle, radians (except as noted)

flight path angle, degrees

control deflection, radians (except as noted)

total aileron deflection, radians
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rudder deflection, radians (except as noted)

damping ratio

CONF IDENTIAL

root of the characteristic equation

real part of a complex root

angle of bank, radians
phase angle, degrees
angle of yaw, radians

frequency, radians per

second

NACA RM AS2TI1T

natural frequency of oscillation, radians per second

undamped natural frequency, radians per second

C
5 Pi éV , per radian

3¢,

W , per radian

20,
o8B’

per radian

oC
e ZV , per radian

oC
ST SV , per radian

%EE per radian
B b

30y
3B’

per radian

Q/
&
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s per radian
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B

, Per radian

Q/
o
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L §

Ty,

oC
EEX’ per radian

ac

Sﬁl’ seconds squared per radian
gsp®
2VIx
ase”
2VIx

Cz s ber second

P

Clr’ per second

asb

el

» per second squared

B

2
gsSb
Vi, Cnp: per second
3§§i C er second
oV, “or’ P 3

I;b CnB’ per second squared
=
- GYB, per second

%EE CZS’ per second squared

2 Cns, per second squared

Iz

ﬁ% CYS’ per second

g e

cos 7, per second

sin 7, per second
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Lp? Lg + rxNg
Nyt Npy + TyLy
NB' Ng + ryLg
Lgt Ly + TylNg

Ng' Ng + rzLB
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TEST EQUIPMENT

NACA RM A52I17

The test airplane was a standard North American F-86A-5 with exter-
nal instrument booms added as shown in figures 1 and 2. The physical
characteristics of this airplane are described in table I.

Standard NACA instruments were used to record airspeed, altitude,
rolling and yawing velocities, normal acceleration, angle of attack,
sideslip angle, and rudder and aileron positions. All recordings were
synchronized at 0.l-second intervals by a common timing circuit. The

true Mach number was obtained from the nose-boom airspeed system
described in reference 2.

Rate gyros were used to measure yawing and rolling velocities about
the reference axes of the airplane. The yaw rate gyro had a range of
0.5 radians per second and a natural frequency of 10 cycles per second.
Corresponding values for the roll rate gyro were +2.0 radians per second
and 18 cycles per second, respectively. In both cases the damping ratios
were gpproximately 0.7. Sideslip angles were measured by a vane-type
Pickup and recorded on an oscillograph. Rudder and aileron deflections

were measured by control position recorders that were linked directly
to the control surfaces.

The dynamic characteristics of recording instruments are of extreme
importance in investigations of this type. A flight record in general
contains the combined response of the airplane and recording instrument.
If the instrument has a linear second-order response with known damping
ratio and natural frequency, then its response can be subtracted from
the combined response in the frequency plane. Obviously, it is desira-
ble to use instruments with characteristics such that the necessary

corrections are a minimum (i.e., high natural frequency and damping ratio
of approximately 0.7).

CONFIDENTIAL
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The two rate gyros (rolling and yawing velocities) used in the
present investigation were considered to be very satisfactory in this
respect and no corrections were applied to the data. Because the
response of the sideslip vane, however, was unknown and suspected to be
nonlinear, results obtained from this instrument were not considered
reliable at high frequencies. The control position recorders (aileron
and rudder) also had unknown frequency responses but tests of similar
installations have indicated very high natural frequencies, so they
were assumed to give valid records over the frequency range of interest.

TEST PROCEDURE

The flight procedures consisted essentially of recording airplane
responses to both aileron and rudder disturbances. Pulse-type inputs
were used in all but one flight run. All flights were made at altitudes
of 10,000 and 35,000 feet in the Mach number ranges of 0.50 to 0.81 and
0.50 to 1.0%, respectively. The corresponding trim 1ift coefficients
varied from 0.17 to 0.07 and 0.51 to 0.12, respectively.

When one control was specified as the disturbing element, the other
control was held fixed during the entire maneuver. After application of
the pulse input, both controls were held fixed until the oscillatory
motion of the aircraft had essentially subsided. The airplane responses
used in the analysis were rolling velocity, yawing velocity, and side-
slip angle. Sample time histories of the responses of the quantities
to the appropriate control inputs can be seen in figure 3.

All flight runs at speeds below a Mach number of 0.95 were made in
trimmed level flight, but to obtain data at the higher speeds it was
necessary to dive the airplane. Flight altitudes changed as much as
2,000 feet during each diving run although there was little variation
in Mach number. For analysis purposes the altitude and dynamic pressure
were assumed to be constant at their average values during each run.

METHOD OF ANALYZING EXPERIMENTAL DATA

The basic method used in the analysis of the transient flight data
was described fully in reference 1 but is briefly summarized here.

CONFIDENTTAL
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The evaluation of the transfer functions that describe the motions
of the airplane were carried out as indicated in the sketch:

(:) Transient data (:) Computer output
x i i NI o RO r ’
N recnd Check /\\/AV
g l/‘h\ ‘
t
1
Fourier Analogue
transform computer
Y |
/3| J\
Templates - . /5r " aD
2
) D= + bD + ¢
W
(:) Frequency response (:) Transfer function

The transient responses were first corrected wherever necessary so

that the measurements would conform to the stability axes notation that

is commonly used. This correction is explained in appendix A. The data
were then analyzed to obtain the Fourier transformations by means of an
IBM machine calculating method employing an adaption of Simpson's rule.
These calculations were carried out at a number of frequencies between
0.5 and 16 radians per second. The resultant frequency responses were
plotted as shown in the form of amplitude ratios and phase angles.

As discussed in appendix B, the type of input used in flight defi-
nitely places a limit on the accuracy of the Fourier analysis of a tran-
sient record. In general, to obtain the widest usable frequency range
a pulse-type input should be used. When low frequencies (below 1 radian
per second) are desired, a step input is preferable although this type
of disturbance may result in motions that exceed the ranges of linearity.
The method used, while subject to these limitations, is extremely accurate
provided that the flight records are tabulated at enough time intervals
to clearly define the data.

