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SUMMARY

Equations are developed to show that, for one-dimensional two-group
neutron-distribution calculations, the properties of a neutron-reflector
region can be combined in three parameters that effectively represent the
action of the reflector. The use of these parameters and boundary con-
ditions based on them for single and multizone reflectors is considered
and from the results of computations, the following applications of th
parameters are shown: i

(1) Use of the parameters in connection with reactor core proper-
.ties for comparison of reflector configurations

(2) Direct use of parameters as circuit constants in electrical
analog

(3) Use of boundary conditions based on reflector parameters to
obtain numerical solutions of two-group equations in a neutron-producing
" region.

Y

INTRODUCTION

The close analogy between the physical concepts and equations for
the diffusion of neutrons in a reactor and the flow of current in an
electrical transmission line suggests the application of already
developed electrical engineering techniques for handling problems con-
nected with reactor design. The use of lumped electrical circuit
elements to approximate a continuous transmission line has been success-
fully employed to simulate the diffusion of mneutrons by electrical analog
simulators (reference 1). In the analogy, the neutron fluxes and the
diffusion currents are simulated, respectively, by the electrical
potentials and the currents of the transmission line. The following
analysis and examples carried out at the NACA ILewis laboratory describe an
additional transmission-line concept that can be applied to the one-
dimensional solution of the neutron-group equations.

The neutron diffusion, absorption, and moderating properties of the
material in a passive reactor zone of finite extent give rise to a parti-
cular relation between neutron fluxes and diffusion current at the interface
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between that medium and an adjacent reactor zone. The diffusion of
‘neutrons into the passive zone can be treated in identical manner to the
flow of current into an analogous electrical transmission line connected

to an unspecified sending circult. The transmission line is ordinarily
‘characterized by a definite length, terminating impedance, characteristic
impedance, and attenuation constant. In order to specify its reaction on
the sending circuit, the line is replaced by an equivalent sending-end
impedance that behaves like the line with respect to its reaction on any
other electric circuit. The neutron reflector, when described by a similar
set of properties, can be treated in the same analytical manner as the
transmission line. In the two-group approximation the only processes
occurring in a passive reactor zone are the reflection of fast and thermal .
neutrons and the moderation and reflection of fast neutrons as thermal
neutrons. A minimum of three reflector parameters will, therefore, describe
the action of the passive zone. The use of transmission-line-like proper-
ties gives this set of three parameters and introduces the following advan-
tages-and simplifications.

(1) Reflectors or general passive zones with structures based on
usual engineering requirements can be directly compared by a consider-
ation of these three parameters for each in connection with the require-
ments imposed by the reactor core. (A simplified example presented for
water and beryllium reflectors demonstrates the comparison of reflector
parameters. )

(2) The definition of a neutron-diffusion impedance for a reflector
region is immediately applicable to the nuclear-reactor simulator. Here,
the reflector network is actually replaced by a single resistor or combined
resistor and current source. The simplification leads to more rapid
operation of the simulator and permits the use of network sections usually
assigned to the reflector to give a more detailed measure of the neutron
distribution in the active region of the reactor.

(3) The effective replacement of a reflector by suitable properties
applied at the core-reflector interface suggests the use of these proper- .
ties in numerical calculations to define new boundary conditions applied
only to the neutron flux in the reactor core (appendix A).- This simplified
boundary-condition concept for a simply reflected reactor leads to a set
of two boundary equations in place of the usual four equations. The 2x2
criticality determinant derived from the boundary equations is, however,
of approximately the same complexity as the ordinary criticality determi-
nant reduced in order to a 2X2 determinant. The simplified boundary
conditions are especially useful when applied to a multiregion reflector
(appendix B). There is then no increase in the complexity of the criti-
cality determinant.
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ANALYSTS

Neutron-diffusion properties. - The definition of characteristic
diffusion properties for a neutron-reflector material is based on the
neutron-balance equations applied to the reflector region of a nuclear-
reactor segment with its center at the origin of the variable r. Con-
sider first the equation for the fast-neutron group:

