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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

WI ND- TUNNEL INVESTI GATION TO DETERMINE THE AERODYNAMIC 

CHARACTERISTI CS I N STEADY ROLL OF A MODEL 

AT HIGH SUBSONI C SPEEDS 

By Richard E . Kuhn and J ames W. Wiggins 

SUMMARY 

Aerodynamic characteri stics in steady roll were obtained in the 
Langley h i gh- speed 7- by 10- foot tunnel on a complete model and its 
component parts . The wing and horizontal tail were swept back 450 at the 
quarter- chord line and had a taper ratio of 0 .6, an aspect ratio of 4, and 
NACA 65A006 airfoil sections parallel to the plane of symmetry . The ver
tical tail was swept back 550 at the quarter - chord line, had a t aper ratio 
of 0.5, an aspect ratio of 1 . 2, and an NACA 63( 10 ) A009 airfoil section 

paral le l to the fuselage center line . The investigation covered a Mach 
number- range from 0 .40 to 0 .95 and an angle - of- attack range from 00 to 60 

I n general , the effects of Mach number were small and the over-all 
comparison of theory with the experimental rolling derivatives at Mach 
numbers below the force break was not greatly different from that which 
has been established at low speeds . The theoretical variation of the 
damping- in- roll parameter C2p with Mach number at zero lift was in very 

good agr eement with experiment, although the predict ed variation with 
angle of attack and lift coefficient was only fair . The theoretical var
iation of the slope of the curve of yawing moment due to rolling against 
l ift coefficient Cnp/ CL with Mach number was in good agreement with 

experiment up to the force -break Mach number, above which an abrupt reduc 
tion i n Cnp/ CL occurred . The predicted variation of the coeffic i ent of 

yawi ng moment due to rolling Cnp with l ift coeffici ent was in excellent 

agr eement with the experimental data . Theoretical predictions of the 
coeffic i ent of l ateral force due to rolling CYp were in poor agreement 

with experi ment. The theoretical estimation of the effect of the rolling 
f l ow induced by the wing on the vertical- tail contribution to Cnp was 

good, although somewhat too small particularly at the higher Mach numbers . 
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INTRODUCTION 

A general research program is being carried out in the Langley 
high-speed 7- by 10- foot tunnel to determine the aerodynamic character
istics in pitch, sideslip, and steady roll of various model configura
tions . This paper presents data obtained during steady- roll tests of a 
complete swept - wing model and its component parts . The wing and hori 
zontal tail of the model were swept back 450 at the quarter-chord lines 
and the vertical tail was swept back 550 at the quarter - chord line. The 
sting- mounted model was tested through a Mach number range from 0.40 to 
approximately 0. 95 which gave a mean test Reynolds number range based on 

the mean aerodynamic chord of the wing from about 1.8 X 106 to approxi

mately 3 .0 X 106 . 

Static longitudinal stability characteristics for the wing- fuselage 
combination of the present model are pr esented in reference 1. 

COEFFICIENTS AND SYMBOLS 

The symbols used in the present paper are defined in the following 
list . All forces and moments are referred to the stability axes (fig . 1), 
with the or i gin at the quarter - chord point of the wing mean aerodynamic 
chord . 

lift coeffiCient , Lift / qS 

drag coeffiCient , Drag/qS 

rolling- moment coeffiCient, Rolling moment / qSb 

Cy lateral- force coeff iCient , Lateral force/qS 

yawing- moment coeffiCient, Yawing moment / qSb 

a speed of sound, ft /sec 

v free - str eam velocity , ft / sec 

M free - stream Mach number, Via 

p air density, s l ugs / cu ft 

q dynamic pressure, pV2/2, Ib/sq ft 
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b 

S 

c 

-c 

R 

p 

pb 
2V 

K 

A 

tic 

ZV 

Cy 
P 

wing span, f t 

wing area, SQ ft 

local wing chord, ft 

f b/2 
2/S c2dy, ft 

o 
wing mean aerodynami c chord, 

Reynolds number based on c 

angle of a t tack of wing, deg 

local angle- of- attack change due to aer oelastic dis t ortion of 
wing, radians 

angle of sideslip, deg 

rolling angular velocity, radians/sec 

wing- t ip helix angle, radians 

correct ion factor for aeroelast ic distortion 

aspect ratio, b2/S 

thickness ratio 

tail length; dist ance, measured parallel to f uselage cent er 
line, from moment reference point to center of pressure of 
vertical t ail, ft 

tail height; distance, measured normal t o fuselage cent er line, 
from moment reference point to center of pressure of vertical 
tail, f t 

dCn 

d ££ 
2V 

dC7, 

d pb 
2V 
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Subscripts and abbreviations : 

