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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

TEE EFFECTIVE DOWNWASH CHARACTERISTICS AT TRANSONIC 

SPEEDS OF A 6-PERCENT-THICK WING WITH 470 OF SWEEPBACK 

IN COMBINATION WITH A CYLINDRICAL BODY AS DETERMINED FROM 

FORCE MEASUREMENTS OF A HORIZONTAL TAIL 

By Domenic A. Coppolino 

SUMMARY 

The effective downwash characteristics of a wing-body configuration 
and the body alone were determined from lift measurements of a horizontal 
tail located 0.333 and 0.419 wing semispan above the body center line. 
The wing had a sweepback angle of 410 , an aspect ratio of 3.5, a taper 
ratio of 0.2, and a thickness ratio of 0.06. The plan form of the hori
zontal tail was geometrically similar to that of the wing. The investi
gation was made in the Langley 8-foot transonic tunnel. 

At low angles of attack (_20 to 50), the rate of change of effective 
downwash angle with angle of attack was approximately 0.1 less for the 
horizontal tail located 0.419 wing semispan above the body center line 
than for the horizontal tail located 0.333 wing semispan above the body 
center line. The rate of change of effective downwash angle with angle 
of attack for the wing-body configuration at high angles of attack 
(90 to 120 ) was approximately twice that at low angles of attack 
(_20 to 50) and exceeded 1.0 at subsonic Mach numbers greater than 0.65. 

INTRODUCTION 

A knowledge of the effective downwash characteristics in the region 
of the horizontal tail is necessary in order to determine the contribu
tion of the downwash to the longitudinal stability of airplanes at tran
sonic speeds. Some effects of wing plan form and thickness on the tran
sonic downwash characteristics for wing and wing-fUselage configurations 
are reported in reference 1. Reference 2 reports an investigation at 
transonic speeds of the force and moment characteristics of several wings 
in combination with a cylindrical body of ogival nose section. The body 
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shape used in that investigation was selected mainly on considerations 
of simplicity rather than in an attempt to approximate a specific fuse
lage design. During the tests of one of the wings and of the body alone, 
a horizontal tail was mounted on the sting behind the body and, in addi
tion to the measurements of the forces and moments of the wing-body con
figuration, the lift of the horizontal tail was measured on a two
component strain-gage balance. The horizontal-tail lift measurements 
were used in determining effective downwash angles and form the basis of 
the present paper. 

Presented herein are effectiv~ downwash angles for the wing-body 
configuration and the body alone at Mach numbers from 0.50 to approxi
mately 1.11. The wing had a sweepback angle of 470 based on the 0.25-chord 
line , an aspect ratio of 3.5, a taper ratio of 0.2, and an NACA 65A006 
thickness distribution cambered for a design lift coefficient of 0.1. 
The horizontal tail had a plan form similar to that of the wing but had 
an NACA 65A009 airfoil section at the root and an NACA 65A005 airfoil 
section at the tip. Two positions of the horizontal tail above the body 
center line were investigated. The scope of the downwash investigation 
was largely governed by the scope of the wing investigation, and this 
limitation resulted in abbreviated downwash studies. The data although 
incomplete are believed to warrant publication since they add to the 
information on downwash at transonic speeds. 

CLt 

dC~ 

di 

b 

c 

SYMBOLS 

lift coefficient of horizontal tail, 

lift-curve slope of horizontal tail 

span of wing 

span of horizontal tail 

section chord of wing 

section chord of horizontal tail 

Nt cos(a.' + i) 

gSt 

mean aerodynamic chord of wing based on relationship, 

2Jb/2 ..:. c 2dy 
S 0 
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mean aerodynamic chord of horizontal tail based on relation-

l
bt / 2 

ship} ~ ct2dy 
St 0 

height of horizontal tail above body center line 

normal force of horizontal tail 

free-stream Mach number 

free-stream dynamic pressure} ~y2 

Reynolds number based on mean aerodynamic chord 

area of wing 

area of horizontal tail 

free-stream velocity 

spanwise distance from plane of symmetry 

angle of attack of body} based on center line of body 

angle of attack of sting support} measured by angle between 
center line of sting support and direction of undisturbed 
stream 

angle of horizontal tail with respect to center line of sting 
support 

effective downwash angle 

free-stream density 

APPARATUS AND MODELS 

Tunnel 

3 

The tests were conducted in the slotted test section of the Langley 
8-foot transonic tunnel. The use of longitudinal slots in the test sec
tion permits the testing of a model through the speed of sound without 
the usual choking effects found in the conventional closed-throat type 
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of wind tunnel. Typical Mach number distributions along the center line 
of the slotted test section in the region occupied by the model and taken 
from reference 3 are shown in figure 1. A more complete description of 
the slotted test section of the Langley 8-foot transonic tunnel may be 
found in reference 3. 

