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SUMMARY 

Equations are developed to show that, for one-dimensional two-group 
neutron-distribution calculations, the properties of a neutron-reflector 
region can be combined in three parameters that effectively represent the 
action of the reflector. The use of these parameters and boundary con-
ditions based on them for single and multizone reflectors is considered 
and from the results of computations, the following applications of the 
parameters are shown: 	 - 

(1) Use of the parameters in connection with reactor core proper-
ties for comparison of reflector configurations 

(2) Direct use of parameters as circuit constants in electrical 
analog

(3) Use of boundary conditions based on reflector parameters to 
obtain numerical solutions of two-group equations in a neutron-producing 

- region.

INTRODUCTION 

The close analogy between the physical concepts and equations for 
the diffusion of neutrons in a reactor and the flow of current in an 
electrical transmission line suggests the application of already 
developed electrical engineering techniques for handling problems con-
nected with reactor design. The use of lumped electrical circuit 
elements to approximate a continuous transmision line has been success-
fully employed to simulate the diffusion of neutrons by electrical analog 
simulators (reference 1). In the analogy, the neutron fluxes and the 
diffusion currents are simulated, respectively, by the electrical 
potentials and the currents of the transmission line. The following 
analysis and examples carried out at the NACA Lewis laboratory describe an 
additional transmission-line concept that can be applied to the one-
dimensional solution of the neutron-group equations. 

The neutron diffusion, absorption, and moderating properties of the 
material in a passive reactor zone of finite extent give rise to a parti-
cular relation between neutron fluxes and diffusion current at the interface
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between that medium and an adjacent reactor zone. The diffusion of 
neutrons into the passive zone can be treated in identical manner to the 
flow of current into an analogous electrical transmission line connected 
to an unspecified sending circuit. The transmission line is ordinarily 
characterized by a definite length, terminating impedance, characteristic 
impedance, and. attenuation constant.. In order to specify its reaction on 
the sending circuit, the line is replaced by an equivalent sending-end 
impedance that behaves like the line with respect to its reaction on any 
other electric circuit. The neutron reflector, when described by a similar 
set of. properties, can be treated in the same analytical manner as the 
transmission line. In the two-group approximation the only processes 
occurring in a passive reactor zone are the reflection of fast and thermal 
neutrons and the moderation and reflection of fast neutrons as thermal 
neutrons. A minimum of three reflector parameters will, therefore, describe 
the action of the passive zone. The use of transmission-line-like proper-
ties gives this set of three parameters and introduces the following advan-
tages and simplifications. 

(1) Reflectors or general passive zones with structures based on 
usual engineering requirements can be directly compared by a consider-
ation of these three parameters for each in connection with the require-
ments imposed by the reactor core. (A simplified example presented for 
water and beryllium reflectors demonstrates the comparison of reflector 
parameters.) 

(2) The definition of a neutron-diffusion impedance for a reflector 
region is immediately applicable to the nuclear-reactor simulator. Here, 
the reflector network is actually replaced by a single resistor or combined 
resistor and current source. The simplification leads to more rapid 
operation of the simulator and permits the use of network sections usually 
assigned to the reflector to give a more detailed measure of the neutron 
distribution in the active region of the reactor. 

(3) The effective replacement of a reflector by suitable properties 
applied at the core-reflector interface suggests the use of these proper-
ties in numerical calculations to define new boundary conditions applied 
only to the neutron flux in the reactor core (appendix A). This simplified 
boundary-condition concept for a simply reflected reactor leads to a set 
of two boundary equations in place of the usual four equations. The 2X2 
criticality determinant derived from the boundary equations is, however, 
of approximately the same complexity as the ordinary criticality determi-
nant reduced in order to a 2X2 determinant. The simplified boundary 
conditions are especially useful when applied to a multiregion reflector 
(appendix B). There is then no increase in the complexity of the criti-
cality determinant.
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ANALYSIS 