w wing 

F fuselage 

v vertical tail 

H horizontal tail 

m measured values 

L static loading 

MODEL AND APPARATUS 

A three-view drawing of the test model and a tabulation of its 
geumetric characteristics are shown in figure 2. The wing and horizontal 
tail had an NACA 65AOo6 airfoil section parallel to the plane of symmetry. 
The wing panels were of a composite construction, consisting of a steel 
insert with a bismuth-tin covering to give the section contour. The 
tail section and fuselage were constructed of aluminum alloy. A photo
graph of the model on the forced-roll sting-support system is shown in 
figure 3. Figure 4 shows a view of the complete support system used for 
the forced-roll tests. A schematic view of the forced-roll drive system 
is shown in figure 5. The model was rotated about the x-axis of t he 
stability axes system. The angle of attack was changed by the use of 
offset sting adapters as shown in figures 3 and 5. The model was driven 
by a constant- displacement reversible hydraulic motor, located inside the 
main sting body, which was actuated by a variable-displacement hydraulic 
pump driven by a constant-speed electric motor. 

The rotational speed was measured by a calibrated microammeter that 
was connected to a gear-driven direct-current generator mounted inside 
the main sting body . Speed of rotation was varied by controlling the 
fluid displacement of the hydraulic pump, and the direction of rotation was 
changed by reversing the fluid flow through an arrangement of electrically 
controlled solenoid valves in the hydraulic system. 

The forces and moments, measured by an electrical strain-gage balance 
incorporated inside the model, were transmitted to the recording devices 
through an arrangement of brushes and slip rings. 

CONFIDENTI AL 
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TESTS AND CORRECTIONS 

The forced-roll tests were conducted in the Langley high-speed 7-
by 10-foot tunnel through a Mach number range f r om approximately 0.40 

5 

to 0 .95 , and through an angle- of- attack range f r om 00 to 60 • The wing
tip heli x- angle (pb/2V) range , corresponding to a revolutions-per- minute 
range f r om - 150 to 450, is presented in figure 6 . 

The blocking corrections which were applied to the dynamic pressure 
and Mach number were determined by the method of reference 2. The size of 
the model caused the tunnel to choke at a corrected Mach number of about 
0 .96 . An investigation of the jet- boundary corrections to the rotary 
derivatives by the method of reference 3 indicated that these corrections 
are negligible. Jet- boundary corrections applied to the lift were calcu
lated by the method of reference 4 . There were no tare corrections 
available to apply to these dataj however, the static tare tests conducted 
in connection with an unpublished investigation of the static lateral 
stability characteristics of this model indicate the effect of the sting 
support to be very small . 

The support system deflected under load and these deflections, 
combined with any initial displacement of the mass center of gravity of 
the model from the roll axiS, introduced centrifugal forces and moments 
when the model was rotated . Corrections for these forces and moments 
were determined and have been applied to these data. 

The wing was known to deflect under load. When the model was forced 
to roll, the opposing rolling moment distorted the wing in such a m~ner 
as to reduce the angle of attack on the down- going wing and increase the 
angle of attack on the up- goJng wing . Accordingly, in an effort to cor
rect the measured data to correspond to the rigid case, a correct ion 
factor for the effect of this aeroelastic distortion on the rolling 
moment was determined with the aid of static loadings. The theoretical 
spanwise load dist ribution due to roll of reference 5 was simulated by 
loading the wing at four spanwise points on the quarter - chord line . The 
change in angle of attack 6a (fig . 7(a)) was measured by dial gages 
at several spanwise stations in the chordwise plane parallel t o the plane 
of symmetry . An equivalent linear variation of 6a (fig . 7(a)) was 
determined which corresponds to the angle - of- attack distribution produced 

by an increment of wing- tip helix angle 6~~). The corrected damping

in-roll coefficient can be written in terms of the measured values and 
this increment as follows 

CONFIDENTI AL 
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where 

K 

where 6a/qC
1L 

is the value at y = ~ (fig. 7(a». Aeroelastic effects 

on Cy and Cn were small and therefore neglected. 
p p 

The angle of a t tack at the plane of symmetry has been corrected for 
the deflection of the model and support system under load. 

The variation of the mean test Reynolds number with Mach number is 
presented in figure 8 . 

RESULTS AND DISCUSSION 

Present ation of Results 

The result s of the investigation are presented in the following 
figures : 

Figure 

Basic data 9 and 10 
Clp 11 to 15 

Cnp 16 to 20 

CyP 21 to 23 

The basic data (figs. 9 and 10) have not been corrected for aeroelastic 
distortion. The rotary derviatives in figure 9 are presented against 
angle of attack at several Mach numbers; whereas, in figure 10, the 
derivatives are presented against Mach number at several angles of 
attack . 