The second step consisted of fitting the graphical frequency
responses to a set of dynamic response templates which define the first-

and second-order complex functions 1 + iu and 1 + 2liu - u2 where u is
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a nondimensional frequency variable and € the damping ratio. This set
of templates, as described in reference 3, contained one pair of first-
order curves (amplitude and phase) and a family of second-order curves
with different values of the parameter €. By combining templates in

the proper manner it was generally possible to find one combination that
would closely match both amplitude ratio and phase-angle plots. This
particular combination defines the equation, with approximate numerical
coefficients, that most nearly describes the graphical frequency response.
This equation is normally referred to as the transfer function.

The final step of the analysis involves the use of an analogue com-
puter on which the airplane transfer funections are set up ..y If a time
history of an actual recorded control motion is supplied as an input to
the computer, then the output should be indentical to the response
measured in flight. Since the templates give only approximate values
of the coefficients, these values were altered until the output of the
computer satisfactorily matched the experimental time response. Thus,
in addition to refining the results, the computer automatically furnishes
a check on the previous computations.

After the transfer functions that describe the various airplane
responses were obtained, the stability derivatives Cnny Cias Cnr’ CZP,
CZ6 ; and CIl6 were evaluated as explained in a later section.

a i

RESULTS AND DISCUSSION

The results discussed in the following paragraphs were obtained
from transient time histories as explained in the previous section.
Flight evaluated frequency responses, transfer functions, and stability
derivatives are presented and compared with predictions based on wind-
tunnel data and theoretical studies.

Frequency Responses

Plotted in figure 4 are typical flight evaluated frequency responses
of rolling velocity, yawing velocity, and sideslip angle to rudder and
also to aileron inputs. These were all obtained at an altitude of
35,000 feet; responses for 10,000 feet showed similar characteristics
and have not been plotted. The purpose of these figures is to show
general trends with varying Mach number, and therefore smooth curves
have been faired through the calculated test points. In most cases more
than one flight record was analyzed at each flight speed in order to
check the data for consistency. Only at the highest test speeds (above
a Mach number of 1.0) was there appreciable inconsistency.

CONFIDENTIAL
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The responses to rudder inputs have not been plotted at frequencies
greater than 8 radians per second because there was considerable scatter
and also a lack of well-defined trends in the data at the higher fre-
quencies. The aileron responses, however, are shown to 16 radians per
second. Wherever necessary for clarity or because of erratic data,
parts of some of the curves have been omitted. The B/Ba response is
shown at only three speeds because of a failure in the sideslip-angle
recording system.

With minor exceptions, the curves show consistent and gradual vari-
ations with Mach number. One such exception can be seen in figures 4(d)
and 4(e) where the amplitudes of p/8, and r/6a at a Mach number of 0.61
lack the customary resonant peaks. This is the result of time histories
in which there was no oscillatory motion. This unusual characteristic
can be explained by reference to the predicted transfer functions devel-
oped in appendix C and discussed in the following section. The predicted
p/6a response equation for a Mach number of 0.6 at 35,000 feet is

i 21.1(D2+0.455D+6.7k)
®g  (D+0.00113) (D+2.203) (D3+0.438D+7.25)

I*d

It can be seen that the two guadratic terms are nearly identical and
thus the oscillatory mode is effectively canceled. Since rolling and

yawing motions are coupled, the r/8a response must exhibit the same
characteristics at this particular speed.

Another interesting point with regard to figure 4(e) is the wide
variation in phase angles at different flight speeds. Predicted trans-
fer functions indicate that at low speeds (below a Mach number of 0.7)
where CnSa is negative, the phase angles approach -270° asymptotically
with increasing frequency. Unpublished wind-tunnel data indicate that
near a Mach number of 0.7 there is a transition in which Cn6 becomes
positive and consequently three of the coefficients in the numerator of
the transfer function change sign. The result is an increase of 180°
in the high frequency phase lag.

The frequency-response test points derived from flight data at a
Mach number of 0.81 have been replotted in figure 5 which shows all six
responses for the 35,000 foot altitude and the r/&r and p/&a responses
for 10,000 feet. These results are typical in indicating the degree of
scatter usually encountered in the Fourier analysis of a particular
flight record. Plotted as solid lines for comparison are predicted
responses that have been calculated using estimates of the various
stability derivatives presented in table II, which were obtained from
reference 4 and also from wind-tunnel tests by the manufacturer. These
calculations were made as shown in appendix C, using the exact linear

fourth-order response equations. The agreement between measured and
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predicted responses is generally good except, in some cases, at the
extremes of the test frequency range.

In addition to the pulse-type inputs, a step disturbance of the
rudder was used in one instance at a Mach number of 0.8l in order to
more clearly define the low frequency portions of the P/Br and r/6r
frequency responses. Results of this analysis from 0.1 to 1.0 radians
per second are plotted in figures 5(a) and 5(b) and are discussed in
more detail in a later section.

Also shown as dotted lines in figures 5(b), 5(c), 5(d), 5(g), and
5(h) are responses computed from predicted transfer functions that have
been simplified as indicated in the following paragraphs.

Theoretical Transfer Functions

It is shown in appendix C that the characteristic equation A can
be factored into the form
‘

A = D(D-r;) (D-A,) (DZ+cyD+cy,)

where A, and A, are the spiral and rolling roots, respectively, and
where cy and c, are coefficients that define the oscillatory mode.

By neglecting A, (which is usually very small) and by omitting other
small terms that gppear in the numerators of the Warious response
equations, three of the six responses may be reduced to the following
simple forms:

ro Bl )

8y DZciD+cs

B e orBe (1)
Oy DZ+ciD+co ?

P 4As

R = ;

It is also shown that by making additional assumptions as to rela-
tive magnitudes, the coefficients X\,, c;, and c, can be expressed as
Ips -(Nr-+YB), and Ng', respectively. Furthermore, since Bg= N5r'
and A, = Lg,', equations (1) can be written as

i N&r'D
5  D=-(Np+Yg)D+Ng'

(2a)

CONF IDENTTIAL
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K oy
r DZ-(Np+Yg)D+Ng?