Neutron-diffusion properties. - The definition of characteristic 
diffusion properties for a neutron-reflector material is based on the 
neutron-balance equations applied to the reflector region of a nuclear-
reactor segment with its center at the origin of the variable r. Con-
sider first the equation for the fast-neutron group: 

in 
Xtr,f('døf 

3

dØ\ 

+
- O	 Ø	

-	 B2 Of = 0	 (1) 

^7 
The constant w determines the size of the reactor segment considered; 
in is an integer, 1, 2, or 0, respectively, depending on whether the 
reactor geometry is cylindrical, spherical, or rectangular. The 

factor urn then serves to make equation (1) a neutron-conservation 
equation applicable to the entire reflector segment and permits a corn-
paris ion with the analogous electrical-transmission-line equation with 
a direct numerical equivalence of terms. The nuclear constants are 
defined in the list of symbols (appendix C), and the buckling constant B 
applies only to reactor configurations having finite linear dimensions 
in other than the r-direction. Equation (1) is similar in form to the 
equation for the potential on the pictured nonuniform electric trans-
mission line with distributed, resistance and leakage. 

Of 
ro 

V r
C

rb

The line of length (rb-rC) has a series resistance per unit length 

R0,f/rn and a shunt conductance per unit length rnG0f. A poten- 

tial of is applied at the sending end of the line at rc. The 

terminating impedance on the line is zero or infinite, respectively, 
for the requirements of Øf( rb) = 0 or of Øf(rb)/ r = 0. These 

requirements correspond to those for a finite neutron reflector bounded 
by (1) a nonreflecting region, or (2) a perfect reflector or identical 
image reflector region and source of neutrons. Equation (1) transforms 
to the transmission-line equation by the definition of the following 
quantities:

R0,f 
=	 tr,f
	 (2a) 

W r,f B2 
GQ,f = 'A,f 

+ 
	

(a) 
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The transformed equation (1) is then 

rn d.20f +dof

	

- rm G0,f Of = 0	 (3a) 
RQ,f dr2	 rdr 

or Its equivalent

	

d.O+_GOfROf0f0	 (3b)

rd.r 

Tqo combinations of the quantities defined, in equations (2) appear 
in equation (3b) and Its solution. Therefore let 

Z0f =	 (4a) 

= R0 ,f GQ,f	 (4b) 

Because of their transmission-line analogs, these quantities are defined 


	

as a fast-neutron characteristic impedance Z 0 	 and a fast-neutron 
attenuation constant a. 

The neutron-balance equation for the thermal group corresponding to 
equation (1) is

r,th 2 m Xtr,th d2Oth In 	 _____ 
3	 2 +	 dr -
	 th 0th -	 B 0th cwm

= Pth Eaf Of	 (5) 

This equation also transforms into a transmission-line equation that is 
equivalent term-by-term with the thermal-group equation. 

rn (d2oth + ____ 

R0,th t 2	 r dr / - r
ni Got 0th = - rm	 Of	 (Ga) 

or

_____ in d.Ø 

_____+ r —E:--r - 
Go,th Ro,th 0th =	 O,th th,f Of	 (6b) 

dr2
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with the substitution of the following quantities: 

RO,th = a3Xtr,th	
(7a) 

Go,th = I a,th +
	 rth B2	 (m) 

= WPth Za,f
	

(7c) 

The thermal-neutron source indicated. on the right side of equation (6a) 
is analogous to a current introduced, per unit length in an electrical 
transmission line. It is therefore helpful to define further nuclear 
parameters appearing in equations (6) and. in their solution that correspond 
to transmission-line parameters. Let 

	

2 - RO,th	
(8a) 

O,th - Go,th 

th = RQ , th GO,th	 (8b) 

These thermal parameters correspond to the fast-neutron parameters defined 
in equations (4). 

Reflector solutions. - Equations (3b) and (6b) with m = 0 1 1, 
or 2 are to be solved satisfying either of the following two 
boundary conditions depending on the desired reactor configuration: 

(1) The flux vanishes at the outer boundary of the reflec-
tor (Ø(rb) = 0) 

(2) The gradient of the flux is zero at the origin (0 1 (0) = 0) 

The general solution of equation (3b) satisfying the appropriate 
boundary conditions is

of (r) = C 	 (ar)
	

(9) 

where Cf is a constant determined from the known flux at the reflector-
core interface rc, and (cLfr) is a generalized function the specific 

value of which is given in table I. 

