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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

A THEORETICAL AND EXPERIMENTAI, STUDY OF
WIND-TUNNEL-WALL EFFECTS ON OSCILLATING AIR FORCES FOR
TWO-DIMENSIONAL SUBSONIC COMPRESSIBLE FLOW

By Harry L. Runyan, Donald S. Woolston,
and A. Gerald Rainey

SUMMARY

] A recently published analytical investigation of the effects of
‘wind-tunnel walls on air forces on an oscillating wing at subsonic speeds
(NACA TN 2552) demonstrated the possibility, under certain cohditions, of
the existence of large tunnel-wall effects, associated with an acoustic
resonance phenomenon. In the present paper the integral equation defining
the problem is treated further and is presented in a form adapted to
calculations. Application is made to the case of a pitching airfoil in

a given wind tunnel at a Mach number of 0.7 for frequencies ranging from
zero to beyond the frequency of acoustic resonance. The calculated 1lift
and phase angle are compared with the results of experimental measurements
made in the Langley 4.5-foot flutter research tunnel. Good agreement is
ob*ained between the calculated and the experimentally determined magni-
tr  of the 1lift and phase angles. )

INTRODUCTION

e
.

In he evaluation of results obtained by megsurement of the air
forces on an oscillating wing in a wind tunnel, the question of the
effect of the tunnel walls arises. A theoretical treatment of the effect
of wind-tunnel walls for the case of two-dimensional incompressible flow -
has been made by several investigators and reported in references 1, 2,
and 3. In these papers the influence of the tunnel walls is found to be
comparatively small for most cases. Extension of the treatment of the
problem to include the effects of compressibility of the fluid has been
reported in reference 4. It is shown in this reference that, for certain
conditions of wing frequency, tunnel height, and Mach number, the oscil-
lating wing could excite the air in the tunnel to the point of resonance
and that, in the absence of damping, infinite transverse velocities could
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2 CONFIDENTIAL NACA RM 152I17a

exist. 1In the neighborhood of such a resonant condition one would
expect very large wall effects and it would be extremely difficult to
approximate the free-air condition.

In reference 4 an integral equation is derived which relates the
downwash distribution to the 1lift distribution for an airfoil of infinite
aspect ratio oscillating in a wind tunnel. A main purpose of the present
Paper is to present a method of solution of this equation and to demon-
strate some applications. The method of solution is one of collocation,
similar to that used by Possio (ref. 5) and Frazer (ref. 6), in which
the downwash is satisfied at selected control points along the wing
chord. Accuracy of the solution is increased as the number of control
points is increased, and in the present investigation successive calcu-
lations based on one, two, and three control points have been made.

Another objective of this paper is to make comparisons with experi-
mental results and for this purpose measurements have been made of the
magnitude and phase relationships of the 1ift on a two-dimensional wing
oscillating in pitch. Measurements were made at a constant Mach number
(0.7) for a range of frequencies of oscillation. These results are com-
pared with the results of calculations made for the same conditions.

As stated in reference 4, the integral equation for the case of no
tunnel walls checks the results of Possio. For the case with tunnel
walls and for the limiting steady-flow case of zero frequency, it is
possible to obtain a mathematical check with some existing results; this
is shown in an appendix.

SYMBOLS
Ay coefficients in series expression for lift distribution
(eq. 11)
a axis of rotation measured from midchord, positive rearward,

based on half-chord

b wing half-chord, ft

c velocity of sound, ft/sec

h displacement of wing in vertical translation
H height of tunnel

Hn(g) Hankel function of the second kind
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NACA RM L52I17a CONFIDENTIAL 3

k reduced frequency, bw/U

K(M,z) + K(M,z,H) kernel of integral equation

L(x0), L(6o) 1lift distribution, 1b/ft/unit span

M Mach number, U/c
- MkH
P = 2nB

Rn = \[(x - xo)2'+'62(nﬂ)2

‘U é£ream velocity in chordwise direction, ft/sec

wix) vertical induced velocity (perpendicular to chord), ft/sec
X, Xg, E chordwise coordinates
Yy vertical coordinate )

z = k(X - Xgp)

a angular displacement of wing in pitch

B=\1-M

- lx - Xo|

BH
w circular frequency of oscillation, radians/sec«
Wreg circular frequency at résonance, radians/sec
o) fluid density, slugs/ft3 

Subscripts:
n o, 1, 2, . .