T T
8a D—IJP

It can be seen that in equations 2(a) and 2(b) the spiral and
rolling modes are completely neglected, and yet, as shown in figures
5(b), 5(c), and 5(g), these simplified transfer functions yield responses
that are almost identical to those obtained from the "exact" equations
for frequencies greater than 1 radian per second. Similarly, the
response computed from equation 2(c) closely matches the exact response
(fig. 5(d)) over the frequency range shown except that it omits the
small peak normally associated with the oscillatory mode. The spiral
mode which has been neglected in all three simple equations appears to
have no effect on the calculated airplane response except at frequencies
well below 0.1 radian per second.

Experimentally Determined Transfer Functions

In the analysis of the flight data it was found that the frequency
responses of r/Sr, B/Sr, and p/6a could be successfully simulated by
simple transfer functioms of the same forms as equations (1). Solutions
of these equations on the analogue computer, using final "best" values
of the numerical coefficients with actual control motions as recorded
in flight, resulted in outputs that closely matched the measured time
histories of r, B, and p as shown in figure 3. This fact implies that
the modes of motion that are neglected in each case have very little
effect on the time response to a pulse-type input.

By use of the coefficients that best describe the measured time
histories, frequency responses were calculated for comparison with those
derived directly from flight data. Examples of these calculations are
shown by the dash-dot lines in figures 5(b), 5(d), 5(g), and 5(h). These
curves, in general, match the experimental points closely for frequencies
between 1 and 10 radians per second.

The experimentally determined values of the coefficients \_, c;5
and cy(using the notation of equations (1)) have been plotted in figure 6
and are compared to predicted values of the same coefficients that were
obtained by factoring predicted characteristic equations for several
different Mach numbers. To give some idea of the errors involved in the
assumptions of equations (2), predicted values of Lp, Ny + Yp, and Np!

CONF IDENTTAL
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have also been plotted for comparison with the coefficients A, c,, and
co. It appears that, for this particular airplane, the assumptions are
valid and that the simplified transfer functions form a logical basis
for the evaluation of stability derivatives. The flight evaluated coef-
ficients cy, and c, have been transformed into the customary undamped
natural frequency and damping ratio designations and are plotted in this
form din figure T

It is apparent from equations 2(a) and 2(b) that the same informa-
tion can be obtained from either r/8, or B/8,. Coefficients evaluated
from each of these responses agreed favorably in most cases; however,
because of indications that the yaw rate gyro possessed dynamic charac-
teristics superior to those of the sideslip vane, only the yawing veloc-
ity responses were used in the final calculations.

The transfer functions of the three remaining responses p/Sr, r/Sa,
and B/Ba were not amenable to simplification. However, it was found
that the p/&r response could be matched satisfactorily by a transfer
function of the type

_ a,(D+a,) (D+ag)
By (DA} {DR%e Dve.)

which is the same form as developed in appendix C except that the spiral
mode has been neglected. As written here, a, is identical to Lgr'
while a, and a, are complicated combinations of derivatives that can-
not be readily simplified. Although this equation closely describes the
measured time histories (fig. 3), it was difficult to find unique values
of the numerator coefficients. Changes in one of these could be compen-
sated for by corresponding changes in the other two, and the values were
not considered to be reliable enough for presentation.

Definition of ‘the r/&a and B/Sa responses required fourth-order
transfer functions that include all three modes, and because of practical
difficulties involved no attempt was made to evaluate the coefficients

of these responses.
Stability Derivatives

In addition to the quantities Lps Ny + Yp, NB', Ngrg and L5a', that
were determined as mentioned in the preceding paragraphs, the coefficient
La' was evaluated from the time histories of rolling and yawing velocity
as shown in reference 5. This method is briefly outlined in appendix D.

CONFIDENTIAL
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The guantities NB’ Lg, N6r: and L5a can then be calculated from * 4
Ng', Lg', Ngr‘, and LSa' by using the following expressions obtained |
from the relationships developed in appendix C: i

L= t
l-rXrZ

|
|
|
|
|
LB & Lp'-ryNg' [
|
|
|
|
|

l—rxrZ
- r
s
r l"I'XrZ
3 1 |
LS i Lsa rxNBa
a l—I‘XI‘Z

|
|
[
Because ry and ry are very small quantities, wind-tunnel estimates

of Lg," were assumed to be sufficiently accurate to use in the calcula- :
tion of N@r. The Germ rXNSa' was completely neglected in evalua- y
ting L6a' r
|

Finally, from the definitions given in the notation it is possible
to evaluate the derivatives C & € C and C 5
Zp’ nB; lﬁ’ ngr) 26a

The analysis methods used herein do not allow the separation of the
damping term Npr + Yg. As compared to Nr, the term Ypg is small and |
can generally be predicted accurately from wind-tunnel measurements.
lereforeivialuesiof Cy given in table II were used in calculating
Cnr from the quantity N, + YB'

against Mach number in figures 8 and 9. These are compared to the pre-
dicted values listed in table II. Through the speed range of the test

the predictions for both altitudes are essentially the same, except as

noted in the plot of ClB.

The correlation between predicted derivatives and those evaluated
from flight at 35,000 feet is generally good except, in some cases, at .
speeds near a Mach number of 1.0 where the predictions are apt to be
inaccurate. Unpredicted variations with altitude are also apparent in

the flight values of Clp’ Cny, and Cngr- At a Mach number of 0.8 the

\
|
|
The flight evaluated derivatives for both altitudes are plotted
|
|
|
|
|
|

|

|

|
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value of Cp, for 10,000 feet is less than one half the value at 35,000
feet. Flight data of reference 4 when expressed in this form show a
similer’ trend. . The plot of Cn6r indicates the same tendency to a

lesser degree, while the 10,000-foot value of C3 (at M = 0.8) is some
50 percent higher than the value at 35,000 feet.

Values of Cj determined in the present investigation agree favor-
gbly with wind-tunhel results, while those reported in reference 6
(obtained from static flight tests of the same airplane) are much smaller
in magnitude. It appears, however, that the results of reference 6 are
subject to error because of the simplifying assumptions made. A more
rigorous approach would have resulted in larger values of this derivative.

Examination of figure 9 shows the control effectiveness derivatives
Cn6r and 0163 to have similar variations with increasing Mach number,

and in each case the measured values are generally smaller than predicted.
Values of CZS obtained in the present investigation agree closely

a
with those presented in reference 7 which again were evaluated from
flight measurements of the same airplane.