Models 

The models employed for the tests were constructed of steel and 
were supplied by a U. S . Air Force contractor. The horizontal tail had 
an NACA 65A009 airfoil section at the root and an NACA 65A005 airfoil 
section at the tip parallel to the plane of symmetry, 470 of sweepback 
of the 0.25 -chord line, an aspect ratio of 3.5, and a taper ratio of 0.2. 
The wing had a plan form geometrically similar to that of the horizontal 
tail, had a thickness ratio of 6 percent parallel to the model plane of 
symmetry, and had the following airfoil section parallel to the model 
plane of symmetry: 

Thickness distribution - NACA 65A006 

Mean line ordinates - 1/3 of NACA 230 series plus NACA 6-series 
uniform- load mean line ( a = 1 . 0) for a design lift coefficient 
of 0 . 1 

The fuselage was a cylindrical body with an ogival nose section, and the 
ratio of body diameter to wing span was 0.094. A photograph of the model 
is shown as figure 2 and dimensional details are shown in figure 3. 

The horizontal tail was tested in two positions above the center 
line of the body . One position of the horizontal tail was located 
0.333 wing semispan above the body center line and the other position 
was 0.479 wing semispan above the body center line, with the quarter
chord point of the mean aerodynami c chord of the horizontal tail located 
1.217 wing semispans rearward of the quarter-chord point of the mean 
aerodynamic chord of the wing for both positions. The horizontal tail 
was attached to a two - component electrical strain- gage balance which was 
housed in a cylindrical boom, the center line of which was parallel to 
the center line of the sting support . The boom was fastened to the sting 
support with a 450 swept forward symmetrical steel strut of 0.0833 thick
ness ratio . The incidence of the horizontal tail was varied by rotating 
the tail and cylindrical boom about an axis which passed through the 
quarter -chord point of the mean aerodynamic chord of the tail . The wing
body configuration was attached to the sting support through a six
component i nternal electrical str a i n- gage balance . 

The angle of attack of the body was varied by pi voting the sting 
support (fig . 3) about an axi s approximately 66 inches downstream of the 
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25-percent point of the mean aerodynamic chord of the wing. In order to 
keep the model position reasonably close to the tunnel axis when the 
model angle of attack was varied from 60 to 120

, a 150 coupling was 
inserted upstream of the pivot point . The angle-of-attack mechanism was 
remotely controlled which permitted angle -of-attack changes with the tun
nel operating. A more detailed description of the support system is given 
in reference 4. 

A pendulum-type accelerometer, calibrated against angle of attack a' 
of the sting support and located within the sting support downstream of 
the model permitted the angle of attack of the sting support to be set 
within ±O.lo at all test Mach numbers. 

TESTS 

The Reynolds numbers based on the mean aerodynamic chords of the 
horizontal tail and wing and averaged for several runs is shown in fig
ure 4 as a function of test Mach number. The Reynolds number for the 
horizontal tail varied from 663,000 at a Mach number of 0.50 to 851,000 
at a Mach number of 1.10. The Reynolds number for the wing varied from 

2 . 0 X 106 to 2.5 X 106 for the same range of Mach numbers. 