Following equation (6) variables €, x, x,, H, and y .are con-
sidered as nondimensional length quantities based on the half-chord b.
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in which use has beén made of

M= (& u = (D—g— w = E/I_Z
cp? ug? Be
Ro = X - Xg Ry = ka - xo)2 + ﬁe(nH)e

Although the kernels K(M,z) and K(M,z,H) are similar, it may
be noted that K(M,z) is singular since, at x = x5, Ry 1is zero,. and

for small argument, Ho(z)(x) behaves as logg x and Hl(e)(x) behaves
as l/x. The argument Rp of the Hankel functions in K(M,z,H) does
not approach zero and therefore the terms in the bracket for this part

of the kernel are not singular. It will be seen later, however, that

the series representation of K(M,z,H) becomes large as resonant fre-
quencies are approached and is infinite at the resonant condition.

The integral equation for the case of no tunnel walls checks the
results of Possio. For the case with tunnel walls and for the limiting
steady-flow case of zero frequency, it is possible to obtain a mathe-
matical check with some existing results; this is shown in an appendix.

Method of Solution

A method of using equation (7) to determine the aerodynamic forces
on a wing oscillating in the presence of tunnel walls is now discussed.
The method under consideration is one of collocation, similar to that
used in references 5 and 6 for the case of no tunnel walls. The method
involves writing the expression for the downwash at selected control
“points, that is, reducing equation (7) to a set of linear algebraic
. equations. The unknowns in the set of simultaneous equations are the
various coefficients of the expression which is assumed for the loading.

This expression which is assumed for the present case is a trigono-
metric series expansion which satisfies the Kutta condition at the
trailing edge and which has the proper type of infinity at the leading
edge. This expression is

L(xo) 2N X - ) -
——=% = Ay cot — + E Apn sin nfy = L(6p) (10)
pU2 2 =1 -

CONFIDENTIAL -
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where x5 = -cos 8,5 and the Ap's are unknown coefficients to be deter-
mined in accordance with the downwash w(x), which is known from the
motion of the wing. It is desirable to rewrite equation (7) in terms of
the new variable 65, and equation (7) then assumes the form

b1
Ukll/ﬂ T(60)K(M,z)sin 64 a6 +\/F L(60)K(M,z,H)sin 8, db,
0 . .

£
L
~
i}

7
0

Uk(II + III) g (11)

The integral 1! of equation (11) to be discussed first is the integral
expression as first derived by Possio for the condition of no tunnel
walls and has been treated by several investigators. As pointed out

previously, the kernel K(M,z) of I! is singular at x = Xo. Since,
in handling the complete integral II, numerical or graphical means are
necessary, it is convenient to isolate the singularity and express it

in an integrable form. This has been done by Schwarz (ref. 7) who
expanded K(M,z) in the vicinity of 2z =0 in the form

F(M)
Z

K(M,z) = + iG(M)log, |z| + K1(M,z)

where F(M) = %%, G(M) = E%E’ and K;(M,z) is a tabulated function

which is no longer singular. Substitution of this expression in the
integral I' of equation (11) gives

Hi——
1l =\jp L(8o)sin 6oK1(M,z)d0, +
0

\/fn L(6,)sin eo[%gg) + 1G(M) logg |z]]d60 (12)
0

CONFIDENTIAL
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With the use of equation (10), the integral of equation (12) con-
taining K7(M,z) becomes

b ‘ Tt :
JF L(8o)sin 6K (M,z)d6, = Ao\/p (1 + cos 60)K (M,z)df +
0 0

[o0]

T
§ Anf sin 64 sin nf;Kq(M,z}d6,  (13)
0

‘n=1

By utilizing the values of K;{M,z) tabulated by Schwarz, the indicated
integrations of equation (13) may be readily carried out by numerical or
graphical means.