The net neutron diffusion current I f (r) in the r-direction at 
any point in the reflector is
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= - rm d.Ø(r) = - rm Cf I (r)	
RQf dr	 Z0, 

where

Ear) 
d(ar) 

of (r) 
The ratio is determined, entirely by reflector properties and 

If(r) 
can be defined as the fast-neutron Impedance of the reflector Zf(r): 


Zf(r)- - Z
0, . (Or) 

	

-	 rm	
t(r)	 (10) 

Specific values of Z.(r) appear in table I. 

Then

- øf(rc) 

If(rC) - Zf(rC)	
(11) 

defines a new boundary condition at r = r
c for the neutron flux in the adjacent region. 

The solution of equation (6b), 

d2øth (r)	 in dØth (r)	 2 + r
	 dr	 - °th øth(r ) = - RO ,th	

Cf(ctfr) 

for the thermal neutron flux is 

øth(r ) = C th 0 (athr) -
	 R0,th CØ(mfr)	

(12) 
- ath2 

where (athr) is the generalized homogeneous soliition of (6b) given in 
table I for the reflectors considered.
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The net thermal diffusion current Ith(r) in the r-direction Is 

-	 rm døth(r) 
Ith(r

) - - RO,th dr 

or

m Cth  

	

Ith'(r ) = - r Z0th '(hr) + rmgf

	
(r)	 (13) 

,  - %h2 

Equation (13) can be put Into a more convenient form with the 
definition of a thermal-neutron impedance Zth(r): 

Zth(r ) = - 
Zo,th (athr)

(14) 
rm	 t(j,jr) 

which.correspond.s to Z f (r) defined in equation (10). 

With the use of this thermal-neutron impedance, equation (13) 
becomes

	

øth(r)+ R0,th	 Cf FP(	 _M + rmaf Ith(r) = 
Zth(r )	 2	 2	 Zth(r)	 R0,thaf - th 

or equivalently at the reflector boundary r, 

øth(rc) 
Ith(rc)

th (r ) 
- Pth,f(rc) If(rc)	 (15a)


 c 

or

- - øth(rC ) - Pth,f(rc) 
Ith(rC)	

Zth(rC )	 Zf(rC)	
Of(re) 	 (1.5b)

 

there	

[Rof - Zf (rC )( th,f Ro,th\	
(16)
Pth,f(rC) = 

RQ ,th zth(rc)j 2 - th2) 

Equations (ii) and (15) state that the net fast-neutron and. thermal-
neutron diffusion currents into the reflector are linear functions of the 
fast- and thermal-neutron fluxes at the reflector boundary.
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Equations (ii) and (15b) can be used as a new set of boundary 
conditions for the two-group equations of the core. 

• Two-group criticality equations. - The fast- and thermal-neutron 
diffusion currents are given by equations (U) and (isb) for a particular 
reactor segment. Division of equations (U) and (15b) by ar m results 
in two equations giving the neutron diffusion currents per unit area. 
These equations applied at the core-reflector interface as boundary 
conditions to the general solution of the two-group core diffusion equa-
tions (appendix A) 

(A7) 

(A8) 

=0	 (17) 

[	 ,	
81(r) - O](]r) 

L3	 ur"Z(r) 

Xtr'th S1 i(ir)	 1 
Pth(r)\ 

(rj	

I 
I®i(1r)I 

[ (tii	 urmZ 
r=r

r Xtr,f O2(2r) 02( 0 2 r)_

3	 - urZf(r) 

'tr,th S ®22'	 - 
________ 

S2	 Pth(r) 

L \th -	 1221 

Of(r) = A ® (01r) + D 82 (2r) 

øth(r) = A S1 81 ( 1r) + D S2 82 (y) 

lead to the criticality determinant

The solution of this determinant can be obtained by varying any of 
several variables: (1) the reflector thickness in Z(r), (2) the radius 
of the core, or (3) the fissionable-material concentration in S and 
the P. 