2
)“trfﬁg’f 'm
3 \\dr
The constant ® determines the size of the reactor segment considered;

m is an integer, 1, 2, or O, respectively, depending on whether the
reactor geometry is cylindrical, spherical, or rectangular. The

o M .
-(ﬁ!’mza,f ¢f —mr ——I‘S-LfBz ¢f=0 (1)

factor ar® then serves to make equation (1) a neutron-conservation
equation applicable to the entire reflector segment and permits a com-
parision with the analogous electrical-transmission-line equation with
a direct numerical equivalence of terms. The nuclear constants are
defined in the list of symbols (appendix C), and the buckling constant
applies only to reactor configurations having finite linear dimensions
in other than the r-direction. Equation (1) is similar in form to the
equation for the potential on the pictured nonuniform electric trans-
mission line with distributed resistance and leakage.

o 0
1o 0
I'c ‘ rb

The line of length (rb;r ) has a series resistance per unit length
RO f/r and a shunt conductance per unit length rmGO £ A poten-
tlal ¢f is applied at the sending end of the line at r,. The

terminatlng impedance on the line is zero or 1nf1n1te, respectively;
for the requirements of @e(r,) =0 or of fs(ry)/or = 0. These

requirements correspond to those for a finite neutron reflector bounded
by (1) & nonreflecting region, or (2) a perfect reflector or identical
image reflector region and source of neutrons. Equation (1) transforms
to the transmission-line equation by the definition of the following
quantities: '

Ry ¢ = | (2a)
o,f Xi
’ (4V] r,f

(2p)

&
-
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The transformed equation (1) is then

& a
r ¢f Bﬁ -rmG0f¢f=O (58.)
Ro P drz r dr ’ .
or its équivalent‘
2
°Pr  m 3fp
+ - -G R =0 .
—= ‘r@ - C0rFor s (3b)

~ Tyo combinations of the quantities defined in equations (2) appear
in equation (3b) and its solution. Therefore let

4

2 0,f
Z0,2° = g2 . (4a)
0,f
ap? = Ro,¢ Go,r ' - ()

Because of their transmiséion line analogs, these quantities are defined
as a fast-neutron characteristic impedance ZO £ and a fast-neutron
attenuation constant ap.

The neutron-balance equation for the thermal group corresponding to
equation (1) is

2
o Mrth &% n Win ny n
5 G2 tr® C O Zath fin - or

——N’E’th B% Gtn
' = - ar® pyy Dop Pr . (5)

This equation also transforms into a transmission-line equation that is
equivalent term-by-term with the thermal-group equation.

2
o [Py . m Pen

m m :
z - ™ Gy tn Ptn = - T Btn,r Pr (62)
Ro,th \ ar?2 T dr T ’
or
a2 ag
th , m Wen _ |
— "t~ %0,tn Fo,tn Pen = - Fo,tn &wn,r fr 2
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with the substitution of the following quantities:

3
R = (7a)
0,th ¥ ey o .
’ r,th A

2

ONyp ¢ B
Go,th = ®Zg,th + —%—— (7o)
Eth,f = @Pth Za,f - (7e)

The thermal-neutron source indicated on the right side of ‘equation (6a)

is analogous to a current introduced per unit length in an electrical
transmission line. It is therefore helpful to define further nuclear
parameters appearing in equations (6) and in their solution that correspond
‘to transmission-line parameters. Let

R
0,th Go th
2 _
%n = Ro,tn %,tn (8v)

These thermal parameters correspond to the fast-neutron parameters defined
in equations (4).

‘Reflector solutions. - Equations (3b) and (6b) with m = 0, 1,
or 2 are to be solved satisfying either of the following two
boundary conditions depending on the desired reactor configuration:

(1) The flux vanishes at the outer boundary of the reflec-
tor (f(ry,) =

(2) The gradient of the flux is zero at the origin (@'(0) = 0)

The general solution of equation (3b) satisfying the appropriate
‘boundary conditions is

¢f(r) = Cp ®(apr) : | (9)

‘where Cf is a constant determined from the known flux at the reflector-
core interface r., and ¢(dfr) is a generalized function the specific

value of which is given in table I.