Putting 2z = -k(cos 6 - cos 65) gives for the second integral

of II in equation (12)

b1¢ .
f L(6y)sin GOE(ZM) + 1G(M) log, |z£ldeo
o) * ’ x

T 7 .
L(€,)sin 6,
F(M) [ a, +
o Cos 6 - cos Bg

==

B .
iG(M)\jF L(6o)sin 6o loge Icos 0 - cos 6g|dbgy +
o .

b1s
iG(M) log, k/ L(6o)sin 65 A6,
0

= _% F(M)Ig + iG(M)I; + 1G(M)Ip log, k (1)

The integrals I,, I;, and I, have been evaluated by Frazer (ref. 6)

and have the following values:

. .
Ig = -mhg + © E A, cos nb (15a)
n=1

CONFIDENTIAL
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I, = —n(AO T Al)loge 2 - 1A, cos 6 + % Ay cos 20 +

2
AN cos(n + 1)8 cos(n - 1) g
E;An[ n+1  n-1 :' (lsb_)
Ip = n(Ao + % Ay) (15¢)

With the use of these expressions in equation (14) and with the results

of the integration of equation (13), the integral I! of equation (11)
is now expressed solely in terms of the unknown coefficients Ap. It

remains now to obtain III of equation (11) in a similar form.

The kernel X(M,z,H) of ~III,bgiven in equation (9), is the sum
of four infinite series; namely , ‘

-iz @

o eP D (1) (P (g

n=1

K(M,z,H) = £

ik i(—l)nﬁ e B° HO(2)<E—§J§2 +_[32(nH)2>dE +

-iz

where the Sp's denote the indicated infinite summations and the Cp's
the respective multipliers.
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The series S; and Sp of equation (16), which involve the Hankel

function Ho(e), may be put in a more rapidly convergent form according
to reference 8 by introducing the variables P and ¢, where

and
lx - Xol

€ = AE

Accordingly, the series 5; and ASE can be written as

[ve)

S1= > (-1)™ 5,(®) (uRy)

n=1
= i (_-l)n HO(E) (Qﬂp‘kQ + n2)
n=1 .
- 51; 2i exp(-ne 1 - hpe) + 04 5": exp[—ﬂG\[(Qn + 1)2 - )-Lpej .

1 - bp? n=1 \/(2n +1)2 - hp2

expl:ne\/(Qn - l)2 -ﬁp{l

- nHo(2)(2nep) (17)
Vien - 1)2 - P
and

=S (_1yn g (2)/Mknh

= iHO(Q)(anp)
n=1

=Ll-n+2i7+l 2 +-l+'°°‘ 1 -1 18
21 | ( Ofe P) 1DZ=1\/(21’1-1)2-)+p2 2n - 1 (1)

where Euleérs' constant 7y = 0.577215.
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Series Sh was evaluated in a direct manner by employing tables

of the Hankel function and by using for large values of the argument
the approximation

-1 (uR 3n
Hl(g)(“Rn) ~ 2 (’Ll h ) (20)

e
uRp

With the aid of these series 83, So, Ss,-and Sy, the kernel

K(M,z,H) may be evaluated. The integral Il of equation (11) may be
expressed in terms of the unknown coefficients A, upon substitution
of the assumed expression for L(Go) and by graphical integration.