The ratio of the parameters in equations (A7) and (A8) is 

rr,f ®i ( ir )	 ®1(I3lr) 1 
D	 L 

3	 8r ±armZ(r)J
(18) 

IXtr,f 02(02r )	 82([32r) 1 
L r	 arm Zf(r)J 

This ratio leads to knowledge bf the spatial variation of Ø(r) and 
øth(r) in the core.
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APPLICATION OF REFLECTOR PARAMETERS 

• Comparison of reflector properties. - A group of reflectors 
satisfactory from an engineering and nuclear standpoint can be further 
compared by a knowledge of Pth,f, Zf, and Zth, which give a descrip-
tion of the over-all behavior of the reflector. These quantities are 
particularly useful for a comparison of reflector properties in the 
case of a multireflector reactor where the problem Is difficult to 
solve by ordinary two-group methods. 

The following properties of Zf(rb-rC ), Zth(rb-rc), and Pth,f(rb-rC) 
facilitate a choice of reflector for a particular core structure. 

(1) A low Zf(rb-rc) will depress the fast flux in the core leading 

to a large neutron current into the reflector region, whereas a high 
Zf(rb-rC ) tends to confine the neutrons to the core where they will 

slow down. 

(2) A large Zth(rb.-rc) tends to prevent the diffusion, and hence 

the loss, of thermal neutrons from the core. 

(3) The quantity Pth,f(rb-r,) is a measure of the moderating power 

of a reflector, a large value of Pthf(rb_rc) indicating considerable 

slowing down, resulting in more thermal neutrons returning to the core.. 

A demonstration of these properties for simple water and beryllium 
reflectors of various thicknesses is given in figures 1 and 2; spherical 
geometry and a core radius of 30 centimeters are assumed. A water 
reflector thickness of 10 centimeters gives values of Zf and Zth 

95.1 and 99 percent of the respective saturation values while the cor-
responding values for 20 centimeters of beryllium are 98.1 percent and 
89.2 percent. The saturation value of P th,f for water, 0.286, means 

that not more than 28.6 percent of the fast neutrons can slow down to 
return to the core. The graphs therefore indicate that little Is gained-
by choosing a water reflector thickness of greater than 10 centimeters 
or a beryllium thickness of greater than 20 centimeters for this 
particular reactor configuration. Although the beryllium reflector has 
a lower value of Zth than the water reflector, the beryllium reflector 

would be more desirable on the basis of its higher value of Zf and 
providing reflector thickness Is no problem. 

Simulator operation using reflector parameters. - A typical reactor 
criticality determination was performed on the NACA nuclear reactor 
simulator for a simply reflected cylindrical reactor in order to establish 
a procedure for the direct use of reflector parameters. For the fast-
neutron group, the reflector was replaced by a fast-neutron resistance

/
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equal to Z (r ) that terminated, the electric network for the activ 

zone. Measurements made on the network then included that of the current 
through this terminating resistance. The thermal-neutron network for 
the reactor core was then terminated, by a resistance equal to Zth(rC), 

the thermal-neutron diffusion impedance. In addition, a current th,f 

multiplied by that measured through the reflector fast-neutron resistance 
was introduced, at the terminal point of the core network. 

The over-all reflector parameters give the following advantages in 
simulator, operation: 

(1) The network sections ordinarily assigned to the reflector can 
be used to give more detailed information of the neutron distribution 
in the reactor core. 

(2) The reduction in time required to set one resistor value and 
one current value in contrast to a large number of adjustments required 
for a reflector network greatly simplified the operation of the simulator. 
This feature is especially useful for reactor calculations involving the 
adjustment of core parameters by iterative processes. 

(3) Various reflebtors can be employed in calculations by the simple 
readjustment of one resistor value for each neutron group. 

(4) If a detailed variation in flux for a multizone reflector is 
required., the analytical expression with boundary values measured on the 
simulator gives more complete information than can be found with most 
practical reflector networks. 

Numerical calculation example. - In order to determine computational 
time, a numerical calculation based on the criticality determinant 
(equation (17)) was made for a spherical reactor having a single reflector 
and compared with the computational time involved in solving the two-group 
core-reflector equations. 