In this investigation there was no evidence of nonlinear variations
of rolling or yawing-moment coefficients with p, r, or B. This was
concluded because (1) the period and damping of the oscillations fol-
lowing a control imput were essentially constant in every case (no
systematic variations with amplitude), and (2) the experimental time
histories could be matched, in general, by differential equations with
constant coefficients.

No conclusions are drawn as to nonlinear moment coefficient varia-
tions with &4 or d, Dbecause the magnitudes of the control inputs were
not varied appreciably during the tests. They were small enough, however,
so that it could be assumed that the linear ranges were not exceeded.

Aeroelastic Effects

Although the present investigation was not conducted for the pur-
pose of studying aeroelasticity, the test results do show the influence
of structural deformation as indicated in the discussion that follows.

Effects at high frequency.- The frequency-response measurements of
p/d, 1indicate a mode of motion at high frequencies that is not consis-
tent with the rigid-airplane equations given in appendix C. According
to these equations, the amplitude of this response should approach zero
(at a slope of -1 on a logarithmic plot) as frequency increases, while
the phase angle approaches -900 asymptotically. Examination of

CONF IDENTTIAL
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figure 5(4), however, shows an increase in phase angle and a gradual
decrease in amplitude attenuation at frequencies greater than 10 radians
Per second. These data indicate the presence of an additional high
frequency mode which conceivably could correspond to the primary bending
frequency of the airplane wing (about 8 cps). A mode of this type can
be included in the equations of motion, in general, by introducing
additional degrees of freedom which will relate the mass and stiffness
characteristics of the wing to actual motions of the airplane. From
purely geometric considerationms, bending of a swept-back wing is accom-
Panied by a change in angle of attack and, when the motions of the two
wing panels are out of phase, there is a resultant rolling moment. Thus
it is reasonable to expect wing bending or twist to have a noticeable
effect on the rolling response of the airplane.

Effects on flight evaluated stability derivatives.- Test values of
CZ¥ shown in figure 8 indicate a variation not only with Mach number
bu

also with altitude (dynamic pressure) which may be the result of
inertia loading.

When the airplane is accelerated in roll, inertia forces cause the
two wing panels to bend in opposite directions. The resulting angle-of-
attack variation produces a moment that tends to modify the rate of roll.
This effect can be considered in the basic equations of motion by the

introduction of aCZ/Bﬁ, the variation of rolling-moment coefficient with
rolling acceleration. Then letting

. _ 3Sb ocy
fpes Ix op

equation (C4) may be written as

[(l-LI'))Dz—LPD]cp+(—rXDz—LrD)\l; =B = Lgaﬁa

It should be noted that the inclusion of Lﬁ is analogous to a change
in the moment of inertia about the X axis.

If each term is divided by (1 - Lp) then this equation is parallel

in form to equation (CL4), and the simplified transfer function for p/Sa
becomes

o 0 L5a/l"l‘13

i )

Thus it appears that the two derivatives as evaluated from flight data
are actually Clp/(l - LP) and Cléa/(l - Lp) For a swept-back wing
Lﬁ is a positive quantity that increases with dynamic pressure; so the

CONF IDENTTAT,
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© measured values of the two derivatives should also increase with dynamic

pressure.

The test measurements of Clp clearly show this trend, but in the
case of CZB there was no appreciable variation with altitude. Theo-
retical studies, however, and also wind-tunnel tests of flexible models
(such as described in reference 8) have clearly indicated that, in the
absence of inertia loads, the aileron effectiveness will in general
decrease with increasing dynamic pressure, the primary contributing
factor being the torsional flexibility of the wing.

It has been shown in reference 8 that the derivative Cp4 will
also vary with dynamic pressure. For straight wings there w1§l generally
be an increase in the negative value of C;,, while for highly swept-
back wings there will be a decrease. Presumably there is an intermediate
sweep angle at which there is essentially no variation in Cl with
dynamic pressure.

In order to substantiate this hypothesis regarding the effects of
elasticity, numerical calculations were made using the method of refer-
ence 9 to estimate the variations with dynamic pressure of the quanti-
ties Clp: CZBa’ and Lp. These calculations were based on information

supplied by the manufacturer regarding the mass distribution and stiff-
ness of the airplane wing. While not agreeing quantitatively with the
measured variations, the results did show the same trends with dynamic
pressure that were observed in the flight evaluated derivatives. More
specifically, the calculations indicated that Cl& decreases much more

rapidly with increasing dynamic pressure than does Furthermore,
the variation of (1 - Lp) was approximately the same ég that of Cls

This indicates that an increase in the effective derivative Cj /(l = Lp)
with dynamic pressure can be expected even though there is little varia-

tion in CZ6 /(1 - Lp) .

Similar arguments may be advanced to explain the altitude variations
that were noted in Cp,. and CnS These variations could be the result

of distortions of the fuselage and tail due to inertia and aerodynamic
loadings.

Response at Low Frequency

As mentioned in an earlier section, responses to a rudder step
disturbance were recorded in flight in order to check mainly the low
frequency portion of the r/8, frequency response (0 to 1.0 radians per
second). As shown in figure 5(b), the results of this analysis verify
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the prediction of a sharp attenuation in amplitude at a frequency of 0.4
radians per second. A step input was used in this particular case because
it gives much more accurate results at low frequencies than a pulse input.
The question of control inputs is discussed more fully in appendix B.

Although not shown in figure 5(b), the zero frequency (steady-state)
amplitude of r/dy was measured to be 1.44 as contrasted to a value of
169.0 predicted from the exact equation. Similarly, the steady-state
amplitude of p/8r was measured as 1.75, while the theoretical equations
indicate that this value should be zero. These discrepancies can be
partially explained in view of the following discussion.