A system of designating the various model configurations has been 
used and is defined as follows : 

Complete mode~ . . . . 
Wing, fuselage , and ver tical 
Wing and fuselage ..... . 
Fuselage, vertical tail, and 
Fuselage and vertical tail 
Fuselage alone . . . . . . . 

t ail. 

hor izont al tail 
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Rolling Moment Due to Rolling 

Wing-fuselage.- The measured and corrected values of the damping
in-roll derivative Clp for the wing-fuselage combination at zero angle 

of attack are presented in figure 11(a), and the corrected values of 
Clp are compared with two wing-alone theories in figure ll(b). The 

theoretical variation of Clp with Mach number, determined by applying 

the three-dimensional Prandtl- Glauert plan-form transformation for 
compressibility effects to the incompressible-flow values of reference 5, 
is in good agreement with experiment, although the predicted values are 
somewhat low. The predicted variation of Clp with Mach number deter-

mined by applying the Mach number correction from reference 6 to the 
incompressible-flow values of reference 5 also is in good agreement with 
experiment and could probably be used satisfactorily for a general esti 
mation of the effects of compressibility on Clp since the calculation 

procedure is somewhat less involved than the Prandtl- Glauert plan-form 
transformation method . 

A comparison of the theoretical wing- alone variation of Cl p with 

lift coefficient and the corrected wing- fuselage experimental variation 
is presented in figure 12. Method 3 of reference 7 was applied by using 
the lift data of reference 1 and by correcting Cl p at zero lift for 

Mach number effects by the method of reference 6. Near zero lift, the 
experimental and predicted results are in good agreement at all Mach num
bers as previously shown in figure 11j however, the discrepancies apparent 
at the higher lift coefficients result in part from difficulties in 
establishing the experimental lift - curve slope at these lift coefficients . 
The high- speed free - roll data of reference 8 and the low- speed data of 
reference 7 (wing No. 22) show similar variations. 

Tail contributions. - The contributi~ns of the vertical and horizontal 
tails to Clp are presented in figures 13 and 14 along with values 

predicted by the method of reference 9. The experimentally determined 
tail lift - curve slope and the locations of tail center of pressure used 
in the theoretical calculations were determined from unpublished static 
lateral- stability data on the present model; however, calculations using 
the geometric aspect ratio and tail lengths indicated essentially the 
same results . The increment of Clp contributed by the tail surfaces 

is seen to be small and is adequately predicted . 

Complete model .- A comparison of the corrected experimental damping 
in roll Clp wit h predicted values for the complet e model at several 

Mach numbers is present ed in figure 15. Since the theory presented is 
a summation of the theoretical values from figures 12, 13, and 14, and 
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since the wing contribution to CIp is predominant, the variation of 

CIp for the complete model with angle of attack is quite similar to the 

wing- fuselage variation presented in figure 12. 

Yawing Moment Due to Rolling 

Wing- fuselage .- A comparison of the wing- fuselage experimental and 
the wing- alone theoretical variation of Cnp/CL with Mach number is 

presented in figure 16. The experimental points of figure 16 were deter
mined from the slopes of the experimental data between zero and approxi
mately 0.1 lift coefficient. The theory of reference 10 is presented 
with the firs t term of equation (4) from reference 10 corr ected for the 
effects of compressibility by the method of reference 6 . The experimental 
data of reference 1 were used for evaluating the profile - drag contribution 
in accordance with equation (8) of reference 10 . The predicted variation 
with Mach number is in good agreement with the experimental variation, 
although theory predicts somewhat more negative values. This discrep
ancy may be largely due to the difficul ties of determining the experi
mental variat ion of Cnp with lift coefficient because of nonlinearities 

even at the lowest lift coefficient (fig. 17). An abrupt reduction in 
the magnit ude of Cnp/CL occurs above the force-break Mach number 

(fig . 16 ). This reduction probably results from the drag rise at zero 
lift and the decrease in the lift- curve slope at the higher Mach numbers 
(ref . 1) and may possible be augmented by a loss of tip suction . 

Figure 17 presents a comparison of the wing- fuselage experimental 
variation of Cnp with lift coefficient and the wing- alone theoretical 

variation, where theory includes the effects of both the induced and 
profile drag (ref . 10) . Excellent agreement is indicated at all Mach num
bers and lift coefficients . 

Tail contributions . - The contribution of the vertical tail to Cnp 

is presented in figure 18, along with a comparison with theory (ref . 9 ) 
for wing- on and wing- off conditions . The tail lengths and tail lift
curve slopes used in the theoret ical calculat ions were determined from 
unpublished static later al- stabil ity data on the present model. In 
general, t he agreement is considered good, alt hough theory somewhat 
underestimates the effect of the rolling flow induced by the wing on the 
vert ical tail, particularly a t the higher Mach numbers. This underesti 
mation is also indicated i n the data presented in reference 9 . 