The net neutron diffusion current If(r) in the r-direction at
any point in the reflector is
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d¢f(r) - - rm Cf ¢ ( r
R dar f
0,f 2o, ¢

If(r) = -
where

¢'(ar)‘_ -z;;y &(ar)

¢f(r)

I.(r)
can be defingd as the fast-neutron impedance of the reflector Zf(r):

The ratio is determined entirely by reflector'properties and

Zg, ¢ ®(agr)

2¢(r) = - Lo & (apr)

(10)

Specific values of Zf(r) appear in table I.

Then

¢f(rc)
Ie(re) = 7o) » (11)

defines a new boundary condition at r = r, for the neutron flux in the
adjacent region.

The solution of equation (6b),

e (r) By (r)
ar? f e T % P() = Ro,th 8tn,r Cp¥ogr)

for the thermal neutron flux is

g R Cod )
Ben() = Cppy Sayr) - St "0, Crdlagr 2)

°‘~f2 - O‘-thz

vhere &(atnr) 1is the generalized homogeneous solition of (6b) given in
table I for the reflectors considered.
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The net thermal diffusion current Igh(r) in the r-direction is

B By (r)
Tl = - g
2
or
C h I‘mg
() = - 2% e O (o) + RELE 0 e)  13)

Equation (13) can be put into a more convenient form with the
definition of a thermal-neutron impedance Zin(r):

Zo,tn ®lagnr)

©(14)

Zip(r) = -
‘th Ifm @t(%hr)
which.corresponds to Zf(r) defined in equation (10).
With the use of this thermal-neutron impedance, equation (13)
becomes
Bin(r) R g Ce | ¥(apr) |
Ten(r) = Zth(r) N o,tg th,fz f - “fr) 4+ oM - L & (apr)
th ap” - ath th 0,th
or equivalently at the reflector boundary r,,
Bin(re)
Itn(re) = =77 - Ptn,£(re) Ir(re) (15a)
Zth To ’
or : .
Pen(re)  Pene(re) , o
Ith(rc) = - 2 ¢f(rc) (le)
Zpo (r) Za(r))
th''c f\'e
where
, R Ze (r.) |fg R
0,f f Ve th,f 0,th
Pyp,elre) = |52 =2 (16)

RO,th-l Zn(re) afl - ogn’

Equations (11) and (15) state that the net fast-neutron and thermal-
neutron diffusion currents into the reflector are linear functions of the
fast- and thermal-neutron fluxes at the reflector boundary.
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Equations (11) and (15b) can be used as & new set of boundary
. conditions for the two-group equations of the core.

Two-group criticality equations. - The fast- and thermal-neutron
diffusion currents are given by equations (11) and (15b) for a particular
reactor segment. Division of equations (11) and (15b) by wr® results
in two equations giving the neutron diffusion currents per unit area.
These equations applied at the core-reflector interface as boundary
conditions to the general solution of the two-group core diffusion equa-
tions (appendix A)

B.(r) = A6 (5,x) + Do, (B,r) (a)
Pin(r)

lead to the criticality determinant

AS; 8 (Blr) +D S, 6, (Bzr) | (A8)

=rc

[ Air,e 26, (8)7) @ (Br) J [ Mrp 29,(B,7)  0,(B,7) :|

E or ar™Zs(r) rer | 3 or | wr™.¢(r) rerg

[ Mr,en . 30i(er) [ Mr,th . 992(Bpr) _

T T3 51 dr - 3) S2 or =0 (7)
5y P (r) \ s Py (r) ‘

- < = - (" )61(311’) : - < mz - :lzl - )92(521‘)

_ ar™Zyp (r) a)rmzf(r) e, | or’Zey (r)  ar®Ze(r) .