Measurements 

The lift of the horizontal tail was obtained simultaneously with 
the six- component data for the wing-body configuration. The aerodynamic 
characteristics for the wing-body configuration can be found in refer
ence 2. The range of variables for the horizontal-tail investigation 
was dependent on the test conditions for the wing-body configuration and , 
as a result, a complete investigation of the horizontal tail was not 
obtained . The following table summarizes the range of data obtained: 

Configuration Tail height, ht Tail incidence a ' range M range 
(deg) ( deg) 

Wi ng -body 0 . 333b/2 0 - 2 to 12 0 . 50 to 1.01 
Wing-body 0.333b/2 0 - 2 to 4 1.024 to 1.112 
Wi ng -body 0 . 333b/2 -3, 3 4 to 12 0.50 to 0 . 965 
Wing -body 0 . 333b/2 - 3 4 1.024 to 1 . 112 
Wi ng -body 0.479b/2 0 - 2 to 4 0 · 50 to 1.112 
Body alone 0 . 333b/2 0 - 2 to 12 0 . 50 to 1.112 
Body alone 0 . 479b/2 0 - 2 to 12 0 · 50 to 1 . 112 
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Corrections and Accuracy 

No corrections to the free-stream Mach number and dynamic pressure 
for the effects of model and wake blockage are necessary for tests in the 
slotted test section of the 8-foot transonic tunnel (ref. 5). There is a 
range of Mach numbers above a Mach number of 1.00, however, where the 
data are affected by the reflected compressions and expansions from the 
test-section boundary. Based on the results of reference 6, it is 
believed that for Mach numbers up to approximately 1.04 the effects of 
these disturbances on the measurements made in the present investigation 
may be considered to be negligible. For test Mach numbers above 1.04, 
however, the data were influenced by the boundary-reflected disturbances, 
but the extent to which the data were affected by the reflected disturb
ances is not known for these tests. At a Mach number of 1.088 and above, 
the boundary-reflected disturbances struck the horizontal tail as shown 
by schlieren photographs (not presented herein) taken during the tests. 
The validity of the data above a Mach number of 1.04, therefore, should 
be considered to be impaired. 

The reference axes of the data presented in the figures have been 
changed from body axes to wind axes. Since the horizontal tail was 
instrumented with only a two-component electrical strain-gage balance 
which measured the normal force but not the axial force, the conversion 
from body axes to wind axes was computed by neglecting the small contri
bution to the lift component of the axial force. 

The accuracy of the balance based on the design of the horizontal
vdll balance and the repeatability of the data is ±0.005 for CLt. 

DOWN WASH CALCULATIONS 

The effective downwash angle was determined from the relation: 

O-t = a.' + i - E 

where ~ is the local angle of attack of the horizontal tail. When 

Cit = 0, it is assumed that at = 00 and, therefore, 

or 

E 

E = i + (a.')CLt=O 
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In determining the effective downwash angle the assumption was made 
that the ratio of the dynamic pressure at the horizontal tail to the 
free-stream dynamic pressure was 1.00. Since a horizontal-tail incidence 
of only 0 0 was tested for the horizontal tail in both positions in the 
presence of the body alone and for the horizontal tail located 0.479 Wing 
semispan above the body center line in the presence of the wing-body con

figuration, the lift-curve slope 
dCLt was not determined for these con-
di 

figurations. In obtaining the effective downwash angle for these configu
dC Lt was the same as rations, it was assumed that the lift-curve slope 
di 

that obtained for the horizontal tail located 0.333 wing semispan above 
the body center line in the presence of the wing-body configuration. 
Also, since it is possible that a loss in tail lift-curve slope occurs 
at high angles of attack the evaluation of the effective downwash angle 
at high angles of attack can be misleading. It is believed, however, 
that the values of the effective downwash angle presented for the wing
body configuration at high angles of attack may be valid because the 
effective downwash angle is large and the local tail angle may be rela
tively small, but in the case of the body alone, the data at high angles 
may be invalid and therefore are not presented . It should be realized 
that the effective downwash angle presented herein is modified by the 
mutual interference effects of the boom, the horizontal tail, the verti
cal strut, and the sting support. 

PRESENTATION OF RESULTS AND DISCUSSION 

In order to facilitate presentation of the data, staggered scales 
have been used in many of the figures and care should be taken in identi
fying the zero axis for each curve . 