The linear equations of motion used herein are valid only for small
angular displacements. When the step disturbance was applied in flight,
an angle of bank of approximately T70° was reached before the motions of
the airplane became steady. In the side force equation (equation (C6))
the term K,9 is actually a linear approximation of K, sin ¢ and
obviously is valid only for small bank angles. To determine the effect
of this nonlinearity on the predicted airplane responses, time histories
of p, r, and ® were calculated on an analogue computer for a rudder
step input of the same magnitude as applied in flight. Predicted values
of the various stability derivatives were used and solutions were obtained
first with the linear approximation K;® and next with the nonlinear
K; sin @. Results obtained from the nonlinear equation indicated that
the rolling velocity response would reach a finite steady-state magnitude
as seen in the flight record. In the case of the yawing velocity
response, however, the effect of the nonlinearity was such as to reduce
the steady-state value somewhat but not nearly enough to account for the
extreme difference between flight measurements and predictions.

The relationship of spiral damping to the zero frequency amplitude
offers another possible explanation for this discrepancy. Although the
basic analysis methods used in this report give no information concerning
the spiral mode, predictions indicated that at a Mach number of 0.8 at
35,000 feet the spiral root was -0.00070 which leads to the previously
mentioned steady-state magnitude of 169.0 for r/&r. The subsidence of
this mode was clearly measurable, however, in the yawing velocity response
to the rudder step input. A line was drawn through the center of the
free oscillations to represent the spiral mode and the root was measured
as -0.07 instead of -0.00070 as predicted.

This measurement was verified by examining recorded time histories
of yawing velocity responses to aileron pulse inputs (e.g., fig. 3(b)).
On eight flight records taken at Mach numbers between 0.5 and 0.9 the
spiral root was found to vary from -0.06 to -0.09. It can be seen that
the discrepancy in spiral subsidence is of the same order of magnitude
as the discrepancy in steady-state magnitudes of r/6r.
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In the characteristic equation the coefficient C, 1is generally
very small as compared to C,, and thus the theoretical spiral root can
be expressed quite accurately as simply

C
i o ‘Ef (3)

which is approximately the same as

K; (LpNg-N,.L
Ny 1( 1 SR 1 B) ()

e

All the quantities on the right side of this expression except L, have
been determined experimentally and found to agree reasonably well with
predicted values. Even though the term LrNB - N.L represents a small
difference of two large numbers, it is inconceivable that the errors in
NB’ N,, or L can be of sufficient magnitude to account for the large
deviation in the spiral root. Therefore it appears that this discrepancy
must be at least partially due to an erroneous estimate of Ly. By
rearranging terms in equation (4)

Ng

Using experimental values of all quantities on the right-hand side for
the case of 0.8 Mach number at 35,000 feet results in a value of 4.2

for L, as contrasted to the original prediction of 0.844. Further
study showed that the resulting value of L, was not appreciably changed
by using more exact expressions in place of equations (3) and (4). Then
assuming that all experimentally determined values on the right-hand side
of equation (5) are correct, Czr must have a value of -0.537 rather than
0.108 as predicted.

A Ny.L
Lr="lTIl'2+'—r—'§

Effects of Minor Derivatives, Product of
Inertia, and Flight-Path Angle

The results of this report indicate that a knowledge of CnB’ Cyp2
Cnr’ and Cy is sufficient to define the oscillatory mode, that the
rolling mode is primarily a function of Cy., and that the spiral mode
is defined by Clr’ Cnns Cnr, ClB, and CIP- Therefore it would appear
that Cnp has little effect on the dynamic behavior of the test air-

plane and that Cy,. influences only the spiral mode. Because deriva-
tives such as Cnp and Cy, are usually difficult to estimate, the
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question may arise as to whether large changes in either of these deriva-
tives will appreciably alter the airplane stability. If erroneous esti-
mates of C and Cy had been used in this report, would the simplifi-
cations made in appendix C still be valid? Similar questions may arise
regarding the effects of product of inertia and flight-path angle. For
this reason table III has been prepared. This table shows the manner in
which radical changes in each of the above-mentioned quantities will
effect the roots of the characteristic equation. In this example, theo-
retical data for a Mach number of 0.5 and an altitude of 35,000 feet were
used. Sample calculations have shown that at this speed and altitude the
effects to be considered are more extreme than for any of the other flight
conditions covered in this investigation.

Examination of table III shows trends that have been verified in
many other investigations of this type. Extremely large changes in
G result in variations of all four of the roots although only the
oscillatory damping is greatly affected. On the other hand changes in
Cl » as previously intimated, cause large variations in only the spiral
d. ing. Variations in Iyxy appear to influence all the roots except
the spiral root, with the largest effect on the oscillatory damping.
Finally the introduction of a flight-path angle into the equations changes
the spiral root radically, but even for an angle of -90° there is very
little effect on the other roots.

Looking at table III from a different point of view, it can be seen
that the oscillatory damping is influenced to some extent by each quan-
tity considered and thus is often difficult to predict accurately. This

obviously means that the expression Np + YB may not always be adequate
in defining the oscillatory damping.

CONCLUDING REMARKS

A flight investigation has been performed on a 35° swept-wing fighter-

type airplane in which dynamic lateral- and directional-response charac-
teristics were measured. Transient-type responses to rudder and aileron
disturbances were recorded at altitudes of 10,000 and 35,000 feet in the
Mach number ranges of 0.50 to 0.81 and 0.50 to 1.04, respectively. From

the results of the analysis of these data, the following statements can
be made.

Airplane responses in yawing velocity and side-slip angle due to
rudder disturbances can be represented by second-order transfer functions
that are related solely to the oscillatory mode. Simple first-order
equations adequately define the rolling velocity response to an aileron
input. It was found that these equations would closely define an entire
measured time history and also describe the corresponding frequency
response through the range of 1 to 10 radians per second.
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Fourth-order transfer functions calculated from the basic equations
of motion using wind-tunnel and theoretical estimates of the various
stability derivatives can be simplified by neglecting small quantities
and by making approximate cancellations until they are of the same form
as those evaluated from flight data. Furthermore, it was possible to
express the coefficients of these transfer functions in terms of indi-
vidual stability derivatives. Frequency responses computed from these
simplified equations were almost identical (between 1 and 10 radians per
second) to those computed from the exact fourth-order transfer functions,
and when compared with experimental results there was generally good
agreement. Thus it is concluded that the simplified transfer functions
form a reliable basis not only for estimating airplane responses but
also for the flight evaluation of stability derivatives. The methods
used here are felt to be sufficiently general to apply to any conven-
tional airplane, with some reservation regarding the accuracy of the

evaluation of Cp..