The solution of this determinant can be obtained by varying any of
several variables: (1) the reflector thickness in Z(r), (2) the radius
of the core, or (3) the fissionable-material concentration in S and
the B. :

The ratio of the parameters in equations (A7) and (A8) is

M,z 00 (By7) , Galfyr) ]
3 or wrm Zf(r)
-}‘tr,f a@z(Bzr) + GZ(BZr) ]

| 3 or o™ Zp(r)d

=0
I
]
—
H
A

This ratio leads to knowledge of the spatial variation of ¢f(r) and
ftn(r) in the core.
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APPLICATION OF REFLECTOR PARAMETERS

Comparison of reflector properties. - A group of reflectors
satisfactory from an engineering and nuclear standpoint can be further
compared by a knowledge of Pth,f, Zf, and Ztnh, which give a descrip-
tion of the over-all behavior of the reflector. These quantities are
particularly useful for a comparison of reflector properties in the
case of a multireflector reactor where the problem is difficult to
solve by ordinary two-group methods.

The following properties of Ze(ry-r,), Zip(rp-re), and Pth,f(rb'rc)
facilitate a choice of reflector for a particular core structure.

1) A low Zg(ry-r,) will depress the fast flux in the core leading
£\

to a large neutron current into the reflector region, whereas a high
Zg(ry-r,) tends to confine the neutrons to the core where they will

slow down.

(2) A large Zyp(ry-r,) tends to prevent the diffusion, and hence
the loss, of thermal neutrons from the core.

(3) The quantity Pth,f(rb'rc) is a measure of the moderating power
of a reflector, a large value of _Pth,f(rb'rc) indicating considerable
slowing down, resulting in more thermal neutrons returning to the core.

A demonstration of these properties for simple water and beryllium
reflectors of various thicknesses is given in figures 1 and 2; spherical
geometry and a core radius of 30 centimeters are assumed. A water
reflector thickness of 10 centimeters gives values of Zf and Zin

95.1 and 99 percent of the respective saturation values while the cor-
responding values for 20 centimeters of beryllium are 98.1 percent and
89.2 percent. The saturation value of Pth,f for water, 0.286, means

that not more than 28.6 percent of the fast neutrons can slow down to
return to the core. The graphs therefore indicate that little is gained
by choosing a water reflector thickness of greater than 10 centimeters
or a beryllium thickness of greater than 20 centimeters for this
particular reactor configuration. Although the beryllium reflector has
a lower value of Zi} than the water reflector, the beryllium reflector

would be more desirable on the basis of its higher value of Zf and Pth,f
providing reflector thickness is no problem.

Simulator operation using reflector parameters. - A typical reactor
criticality determination was performed on the NACA nuclear reactor
similator for a simply reflected cylindrical reactor in order to establish
a procedure for the direct use of reflector parameters. For the fast-
neutron group, the reflector was replaced by a fast-neutron resistance
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equal to Zg(r,) that terminated the electric network for the active

zone. Measurements made on the network then included that of the current
through this terminating resistance. The thermal-neutron network for
the reactor core was then terminated by a resistance equal to Zth(rc),

the thermal-neutron diffusion impedance. In addition, a current Pth,f

multiplied by that measured through the reflector fast-neutron resistance
was introduced at the terminal point of the core network.

The over-all reflector parameters give the following advantages in
simulator operation:

(1) The network sections ordinarily assigned to the reflector .can
be used to give more detailed information of the neutron distribution
in the reactor core.

(2) The reduction in time requlred to set one resistor value and
one current value in contrast to a large number of adjustments required
for a reflector network greatly simplified the operation of the simulator.
This feature is especially useful for reactor calculations involving the
adjustment of core parameters by iterative processes. '

(3) Various reflectors can be employed in calculations By the simple
readjustment of one resistor value for each neutron group.

(4) If a detailed variation in flux for a multizone reflector is
required, the analytical expression with boundary values measured on the
simulator gives more complete information than can be found with most
practical reflector networks.

Numerical calculation example. - In order to determine computational
time, a numerical calculation based on the criticality determinant
(equation (17)) was made for a spherical reactor having a single reflector
and compared with the computational time involved in solving the two-group
core-reflector equations.