The integrals of equation (11) are determined in this manner for a
selected number of control points and equated to the expression for the
downwash. :

- The expression relating the downwash to the motion of a plunging
and pitching wing is

w(x) = n % Ua + b(x - a)a ’ : (21)

With the assumption of harmonic motion, equation (21) is used to calcu-
late w(x) for values of x appropriate to each of the control points.
A set of simultaneous equations can then be written, the number of which
corresponds to the number of control points assumed and to the number
of terms retained in the series for IL(6y). The unknown coefficients

may now be determined by solving these simultaneous equations. It may

then be shown (see, for instance, ref. 9) that the total 1ift and moment
are given by ' '

~
L - 3o+ 30)
npr2 2\'0 271 : -
f (22)
My 1(' 1 )
==(A. +LaA
xpb2y2 B8\©C 2 1J

where Md is the moment about the midchord.
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Summary of procedure for calculating tunnel-wall effects.- As an
aid in calculating the effects of wind-tunnel walls on an oscillating
wing the following summary of the procedure is given. It is assumed
that the Mach number, speed of sound, wing chord, frequency of oscil-
lation, and tunnel height are known.

(1) Select the position x of each of the control points for which

equation (11) will be written. First, treat I1 of equation (11) as
given by equation (12).

(2) For each value of x, evaluate the first integral on the right
side of equation (12), in the form given by equation (13), by numerical
or graphical means.

(3) Evaluate the second integral of equation (12) in the form given
by equation (1) by use of equation (15). Add the results to the results

of step (2) to obtain I! in terms of the unknowns A,

(4) For 11 of equation (11), first evaluate K(M,z,H). given by
equation (16) by use of the series given in equations (17) to (20).

(5) For each value of x substitute the values of K(M,z,H) from

step (4) in 11 or equation (11) together with E(Go) from equa-

tion (10) and perform graphical or numerical integration to give TIit
in terms of the Ap. Combine these results with the results -of step (3)
for the corresponding values of x.

(6) From equation (21), with the assumption of harmonic motion,
calculate w(x) for.values of x appropriate to each of the control
points. ' ' '

(7) Equate results of steps (5) and (6) for corresponding values
of x to obtain a set of simultaneous equations in the unknowns Ap.

(8) Solve the equations from step (7) for the Ap's.

(9) Determine 1ift and moment from equations (22).

Application to a specific problem.- The foregoing theory has been
applied to the particular case of a wing oscillating in pitch about the
midchord (a =0, h =0 in eq. (21)). Calculations have been performed
for M =0.7, H = 3.802 feet, b = % foot and c¢ = 531 feet per second
for various frequencies Qf OSéillation from O to‘60 cycles per sepohd.

CONFIDENTIAL: -
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In performing the calculations, the number of, terms of the series
for 1ift distribution (eq. (10)) and thus the number of control points
required to obtain satisfactory accuracy was not known. Accordingly,
the calculations were performed by increasing the number of terms of
the series until the solutions were in reasonable agreement. First,

the initial term of the series for 1lift distribution Ao cot %? was

used together with a control point at %-chord position. Then two terms

, G
Ap cot ?? + A] sin 65 and two control points located at'%- and %--chord

positions were'used, Finally, the first three terms of the series and
control points at %-, %7, and %-chord positions were utilized. 1In

addition, calculations were made for the case of one doublet placed at
the %-—chord position and for the downwash satisfied at the'%-chord

position. The results of these calculations are shown in figure 1.

In the calculations of the series for the determination of K(M,z,H)
it was found that as the resonant condition was approached, more terms
were required for convergence. In all cases, however, a sufficient num-
ber of terms of the series was taken to assure convergence in the third
decimal place. Series S), was the most slowly convergent and in one

case required 240 terms in order to assure convergence.
EXPERIMENT

The experimental part of the investigation of the effect of wind-
turinel walls was conducted in the Langley 4.5-foot flutter research
tunnel in which a 2-foot by 4-foot rectangular section has been tempo-
rarily installed for testing two-dimensional models. This tunnel is of
the closed-throat, single-return type employing either air or Freon-12
as a testing medium at pressures from 1 atmosphere down to about
1/8 atmosphere. Since Freon-12 has a speed of sound equal to about
one-half that of air and since the critical tunnel frequency varies
directly as the speed of sound, the experiments to be discussed were
conducted in Freon-12 so that the resonant frequency could be surveyed.
The Mach number of the tests was M = 0.7 and the Reynolds number

was 4.01 x 10°6.. The frequency range was from O to 57.5h4 cycles per
second, and the amplitude was about 2.4°.