Experimental values of the derivatives CnB’ CZB, Clp’ Cnp.s Cnér’
and Cz6 compared favorably with predictions, based on theory and wind-
tunnel %easurements, at Mach numbers below 0.95, while at higher speeds,
where predictions are questionable, there was some deviation. There were
also notable discrepancies in flight values of Cy; and Cpg, obtained at
the 10,000 foot altitude, which were attributed to structural deforma-
tions resulting from aerodynamic and inertia loads.

When the, Fourier analysis for p/8a was extended to frequencies
beyond 10 radians per second, the frequency response showed evidence of
aeroelastic deformation which appeared as an additional mode of motion

not consistent with rigid airplane theory.

As the frequency approaches zero the spiral mode becomes the pre-
dominant factor in the airplane response. The spiral root was measured
as -0.07 (at a Mach number of 0.8) which is many times greater than
predicted. To satisfactorily account for this large discrepancy would
require a negative value for Clr which is contrary to theoretical

estimates.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, California
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APPENDIX A

TRANSFER OF AXES

The equations of motion normally used in airplane dynamics are
based on a system of axes fixed in the airplane in which the X axis is
the intersection of the plane of symmetry and a plane perpendicular to
the plane of symmetry that contains the relative wind vector. These are
normally referred to as stability or flight-path axes. The angular dis-
Pplacement between the X axis and the reference axis of the airplane is
equal to the angle of attack. Since recording instruments are generally
alined with the reference axis, measurements of angular displacements
and rates must be corrected to conform to stability axes notation as
indicated in the following sketch taken from reference 5. Here ¢ and
¥ are vector components of the resultant rotation of the airplane and
the subscript 1 refers to the reference or body axes.

Xy
L {
e X
\

’“ﬁq“* Resultant
motion

From the sketch it can be seen that

¢ =@ cosa+ ¥y, sin a
W= Wl cos a - @ sin a
Sideslip angles can be transformed by the relation

B =By cos a

For most purposes these conversions need be made only when the
angle of attack is large. In this investigation it was found that the
corrections to rolling velocity responses could be neglected in all cases
because, for either type of input, the response in yaw is small compared
to that in roll. In the case of the yawing velocity records, however,
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corrections were necessary. When a rudder input was used this correction
was negligible at those speeds where angles of attack were less than 2°,
but in the case of the yawing responses to aileron inputs the conversion
had to be made at all speeds. The correction to B was neglected in
every case.
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APPENDIX B

CONTROL INPUTS

When frequency responses are to be calculated from transient records,
care should be given to the choice of a suitable forcing function. The
frequency range through which accurate transformations can be obtained
is definitely limited by the shape of the control imput. Theoretically,

a pure impulse (zero time duration) is the most desirable input for all
purposes because it gives uniform excitation to the entire frequency
spectrum. The transform of a step input, on the other hand, has a mag-
nitude that varies inversely with frequency and thus gives infinite

excitation to the zero frequency component at the expense of the higher
frequencies.

The nearest physical approach to a pure impulse is an input that is
roughly triangular in shape as shown in the sketch:

Letting a equal the slope and T equal the time base of the triangle,
the Fourier transformation of this input can be obtained from the relation

5(iw) =frs(t)e-iwtdt
o
Integration results in a transformation with the following real and
imaginary parts:

o) wT o wT
i~ 'é'(l § ?) (B1)
Lca wT HESE )
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The magnitude of the transformation is then

ol =22 (2 - cos )

It can be seen that |&| is periodic and is zero when w = bx/T,
87/T, ..... At these frequencies the transform of the response to this
input would also be zero, and thus the ratio of output to imput would be
indeterminate. A reduction in T would increase the period and reduce
the number of indeterminate points. This is shown in figure 10 where
the transform magnitudes of two triangular pulses are plotted. One has
T = 1 second and a = 4, while the other has T = 1/2 and a = 16. The
areas under the two triangles are equal so that their transforms have
equal magnitudes at zero frequency. Reducing T from 1 second to 1/2
second doubles the period and moves the first indeterminate point from
a frequency of Un radians per second to O8n. For purposes of compari-
son, transformations of a unit step and a unit impulse are also shown.

As T is further reduced, the magnitude of the triangular pulse
more closely approaches the constant value that is characteristic of the
pure impulse. To gain full advantage from the smaller T, the slope
must be increased to maintain the same area under the pulse. A practical
limitation is fixed by the maximum rate at which a control surface can
be moved, and any further reduction in T results in smaller over-all
magnitudes. The most desirable input, therefore, is a compromise between
large area and short time duration.

From figure 10 it would appear that a pulse-type input is well
suited for determining low frequency characteristics. However, the
following explanation will show that this is not true.

Generally it is impossible to return a control surface precisely to
its initial position after application of a pulse input. Even if a chain
stop or other device is used there is still apt to be a small residual
deflection after time T as shown in the following sketch:

Wi >
] f
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If ®, 1s exactly zero, then as w approaches zero (from equations
(B1) and (B2))

Now if &, 1is finite, the real and imaginary parts of the transform of
the entire input are

H

2a )

R cos

w2

28 .- ol wT O
I=u-;-2—31n—2—<cos—2—-l> -.Fcosz
£ (

wT o) s
1 - cos 2;) - 3? sin 0T

In this case as w —> 0,

> 00
=
R —> 3 - &7

thus the zero frequency magnitude is infinitely large regardless of how
small O, may be. Therefore, even though &, appears to be zero on a
flight record (i.e., &, is less than the least count of the recording
instrument) there is still the possibility of an infinite error at zero
frequency. A step input is not subject to these large low frequency
errors; an error of 1 percent in the reading of the step deflection
merely means an error of 1 percent in the transformation.