Equation (17) has in it several possible variables: (1) the radius 
of the core rc in the parameters Zf , Zth, Pth,f,	 (2) the reflector 

structure in the parameters Zf , Zth, th,f and (3) the fissionable 

material concentration in the parameters S, P, and ®. 

Any of these quantities, for example, the fissionable material 
concentration, may be used as a variable however, re was made to vary 
as with the usual computational method in order to obtain a direct 
comparison. Because of the dependence of Z and Pth,f on rc, the 

2 X 2 determinant is approximately equal in complexity to the reduced



N.ACA RM E52H01
	

11 

form of the 4X4 determinant and it was found that there is no loss or 
gain in computational ease or time between the two iterative methods. 

For a single core having internal and external passive zones, the 
concept of reflector impedances and a th f (r) leads to a 
4x4 determinant; and there is no increase in the order of the 
determinant due to the addition of more passive zones. The conven-
tional solution to the same problem requires an 8X 8 determinant with 
4 additional rows and columns for each additional passive zone. Thus, 
a considerable saving in computational effort and time should result 
from the use of the reflector impedance method over the conventional 
method of solution of this particular problem. 

CONCLUSIONS 

A neutron-reflector region can be effectively represented by only 
three parameters for two-group calculations in one dimension. For the 
fast-neutron group a single quantity, the fast-neutron impedance, is 
necessary, and for the thermal group, a thermal-neutron impedance and 
current parameter are required. The simplified boundary conditions 
dependent on these parameters have the following advantages: 

1. Consideration of the three reflector parameters in connection 
with a proposed core structure permits a direct comparison of the 
effectiveness of reflectors that is especially useful for multizone 
reflectors. 

2. Reflector parameters are applicable as actual circuit elements 
on an electrical network simulator for the group diffusion model. 

3. Boundary conditions based on the reflector parameters can be 
applied to flux calculations in neutron-producing regions without further 
consideration of the neutron flux in the reflector regions. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio
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APPENDIX A. 

DERIVATION OF CRITICALITY EQUATIONS FOR REACTOR-PLUS-REFLECTOR 

CONFIGURATION BASED ON TWO-GROUP THEORY M 

TRANSMISSION-LINE THEORY 

The results of the work on the finite transmission line can be 
applied to the two-group equations for a reactor-plus-reflector 
configuration. Essentially, the reflector equations and the four core-
reflector interface boundary conditions are replaced by two boundary 
conditions; this, in effect, reduces the ordinary 4X 4 determinant 
solution of the diffusion equations to a 2X2 determinant solution. 

The one-dimensional two-group equations for a reactor core are 
(reference 2) 

I\tr,f 2 øf (r) -	 øf(r) - £a,f øf(r) + kf(l Pth) £a,f øf(r)Vr

+ kth a,th øth(r) = 0 . 	 (Al) 

and 

tr,th 
Vr2 0th	

- Xtr,th B2 øth(r)- (r)a, øth(r) + th £a,f of (r)= 0


(A2) 

.there B2 represents the buckling constant for directions normal to r; 
it applies only to the solutions involving rectangular and cylindrical 
geometry and does not apply to a spherical geometry. 

The two boundary conditions replacing the two reflector equations 
and the four core-reflector interface boundary conditions are 

- 'tr,f dØ(r)	 of (r) 

3	 dr	 - a)rmZf(r)	
(3) 

Xtr,th døth(r) - øth(r )	 - Pth,f(r) Ø
f (r)	 (A4) 

- 3	 dr	 - urm Zth(r)	 CWM Zf.
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Equations (Al) and (A2) must satisfy the following relation: 

Vr2 of (r) = 2 of (r)	 (As) 

'r2 øth(1) = 2 øth(r )	 (A6) 

Substitution of equations (A6) and (As) in equations (Al) and (A2) 
will give two equations in p2 ,the buckling constant (reference 2). 
This constant p2 may have either of two values: one value positive 

[ l2] and one value negative [p21. 