The model was of 1-foot chord having NACA 65-010 airfoil sections
and completely spanned the 2-foot dimension of the test section. The
gaps between the wing and the tunnel wall were sealed by end plates
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which rotated with'the model. The wing was oscillated in pitch about
the midchord by a direct-drive eccentric-cam system powered by an induc-
tion motor with variable frequency supply. .

The 1lift on the wing was obtained by electrical integration (ref. 10)
of the outputs of 12 model 49-TP NACA miniature electrical pressure gages
(ref. 11) arranged to indicate the differential pressures between orifices
on the upper and lower surfaces at the midspan position. The angular
motion of the midspan position was indicated by resistance wire strain
gages attached to a torque rod running through the center of the hollow
wing. One end of the torque rod was fixed to the center of the wing and
the other end was fixed to the wind-tunnel wall.

The amplitude of the fundamental frequency of both the 1lift and
position were indicated on an alternating-current vacuum-tube voltmeter
attached to the output of a variable-frequency, narrow-band-pass filter.
The phase angle between 1ift and position was determined by use of a
special electronic timing system.

RESULTS AND DISCUSSION

A comparison of analytical and experimental results obtained for
the 1ift on a wing pitching about its midchord is shown in figures 1
and 2. Variations in the magnitude of the 1lift and in phase angle are
given as functions of the frequency of the pitching oscillation for a
constant value of Mach number.

The ordinate in figure 1, the magnitude of the 1lift, is presented
as a ratio of the value obtained either experimentally or theoretically,
with consideration of the tunnel walls, to the theoretical value for the
condition of no tunmel walls. As previously mentioned, in investigating
the number of control points required to give sufficient accuracy, a
series of calculations was made at each pitching.frequency with each
succeeding calculation including an added control point. The result of
each of these calculations is shown in figure 1.

The abscissa in figure 1 is the ratio of the frequency of the
pitching oscillation to a frequency calculated for the resonant condi-
tion. Since in the experiment the velocity of sound of the mediums in
which the tests were made differed slightly from that considered in the
theoretical work, the calculated resonant frequencies were not quite the
same. The resonant frequency for conditions of the calculations was
49.5 cycles per second; whereas for conditions of the experiment, the
resonant frequency was 52.6 cycles per second. The pitching frequencies
for the calculated and the experimental results were divided by the
appropriate value of the resonant frequency.
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The experimental results show the existence of large tunnel-wall
effects and demonstrate the existence of a resonant phenomenon as pre-
dicted in reference 4. The theoretical results are in very good agree-
ment with experiment with regard to predicting the value of the resonant
frequency. At low values of the frequency ratio the theoretical results
for the 1ift ratio given in figure 1 indicate good agreement between the
calculations for 1, 2, and 3 control points and are in good agreement
with the experiment. At values of the frequency ratio nearer unity there
is a wider divergence between the various solutions and between theory
and experiment. This indicates that near resonance additional control
points or possibly different control-point locations would be required
to give a more accurate approach to the resonant condition.

As a matter of interest, and as a partial check on the mechanics
of the procedure, calculations of the aerodynamic lift and moment coef-
ficients for the condition of no tunnel walls were performed with three

control points, and excellent agreement was obtained with the tabulated
results of Dietze. :

In figure 2 the phase angle between 1lift force and position of the

wing is plotted against the same frequency ratio aymres used in fig-

ure 1. Although the variation of phase angle with frequency in free air
is almost linear, the phase angles found both experimentally and by the
theory including wall effects show a very large drop as the resonant
frequency is approached and change abruptly. The c¢alculated values of
the phase angle are in good quantitative agreement with those measured
experimentally.