Equation (17) has in it several possible varisbles: (1) the radius
of the core r, in the parameters Zp, Zyy, Pgp rs ©; (2) the reflector

structure in the parameters Zg, Zyy, Pth,f;'and,(s) the fissionable
material concentration in the parameters S, B, and ©,

Any of these quantities, for example, the fissionable material
concentration, may be used as a variable; however, rc was made to vary

as with the usual computational method in order to obtain a direct
comparison. Because of the dependence of Z and Pth,f on r,, the

2 x2 determinant is approximately equal in complexity to the reduced
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form of the 4 X 4 determinant and it was found that there is no loss or
gain in computational ease or time between the two iterative methods.

For a single core having internal and external passive zones, the
concept of reflector impedances and a Pth f(r) leads to a
4 X4 determinant; and there is no increase’in the order of the
determinant due to the addition of more passive zones. The conven-
tional solution to the same problem requires an 8X 8 determinant with
4 additional rows and columns for each additional passive zone. Thus,
a considerable saving in computational effort and time should result
from the use of the reflector impedance method over the conventional
method of solution of this particular problem.

CONCLUSIONS

A neutron-reflector region can be effectively represented by only
three parameters for two-group calculations in one dimension. For the
fast-neutron group a single quantity, the fast-neutron impedance, is
necessary, and for the thermal group, a thermal-neutron impedance and
current parameter are required. The simplified boundary conditions
dependent on these parameters have the following advantages:

1. Consideration of the three reflector parameters in comnection
with a proposed core structure permits a direct comparison of the
effectiveness of reflectors that is especially useful for multizone
reflectors.

2. Reflector parameters are applicable as actual circuit elements
on an electrical network simulator for the group diffusion model.

3. Boundary conditions based on the reflector parameters can be
applied to flux calculations' in neutron-producing regions without further
consideration of the neutron flux in the reflector regions.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio
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APPENDIX A.

~ DERIVATION OF CRITICALITY EQUATIONS FOR REACTOR-PLUS-REFLECTOR
CONFIGURATION BASED ON TWO-GROUP THEORY AND
TRANSMISSTON-LINE THEORY

The results of the .work on the finite transmission line can be
applied to the two-group equations for a reactor-plus-reflector
configuration. Essentially, the reflector equations and the four core-
reflector interface boundary conditions are replaced by two boundary
conditions; this, in effect, reduces the ordinary 4X 4 determinant
solution of the diffusion equations to a 2X 2 determinant solutionm..

The one-dimensionél two-group equations for a reactor core are
(reference 2) ‘

At;,f Vrz ¢f(r) _ )‘tg,f-Bg ¢f(r) _ za,f ¢f(r) + kf(l;pth) za,f ¢f(r)

tn Za,tn Pen(®) =0 - © (A1) |

and

A

r,th _ 2 Mr,th o2 ) ' _
—2 0 () n = B i (r) - E o B (0) 4 py B o Belr) = 0

‘ | ~ (a2)
where B2 represents the buckling constant for directions normel to r;

it applies only to the solutions involving rectangular and cylindrical
geometry and does not apply to a spherical geometry.

The two boundary conditions replacing the two reflector equations
and the four core-reflector interface boundary conditions are ‘

Mpyr o) ge(r)
3 dr wmef(r)

(A3)
and

CMroth Wen(®)  Bn(®) Py p(x)

3 ‘dr "~ or® Zth(r)A-' arl Ze Pe(r) (a4)
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Equations (Al) and (A2) must satisfy the following relation:

V.2 fo(r) = B2 go(r) | (45)

V2 Bp(®) = B2 Pyp(r) (a6)

Substitution of eqpations (A8) and (AS) in equations (Al) and (A2)
will give two equations in B2, the buckling constant (reference 2).
This constant Bz may have either of two values: one value positive

[Blz] and one value negative [Bzi.