The general solution of equations (As) and (A6) will be given by 

Øf(r) = A ®i ( 1r) + D e2 ( 2r)	 (A7) 

øth(r) = A S1 81 (31r) + D S2 92 ( 2r)	 (A8) 

where 01 ( 1r) and. S2 ( 2r) represent the value of the solution for 

Øf (r) and øth(r) corresponding to the two values 012 and p22, 
respectively. The constants 9 1 and S2 represent the ratios of 

the components of the fluxes , for the values of 012 and p22, 

respectively. The values of S1 and S2 are 

Xtr,f  
S1 = - 

3kth 
Eth (12-B2) + Za
	

[i - k (1_Pth)]	 (A9)

kth Za,th 

tr ,  

2 = - 3kth 
' Za,th (22-B2) + Ea,f
	

[1 -. kf(l_Pth)]	 WO) 

The values for 81 ( 1r) and 82(2r) are listed in the following 
table for m = 0, 1, 2:
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17r ®1(1r ) ; P 2>o 82 ( 132r ); 0 2< 

m=O— cos h (1r ) cos	 (132r) 

m=1- + -	 . I	 ( 31r ) J0 (2r) 

m= 2- 2 d +	 .	 - sinh ( 1r)/r sin (132r)/r

Substitution of the boundary conditions ((A3) ' , (A4)) into equa- 
tions (A7) and. (A8) at r = r will give 

- Xtr,f EA 
e1(1r)	 ' "2 (12r)] -	 1	

[A ®1 ( 1r) + D O2(2r)

- urmZf(r)

(All) 

Xtr,th [

	

®2(i32r)] -.	 1	
[A i 81(1r) -	

A S1	
r	

+ D S2	
ar	 - ormZth(r) 

+ D 

Simplificationof 
the parameters A 

L 3

8 2 1(02 r)] - th,f(r) [A 81(1r) + D e2(2r)] 	 (Al2) 

quation (All) and (Al2) results in two equations in 
and. D: 

- 81(10 1 A + [- Xtr ,f 02 02rY - 82(2r) 1 D = 
urmZf (r)J	 L	 3	 r	 arfl1Z(r)J

(Al3) 
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E

Xtr,th	 81(r) 

(arrazth

S1 	 Pth,f(r)\ 
-	 1	 r	 -	 (r) - umZf(r)) ®l(lr )] A 

+ [_ Xtr,the2(p2r)	 S2	 - Pth,f(r) ®2 ( 2r)] D = 0 
3

 - (ur th(r) uf(r))

(A14) 

There will be a nontrivial solution 
the determinant of the coefficients 
criticality equation is

to equations (A13) and. (A.14) only if 
vanishes. Thus, the general 

Xtrf ®iir -  

L wrIThZf(r) 

+ 2(2r) 1 L 3 	 3r	 u)rmZf(r)J

tr,th	 2(2r)(_S2	 Pthf(r)) e2(sr)] 
- ur'Z(r) 

3	 -	 mZth(r) uf(r))	 I= 0 

Xtr,th 1 e1 ( 1r) fS1 
(A15) 

Depending upon the type of problem under consideration, the reflector 
thickness, the radius of the core rc, or the fissionable material con-
centration may be varied to achieve criticality. 

The ratio of the two constants in equations (A7) and (A8) is 

rxtr,f e1 ( 1r) ®1 (31r) 1 
D	

3	 r	 wrThZf(r)j

(A16) r 
I'tr,f	

+ 
02(132r)	 e2(2r) 1 L . 3	 r	 wr1Zf(r)J 

If the ratio D/A is known, the spatial variation of flux in the 
core may be plotted, as a function of the distance r. The value of the 
flux in the core will then be known'to an arbitrary constant. With the 
values of the fast- and thermal-neutron fluxes known at the core-refletor 
interface, the reflector fluxes may be calculated by using equations (9) 
and (12) with the constants adjusted to give the proper flux values at 
the core-reflector interface.
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TWO-GROUP PARAMETERS FOR NIJLTIPLE PASSIVE ZONES 

The reflector consisting of -two regions as shown schematically. in 
the following figure can be represented by three parameters similar to 
those for a simple one-region reflector: 

(Region a)	 (Region b)

	 lb 
rc	 r I  

Region b, extending from r1 to the boundary rb, is immediately 

replaced by a set of parameters as described, in the body of the report 
or, if it is a multizone region, by a set previously determined, by the 
following process. These parameters establish all necessary boundary 
conditions for the region-a neutron flux solutions (rc g r , rj) and 

lead to reflector parameters that describe the effect of the entire 
reflector combination. 