Since the underlying theory of an oscillating wing in a compressible
fluid is one of acoustics, it seems reasonable to conjecture that some
application of the classic principles of sound absorption to the test
section of a tunnel might be a method of eliminating or greatly reducing
this new type of tunnel-wall interference. Any method of sound absorp-
tion employed, of course, should not interfere with the basic flow in
the -tunnel. One tunnel configuration, which has been suggested for the
steady-flow case and which may be desirable for the present case, is the
ventilated tunnel. '

CONCLUSIONS -
" This paper présents the results of an'application of the theory as

developed in NACA TN 2552 (which treats the effect of the presence of
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tunnel walls for oscillating two-dimensional compressible flow) and com-
pares the results with some experiments at a Mach number of 0.7. The
following conclusions may be enumerated:

1. Some experimental results of 1lift and phase angles made at a
constant Mach number and for various oscillating frequencies show the
existence of large tunnel-wall effects and demonstrate the existence of
a resonant phenomenon as predicted in NACA TN 2552.

2. A method of calculating the effect of tunnel walls on the
oscillating two-dimensional air forces is presented.

3. Comparison of the experimental 1ift with the theoretical 1lift
which includes the effect of tunnel walls indicates good agreement
throughout the frequency range.

4k, A comparison of the phase angles as determined by experiment and
as calculated by the theory which includes the effect of tunnel walls
shows good agreement throughout most of the frequency range and shows a
very large phase-angle change as the resonant frequency is approached.
It is observed, however, that the theory without tumnnel walls does not
give either the trend or the magnitude of the experimental results.

5. At the Mach number of these tests (0.7) the effects of the tun-:
nel walls is very great at the resonant frequency and the large effect
extends over a considerablp range of frequencies. '

Langley Aeronautical Laboratory, _
National Advisory Committee for Aeronautics,
langley Field, Va.
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APPENDIX
REDUCTION OF INTEGRAL EQUATION 10 THE CASE OF ZERO FREQUENCY

In this appendix, the integral equation for the downwash for a wing
oscillating in a compressible medium and enclosed by wind-tunnel walls
is reduced to the zero-frequency condition.

If equation (7) is written as

b
w(x) = lim Lo L(xb)[éK(M,z) + wK(M,z,Hz]dxo (A1)

® —>0 pU2J _p

and the limit is taken as w —) 0, it will be found that all the terms
of K(M,Z) and K(M,z,H) are canceled except terms involving Hl(e).
These terms become infinite, however, as w —> 0 so that the asymptotic
expansion for very small values of the argument may be used; therefore,

2

H,(2) (uRp) % -

1“7 (KRn) -

and

iz >
-5 : iM(x - x -2McB(x - x
S w-—0 : n H[EX - xo)2 + Be(nﬁ)f]
The vertical induced velocity may then be written as
-McB b 1 2 n X - Xg
w(x) = 5 L(xo)|=——+2 > (-1) 5 dx,
2npu® J _y, X - Xo n=1 (x - %5)2 + B2(np)2

(A2)

or .

n(x - X,)
1 00
w(x) = zpﬁgﬂf (x0)| = +e> ()t PR ax,
-b —(X - X n=1 (X - X
BH 0) ( O) + n21r2
BQHE

(A3)
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This equation may be written as

b

-Mc
w(x) = 2% f
2pU°H J-p

The additional induced velocity due to the presence .of tunnel walls
for the steady case in compressible flow is given by equation (40) .of
reference 12. Equation (A2) can be reduced to the same form by making
the approximation that the airfoil chord is small compared to the tunnel
height. . :

L(xo)|csch Eifﬁé—ig%]dxo - (AL)
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Figure 2.- Comparison of theoretical and experimental phase angle between
lift force and position of wing. M = 0.7.
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