CONFIDENTTIAL



NACA RM AS2T1T CONF IDENTTAL i

o APPENDIX C

PREDICTED AIRPLANE RESPONSES
EQUATIONS OF MOTION

The three equations that define the lateral and directional motions
of an airplane with respect to stability axes such as developed in refer-
ence 10 may be written as:

2 b_ (TvoD2 - b_ i ki
<IXD aSb o8 2V]>CP +<IxzD asb Cyp 5 D) v - qSb CZBB = qSb C7,8
(c1)

b b
(—IXZDZ - asb Cp, «2—VD> Q + <IZD2 - aSb Cn,. EvD) ¥ - aSb CngB = aSb Cngd
(c2)
. (-W cos 7)Q + (mVD - W sin 7)y + (mVD - aSCyg)B = aSCysd (c3)
By dividing equation (Cl) by Iyx, equation (C2) by Iy, equation (C3) by

mV, and by introducing new symbols, the three equations can be written
in the more convenient form that follows:

(D2 - LpD)@ + (-rxD2 - LyD)¥ - LB = Lgd (Ch)
(-rzD® - NgD)® + (D2 - NyD)¥ - NpB = Ngd (c5)
X,9 + (D - Kew + (D - YB)B = ¥gh : (C6)

CHARACTERISTIC EQUATION

The characteristic equation A 1is formed by expanding the major
determinant to give

A = D(CD* + CgD® + CD2 + ;D + Co) (c7)
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J where

Q
»
Il

1 - ryry

g =| oo Bp =Ygl - ryry) - rxlp - rzlr

J _ Cp = (Np + rgly)¥p + (Ip + rylp) ¥ + (IpNy - NpLy) + (Ng + rglp)

Cy = ~(LpNy - Nplp)Yp + (Lglp - Nplp) - Ky(Lp + rxip) - Ko(Ng + rzlp)
C, = -Ky(LyNg - NrLg) - Ko(LglNp - Nplp)

These coefficients can be further simplified by making the following

substitutions:

/ Let
Lyt = + ryVp Ny!' = Ny + rzﬁr

LB' = Lg + rxVg NB' = Ng rglg
/ Then the coefficients of the characteristic equation are finally expressed

as
‘ A L = ryry
| G = Ip! - - TR - g

G = et + Lp')YB + (Lply - NPLr) + Ng!
. G = -(Iphy - Nplp)¥p + (LgNp - Nplp) - Kilg' - KoNp!

Co = Ki(LyNg - NyLg) - Ko(LpNp - Nglp)
In factored form, equation (CT) is
A=D(D -2) (D -21) (D=2g) (D -2,)

where A\, and A, are designated as the spiral and rolling roots, respec-
tively, and where \g and A4 are a complex pair (o % iml) that describe
the oscillatory mode.

For convenience in this investigation A has been expressed as

A =D(D -Ay) (D - Ap) (DF + &3D + cp)
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where

c

1 = ~(Ag +0y) = =20
Co = Agh, = 0F =

Here c; and c, are real coefficients that define the damping and period
of the oscillatory motion.

The quadratic term may also be written in the form

2
W <1 + 2;-:3—11 3 %)

where
up = Az
and t = i
2‘~"n

SIMPLIFICATIONS OF THE CHARACTERISTIC EQUATION

In the special case when the flight-path angle 7 1is zero and when
the product of inertia is very small, it is often possible to neglect
Co and, by neglecting other small terms, the characteristic equation
may be written as

A = DE[D3 - (Lp + Ny + Yp)D® + (LpYp + LpNr + Ng)D - LPNB:|
The cubic term can be factored exactly so that
A =TP(D - Lp) [Dz - (Ny + Yg)D + NB]

This form of the characteristic equation considers only the oscillatory
and rolling modes. It enables the coefficients C;, Cp, and Cq to be
expressed directly in terms of aerodynam’c derivatives or simple com-
binations thereof.

Even when the product of inertia is significant the characteristic
equation may be factored approximately into the comparable simple form

A =D°(D - Lp) [DZ - (Np+Yg)D + NB'}

While the factorization is not exact, it is nevertheless Justifiable
in many cases.
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TRANSFER FUNCTIONS

-From the three equations of motion the airplane responses in Q,
¥, and B can be readily calculated. In the following equations, ®
refers to either an aileron or & rudder disturbance.

.

P _ AgD® + ADZ + AJD + A
B® A

where

=
(6}

La o I‘XNS

-Ls(Yg + Np) + Ng(Lyp - ry¥p) + Yglg'

N

= LS(NI‘YB + NB) - Ng(LB + LI‘YB) + YB(LI'NB - NI‘LB)

=i b
™
|

O
Il

Ko(NsLg - NgLg)

¥ _ BaD® + BaDZ + BiD + By
A

ol

Where

Ny + rylg

2 = Ng(Ip +Yp) + Lg(Np - rz¥g) + Yglg?
- FglpTp — Lolplp + Follphy = Wgly)
K, (LgNg - NgLg)

ev)
Il

o
I

B _D(EgD® + E;D2 + EiD + E,)
8 A

E2 = -Ya(Nr' &+ IP') = LSrZ = N5
1 = Yo(IpNy - NpLy) - Ls(Np - rgK, - K;) + Na(rgK;, + Lp + K,)

Eo = Ki(Wely - LgNy) + Kp(Lghp - NgLp)
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Simplifications can also be made in these expressions by neglecting
small quantities; however, this can be shown more clearly in the numeri-
cal example that follows.