Fast-group parameters.. - The general one-dimensional solution for 
the fast-neutron flux in region a has the form 

.øf = A[ i ar) + Df 2(c'r)]	 (BI) 

where Af and Df are constants to be determined, by the applied boundary 

conditions, and. the functions 1 (a f.r) and r2 (cx.r) are listed in the 

accompanying table for three coordinate systems: 

- Coordinate	 r1(ar) 
system 

Rectangular sinh (ar) cosh (ar) 

Cylindrical K0 (or)	 10 

Spherical	 sinh
'	

cosh (or) 
r  

At r1 , the boundary of region a, the neutron current is 

	

r im d.Øf l	 r1mA	 -. 

	

If(r1) 

T - 
R0,f th•I	 - Z0,f El I (afri ) -i- D *2'(cri)] (B2)
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This current is related to the flux at the boundary r 1 by the 
impedance Zf,b

	

Øf (r1 )	 - Z0,f [i ri) + Df 2r1) 1 
Zf,b = If(r1)

	

rim [i'( ri) + D 2'(ri)j	
(B3) 

Boundary condition (B3) permits evaluation of the constant D 

D = - [Z
O,f 1(r1 )	 r1 Zf,b lt(rj)1
	 () 

	

[Zo ,	 2( afr1) + r1In Zf ,b fr21(rri) 

The fast-group flux and current solutions obtained with D f permit 
the definition of a fast-neutron impedance for the reflector combination 
according to

øf(rc) 

f,c -  
If(rC) 

The value of this impedance is 

f = - Z
0	 r i( r ) + Df 2( r,) 1	

(B5) ,c	
r	 t	
c (ctf r 

c ) + Df 2(frcj 1  

Thermal-group parameters. - The thermal-group equation for region a 
is

v2 0th - th2 Oth = - RO,th gth,f Af [*,(afr) + Df r2 (ar)	 (B6) 

The general solution of equation (B6) is separated into two parts con-
sisting of a complementary function 

Oth )h = Cth [*l (a-thr) + 8th \V2(ath)] (B7) 

and a part made up of the , particular integral and an arbitrary multiple 
of the complementary function

RI - ,th	
frl(afr) + Df 2(fr)]

af2- ath2 
0th,p = Ath[l(athr) + Dth 2(thr )]

(B8)



18
	

NP1CA RN E52H0]. 

where Cth, 8thy Ath, and Dth are constants. This separation of the 

solution leads to equations that simplify the definition of parameters 
for the double reflector. 

• The boundary conditions for the two parts of the thermal-group 
solution are

	

th,h(rC)	 øth("C)	 (B9a) 

	

Ith,h(ri) = - r1
	 døth,h	 = øth,h(i) (B9b) 

	

Ro,th dr Ir
i	

Zth,b 

øth,p (rc) = 0	 (BlOa) 

= -

 

rim døth,p	 = øth,P(r) - th,f,b If (r1 ) (Blob) Ith,P(ri)	 RO,th	
Iri	

Zth,b 

Evaluation of boundary condition (B9b) gives 

ZO,th [lhri + 8th 2(h71) 1 
Zth,b = - 

rim [l'( cLthri) + 8th 2t(ath7i)j 

from which the constant 5 th is evaluated 

rZO,th 1(hr1) + rim Zth,b	 (hrl) 

	

6th = - [ 
O h	 th i	 i th z	 r ) + r Z ,b *2'(athrl)j 	

(Bil) 

The thermal-neutron diffusion impedance for the combined reflector is 
defined in terms of the homogeneous part of the flux solution in 
region a. The current of thermal neutrons into the reflector 