The variation with angle of attack a' of the horizontal-tail lift 
coefficient for the two tail positions in the presence of the wing-body 
and body alone configurations is presented in figures 5 to 10. Figures 11 
to 16 show the variation for the Wing-body and body alone configurations 
of angle of attack a' with body angle of attack caused by the flexi
bility of the sting-support system. The variation with Mach number of 

dC
Lt the lift-curve slope 

di 
(averaged over the incidence range) at an 

angle of attack a' of 40 is given in figure 17. The values of the 
tail lift-curve slope shown in figure 17 were used to determine the effec
tive downwash angles and these results for both tail heights are pre
sented in figures 18 and 19 for the wing-body and body alone configura
tions, respectively. 
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The effect of Mach number on the rate of change of downwash angle 
with angle of attack for the wing-body and body alone configurations is 
presented in figure 20 for the two positions of the horizontal tail. 

The effective downwash derivative Of 
00. 

for the body alone was essentially 

the same for both positions of the horizontal tail at the low angles of 
attack (_20 to approximately 50) throughout the Mach number range. The 
value of the downwash derivative was small and decreased approximately 
0.15 through the transonic speed range. 

At low body angles of attack (_20 to 50) the downwash derivative 
for the wing-body configuration for both positions of the horizontal tail 
showed a gradual increase as the speed was increased up to a Mach number 
of 0.93, followed by a rapid decrease through the transonic speed range 
(fig. 20). This decrease was due in part to the loss of lift-curve slope 
of the wing-body configuration as indicated in reference 2 and in part 
to the decrease of the downwash derivative for the body alone as dis-

cussed previously. Figure 20 shows that the downwash derivative ~: 
for the horizontal tail located 0.479 wing semispan above the body center 
line was approximately 0.1 less than that for the horizontal tail located 
0.333 wing semispan above the body center line throughout the Mach number 
range which is in agreement with theory and indicated experimentally in 
reference 4. The results at a Mach number of 0.50 were compared with 
theory (ref. 7) and the agreement was good. The spanwise lift distribu
tions necessary for these calculations were obtained using reference 8. 

Figure 20 also shows that in the high angle-of-attack range 
(90 to 120 ) the wing-body downwash derivative was approximately twice 
that for the low angle-of-attack range. It is to be noted that at sub-

6 Of 
sonic speeds above a Mach number of o. 5, the derivative do. was greater 

than 1.0. For the complete airplane, the increase in the derivative £i 
00. 

would indicate a destabilizing effect which would aggravate the unstable 
characteristics of the wing-body configuration at lift coefficient near 
0.6 as reported in reference 2. 

CONCLUSIONS 

An investigation was made in the Langley 8-foot transonic tunnel of 
a horizontal tail in the presence of a wing-body configuration and the 
body alone. The horizontal tail was tested in two positions above the 
body center line. The wing had a sweepback angle of 470

, an aspect 
ratio of 3.5, a taper ratio of 0.2, and a thickness ratio of 0.06. The 
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horizontal tail had a plan form geometrically similar to that of the 
wing. The body was cylindrical with an ogival nose. The following con
clusions were noted: 

1. The rate of change of effective downwash angle with angle of 
attack for the wing-body configuration at low angles of attack (_20 to 50) 
was approximately 0.1 less for the horizontal tail located 0.479 wing 
semispan above the body center line than for the horizontal tail located 
0.333 wing semispan above the body center line. For the body alone, the 
downwash derivative was essentially the same for both positions of the 
horizontal tail at the low angles of attack. 

2. The rate of change of effective downwash angle with angle of 
attack for the wing-body configuration in the high angle-of-attack range 
(90 to 120 ) was approximately twice that at low angles of attack 
(_20 to 50) and exceeded 1.0 at subsonic Mach numbers greater than 0.65. 

Langley Aeronautical Laboratory, 
National Advisory Committee for AeronautiCS, 

Langley Field, Va . 
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Figure 7.- Variation of the angle of attack of the sting with the 
horizontal-tail lift coefficient in presence of the wing-body 

configuration. ht = O.333R; i = -3 0 . 
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horizontal-tail lift coefficient in presence of the wing-body 

configuration. ht = 0.47~; i = 0° . 
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horizontal- tail lift coefficient in presence of the body alone. 
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of sting . Wing-body configuration; ht = O .33 3~; i = 0° . 
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of sting. Wing-body configuration; ht = O.333~; i = 3°. 
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of sting. Wing-body configuration; ht = O.33}g; i = -3°. 
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of sting. Body alone; ~ = 0.333~; i = 0°. 
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downwash angle for the wing-body configuration. 
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