NUMERICAL EXAMPLE AT M = 0.8

Using values of stability derivatives shown in table II, and with
y = 0, predicted responses for p = D@, r =D¥, and B for both aileron
and rudder inputs have been calculated and found to be

A = D(D* + 3.652D3 + 15.16D2 + 41.26D + 0.0289)

= D(D + 0.00070) (D + 3.078) (D2 + 0.573D + 13.40)
r _ -7.60D(D + 3.091) (DZ + 0.0270D + 0.208)
By A

p  5.16D3(D + %.436) (D - 5.210)
By A

_ 0.0339D(D_+ 3.053) (D + 225.3) (D - 0.00703)
A

r _ 0.699D(D + 3.978) (D2 - 1.758D + T.358)
o A

P _ 36.4D3(D2 + 0.655D + 13.68)
A

8 _ 0.0008D(D + 0.990) (D - 1.094) (D - 870)
% A

k3

By neglecting small terms, r/6r can be expressed as

r -7.60D3(D + 3.091)

5, D2(D + 3.078) (D2 + 0.5(3D + 13.50)
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and then by an approximate cancellation this reduces to

i -7 .60D
5p D2 + 0.57(3 + 13.50

Similarly, B/5r can be simplified by neglecting small terms so that

& 7.64D%(D_+ 3.053); » T.64
5, D2(D + 3.078) (D2 + 0.573D + 13.k0) ©~ D2 + 0.573D + 13.k0

It can be seen that this expression for 8/6r is practically indentical
(with opposite sign) to the integral of the simplified equation for
r/8r. It is also possible to simplify p/8a as follows:

D _ __ 36.4P(D® + 0.655D + 13.68) e
8 D2(D + 3.078) (D2 + 0.573D + 13.10) ~ D + 3.078

Similar simplifications have been made for other Mach numbers and
found to be equally valid.
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APPENDIX D

FLIGHT EVALUATION OF CZB

From time histories of the free oscillatory responses of p and r
it is possible to evaluate the derivative C, provided the derivatives

Cp, and Gy are known. The method employed is explained in some detail
in reference 5 and is briefly summarized here.

When the three equations of motion are set equal to zero and written
in determinant form, expansion of the appropriate minor determinants
about the third row yields cofactors of @ and V.

The cofactor of @, Cp 1is

G

(ryD® + LyD)Ng + (D2 - NID)LB
< Dl:LB'D + (LyNg - NrLB):l

The quantity LrNB - NrLB is generally very small and qp can be closely
approximated as

Cp = Lg'D?
The cofactor of ¥, Gy is
Cy = =(D® - LpD)NB - (ryD® + NPD)LB
-D [NB'D = (Ll e NPLB)]

In this case the term NPLB is small compared to LPNB and the expres-
sion for Cy can be approximated as

Il

c] t -
Cy DNg (D Lp)
The ratio of the two cofactors is then

99 & Lg'D
Cw —NB'(D - Lp)

When the complex root Ag = 0 + iw, 1is substituted for the operator D,
this expression is the ratio of the free oscillatory responses of ¢ and
V¥ at any time +t. The ratio of p to r is obviously the same and can
be expressed as
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-Lg' (o + iwg)
NB'(U + iw; = Lp) o -

=
»

The actual magnitude of this ratio is

|

|

|

|

|

P Lg! /o2 +w® |
|
|
|
|
|

14

Ng' o - B s
In this form |p/r| is the ratio at any time t of ‘the amplitudes of
the envelopes that enclose the oscillatory motions of p and r; o 1is the
rate of damping of the envelope; and wj is the natural frequency of
oscillation. When o is very small as compared to w; it can be omit-
ted; thus

l;@.l b Lt 4 Lp
i
NB',,/LP2 w2 Nt g1+ (Lp/w, )2
If Ng' and are known, it is then possible to evaluate LB' from :

measured time histories of p and r.
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TABLE I.- PHYSICAL CHARACTERISTICS

NACA RM AS52I17

OF TEST AIRPLANE
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ASPECLPaEi0 o sle ols o silee e o e e
Taper ratio. . el o s s e
Mean aerodynamlc chord s o o g dia o &
D edRe N LSS e el o e wide Teite e e
Sweepback of quarter-chord line. . . .
Aerodynamic and geometric twist. . . .
Root ‘airfoil section (pormal to quarter-
s s PR A
Tip, airfoil sectlon (normal to quarter-
i o v A P

Ailerons

AgeaPNeachiNaNeciN o o eilale e telia s e e
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TABLE II.- PARAMETERS USED IN ESTIMATING AIRPLANE RESPONSES

Altitude, 35,000 feet

Altitude, 10,000 feet

M Qe
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q 87.0
Cr, .51
a e
Ixz -129
Cig | -.1025
§ Cng .1100
g SYB -.620
= Zp - . 300
= Cny, | -.0328
E Gty vl
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Cig, | 0077
o | T2
Y5r =
Clﬁa oitlifli2
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Cys,, .00k
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A2 -1.809
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TABLE III.- EFFECTS OF Np, Ly, Iz, AND 7y ON o

COEFFICIENTS OF THE CHARACTERISTIC EQUATION

[A=(D -xr1) (D -2r2) (D + c3D + cp)]

(a) Effect of variations in Cop

CONFIDENTIAL

Spiral Rolling] Oscillatory

I\Ip root root mode
Ay Ao Ci Co
-0.10 |-0.00168| -1.951 |0.235| 5.55
-.05 | -.00192| -1.809| .378] 5.2k
0 ~. 002061 -1.731 | .455} 5.10
.05 | -.00223( -1.646 | .541 | 4.96

(b) Effect of variations in (g,
Ly Aq Ao Cy Co
1.6881 0.0216 | -1.818 |0.393 | 5.30
Bhk| -.0019 | -1.809 | .378]|5.24
0 -.0262 | -1.804}] .35915.18
-.844 ]| -.0520 | -1.795| .3h42]5.12

(c) Effect of variations in Ixy
Ixz, Aq Ao Cy Co
-259h [-0.00191 | -1.680 [0.608 [ 5.86
-1297 | -.00192| -1.809 | .378|5.24
0 -.00193| -1.956 { .176 | 4.78

(d) Effect of flight-path angle
Y Xl X2 c, Co
0 |-0.00192| -1.809 J0.378 | 5.24
-3091-.0313 | <1.812 | .356 5.2k
-90° | -.0595 | -1.816 | .314]5.23
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Figure 2- Two-view drawing of the ftest airplane.
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Figure 3.- Sample flight records of yawing velocity, rolling velocity,
and sideslip angle at a Mach number of 0.8/ .
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Figure 4.—Lateral -directional frequency responses at various Flight
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(c) Sideslip angle response fo rudder input.

Figure 4.-Continued.
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Figure 4.- Continued.
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Figure 5.—Comparison of experimental and predicted lateral-
directional frequency responses at a Mach number of 0.8/ .
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(c) Sideslip angle response fo rudder input; altitude, 35000 feel.
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Figure 5.-Continued.
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