Ith(rC ) = Ith,h(rC ) + Ith,P(rC) 

is written

'th (rc)
- 

	

-	 + Ith,P ( rC )	 (B12)

Zth,c 
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The homogeneous part of equation (B12) is then solved, for Zth , c with 
condition (B9a)

øth(rC )	 ZO,th [1thr + 5th *2(thrC ) 1 
Zth,c = 

Ith ,h(rC ) = - r m [*ltthrC)5th 2 (thrC)j (B13) 

The und.etermined constants in the particular flux solution (B8) 
are fixed by the boundary conditions (BlO). Equation (BlOa) gives 

	

Ath =
	 Roth gth , f øf(rC)	

(B14) 

(2-th2) 1*1 (athrc ) + Dth *2(athc)] 

This value of A.th permits the evaluation of boundary condition (Blob), 
giving

rl'(hr) + Dth 2'(hri)l 
-	 -h øf(rC) [lh

rc) + Dth *2(hrC) j 
+ n øc(rc) 

of
[1(athri) + Dth *2(athrl)l	

(B15) 

	

= 1	
[1(thrc) + Dth 2(thrC)j 

where

h = r1m Ro,th gth1f	
(B16a)


ZO,th fth 

= Ro,th	
(Bl6b)


Zth,b(of_ctth) 

and

RO,th gth,f	 gth,f R0f + Pth,fblFl(fri) + D 2(fr)l 
[ th,b (r2_ath2 ) - zf,(a..f2_aj2)	 Zfb J[ri(a..r) + D r2(arc)J 

(B16c)
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The constant Dth then is obtained directly from equation (B15): 

	

Dth
i iV(at r ) - n 4(l( a.thrC ) + h *l'(athrl)	

(Br?)
= 
n 2

( thC ) -	 (i) - h *2(	 r )
th i 

This permits a complete evaluation of Ith,p(rc): 

{

h rc 

m

l'(athc) + Dth *2'(hrc)]^ R0, gth,f
Ø(r) Ith,p(rc) = -	 m 1*1(athrc) r 	 + Dth 2(hrC)	 Zfc(f2_th2)J

(Bis) 

In the form employed for the single reflector region this Is equivalent 
to

Ith,P(rC) =	
th,f,c øf(

rc)	 (B19)

c 

The three constants Z th , c l Z , , and. th, f,c appearing in equa- 
tions (B5), (Bl3),and. (B19), respectively, then serve to represent 
all properties of the double reflector for two-group calculations.



NCA RM E52H01
	

21 

APPENDIX C 

SYMBOLS 

The following symbols are used in this report 

A .,C,D,b undetermined constants 

B2	 buckling constant for directions normal to r (applies to 
solutions involving rectangular or cylindrical geometry) 

G0	 neutron conductance defined by equation (2b) 

gthyf	 neutron transcond.uctance defined by equation (7c) 

1(r)	 neutron diffusion current at point r 

k	 neutron multiplication constant 

m	 0,1,2 

th,f	 reflection parameter defined by equation (16) 

th neutron resonance escape probability 

RO neutron diffusion resistance defined by equation (2a)

r	 distance variable 

rb	 position of reflector outer boundary 

rc	 position of core-reflector interface 

r1	 position of boundary between two reflector regions 

S.	 ratio of flux components eth/ef 

Z	 reflector impedance 

Z0	 characteristic impedance of reflector material 

attenuation constant of reflector material 

buckling constant for core (r_direction) 
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KO(arb)/IO(arb) 

general function 

Xtr	 neutron transport mean free path 

Za	 macroscopic neutron absorption cross section (includes slowing 
in fast group) 

•	 general function 

0(r)	 neutron flux at point r 

general function 

03	 reactor segment size factor 

2	 d2 m  
r 

Subscripts: 

b	 parameter for region b 

c	 parameter for combined reflector 

f	 fast neutron group 

h	 indicates solution of homogeneous equation 

p	 indicates particular solution 

th	 thermal neutron group
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Reflector thickness, cm 

Figure 1. - Fast and thermal impedances for beryllium and water reflectors.
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