Figure 19 (a) shows comparison of tail center- of- pressure locat ions 
(given by the length IV and the height ZV) as determined from static 
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lateral-stability data and as indicated from simple geometric considera
tions . These center- of- pressure parameters are applied in calculations 
of the vertical- tail contribution to Cnp in figure 19(b), and the 

results are compared with experiment . I t is apparent that the predicted 
variations, using the center of pressure determined from experimental 
data, are in better agreement wi th experiment than the predicted varia
tions using the geometric centers of pressure . 

Complete model. - A comparison of exper i mental and theoretical values 
of Cn for the complete model at several Mach numbers is shown in fig -

p 

UTe 20 . The theory presented is the sum of the theoretical values from 
f i gures l7 and l 8 . The theoret ical Cnp variat ion with angle of attack 

is in very good agreement with experiment, although the theoretical 
values are somewhat more positive, since, as mentioned previously , the 
theory underestimates the effect of the rolling f low induced by the wing 
on the vertical tail. 

Lateral Force Due to Rolling 

Wing-fuse l age. - The variation of wing-fuselage experiment al and wing
alone theoretical CYP jCL with Mach number is shown in figure 21. The 

theor y of reference 10 is presented with the first term of equation (2) 
from reference 10 corrected for Mach number effects by the method of 
reference 6 . The term l/A in equation (2) of reference 10 is considered 
to be independent of Mach number. The predicted values of CYp/CL are 

in very poor agreement with the experimental values. It should be pointed 
out , however, t hat the wing of this investigation has a thin sect i on 
(tic = 0.06) and an examination of the data of reference 1 indicat es 

that an early increase in the drag increment (CD - ~~2) would be expected 

for such a wing . Since the method of reference 10 applies only at lift 

coefficients be l ow that at which 
C 2 

CD - ~ begins to increase, i t appears 
rtA 

t hat the lack of data near zero lift excludes the possibility of measuring 
a true value of the slope CYp/CL at zero lift coefficient. The l ow-

speed wing- alone dat a of a thicker wing (t i c = 0 .08 ) presented in fig -
ure 7 of reference 9 show a substantially higher value of CYP/CL, 

although the value s t ill is somewhat lower than that. predicted by 
reference 10. 

An appreciable reduct ion in CYp!CL occurred at the higher Mach 
numbers. 

CONFIDENTIAL 
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Tail contr ibution. - The contribution of the vertical tail to CYp 

with wing on and wing off is presented in figure 22 along with results 
predicted by means of reference 9 . As was indicated in the case of Cnp' 

the predi cted effect of the rolling flow induced by the wing at the tail 
is too small . The experimental data of reference 9 show similar 
di screpancies . 

Complete model .- The variation of experimental Cy 
P 

with angle of 

attack for the complete model is compared with theory in figure 23. 
theoretical values presented are the sums of those given in figures 
and 22 . As would be expected from the preceding discussion, theory 
to overestimate the values of Cy for the complete model. 

p 

CONCLUSIONS 

The results of the investigat ion to determine the aerodynamic 
characteristics in steady roll of a complete model and its component 

The 
21 
tends 

parts indicated that, in general, within the range of the tests the effects 
of Mach number were small and the over-all comparison of theory with 
experiment at Mach numbers below the force break was not greatly different 
from that which has been established at low speeds. The following 
specific conclusions are apparent: 

1 . The variation of t he damping-in-roll parameter C2p with Mach 

number at zero lift is very well predicted by theory; however, the predicted 
variation with lift coefficient was only in fair agreement with experiment. 

2. The predi cted variation of Cnp/CL (variation of the yawing 

moment due to rolling with lift coefficient) with Mach number up to the 
force break and the variation of Cn with lift coefficient were in 

p 
in very good agreement with the experimental results. An abrupt reduc
tion in the negative value of CnpjCL for the wing-fuselage combination 

occurred above the force -break Mach number. 

3. The theoretical predictions of the lateral force due to rolling 
CYp were in poor agreement with experiment. A reduction of the positive 

value of CYpjCL (variation of lateral force due to rolling with lift 

coefficient) occurred at the higher Mach numbers. 

4. The theoretical estimation of the effect of the rolling flow 
induced by the wing on the vertical- tail contribution to Cnp and CYp 
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was somewhat smaller than that indicated by experiment, particularly at 
the higher Mach numbers. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va. 
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Lateral force 

y 

Rolling moment 

Lift 

Drag 

Rate of roll, P 

Figure 1 .- System of axes used showing the positive direction of forces, 
moments , angles, and velocities . 
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Figure 9.- Variation of the aerodynamic characteristics in roll with 
angle of attack at several Mach numbers. Data not corrected for 
aeroelastic distortion. 
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Figure 17.- Comparison of the theoretical and experimental variat ion of 
Cn with lift coefficient at several Mach numbers. 
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