The general solution of equations (A5) and (A6) will be given by

¢f(r)
¢th(r)

where @l(Blr) and ©,(Bor) represent the value of the solution for
¢f(r) and ¢th(r) corresponding to the two values Bl and Bz ,
respectively. The constants S and S, represent the ratios of
ﬁeth/@f » the components of the fluxes for the values of Blz and 822 y
respectively. The values of Sy and S, are

A @) (Byr) + D @3(Bsr) ‘ (A7)

]

A Slel(Blr) +D S, o, (Bzr) {a8)

A _ z
th Za,th hza,th -
b}
S, = __EEELE___ (g -82) +.-—13£§——— 1 - kf(l-pthﬂ (A10)
3ken 2a,th kinZa,th — -

The values for ©7(Bjr) and ©o(Bor) are listed in the following
table for m =0, 1, 2:
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v’ [ey(Br); B 2>0[e,(8,r); %< 0
5 (8;) (Bor)
m=0|— cosh (B r cos (Bor
d:r2 1 2
S -GN (Byr) 3o (Bzr)
T lgp2 T rarf 01 0 ‘Fz2 -
m~2—(£+§——d' sinh (B r)/r sin (Bor)/r
T “lgee T T adr 1 2

Substitution of the boundary conditions ((A3), (A4)) into equa-
tions (A7) and (A8) at r = r, will give

[A 0,(Byr) +D O (ﬁzr)]

Mr,r [:A © & (Pyr) 9 ®g(Bgr)]
3 or or cnrme(r)

(A11)

_ Mr,th E g Q&) g O ®2(32r)]> 1
3 1

or * 2 dr T or®Zy (r) [A 51 01(Byr)

Pin,¢(r)
nZo(r)

Simplification of equation (A1l) and (A1l2) results in two equations in
the parameters A and D:

[_ M, Gy _e(yr) |, [ Mr,e O 82(87) 850 T _
3 dr wrZq(r) ' 3 or @rZ o (r) '

+ D So @2([321')] - [A 8 (Byr) +D @2([321')] (A12)

(AL3)
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_ Mr,th 0 8 (Byr) ( 51 ) Pth,f(r)) o (5 f) A
5 & orZen(r)  ar®e(r)) T
Mer,th o O G(Bar) [ 8y _ Pyp p(r) _
+ S, @2(Bzr) D=0
3 or wrmzth(r) wr™.e(r)

(A14)

There will be a nontrivial solution to equations (Al3) and (Al4) only if"
the determinant of the coefficients vanishes. Thus, the general
criticality equation is o '

CMr,e 0 01(Bir)  alBar) || Mrwn 0 82(Br) [ Sz Pth,f(r)) 0. (8ur)
3 or a)rme(r)J 3 2 or orfZ.y (r)  ar®e(r) 2 "2
r .
| Mg 0 @a(Bar) | 03(Bar) [| Agr en Sl-a Oy (B1r) _ ( 81 ) Pth,f(r)) o1 (8y)] = 0
3 dr ar®Z.0(r) 3 . or oz (r)  wr®Ze(r)

(a15)

Depending upon the type of problem under consideration, the reflector
thickness, the radius of the core r,, or the fissionable material con-

centration may be varied to achieve criticality.

The ratio of the two constants in equations (A7) and (A8) is

rk‘br,f 5 ®l(Blr) N @l(Blr) )
3 or wr®Zo(r)

-

(A16)

=g
1
'

Mr £ O 95(B57) , %2(fpr) |
L 3 or wrZe(r)

If the ratio D/A is known, the spatial variation of flux in the

core may be plotted as a function of the distance r. The value of the
flux in the core will then be known to an arbitrary constant. With the
values of the fast- and thermal-neutron fluxes known at the core-reflector
interface, the reflector fluxes may be calculated by using equations (9)
and (12) with the constants adjusted to give the proper flux values at

the core-reflector interface.
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APPENDIX B

 THO-GROUP PARAMETERS FOR MULTIPLE PASSIVE ZONES

The reflector consisting of two regions as shown schematically in
the following figure can be represented by three parameters similasr to
those for a simple one-region reflector:

" (Region &) (Region b)
Te Ty Ty
Region b, extending from ry - to the boundary Iy, is immediately -

repluced by a set of parameters as described in the body of the report
or, if it is a multizone region, by a set previously determined by the
following process. These parameters establish all necessary boundary

conditions for the reglon-a neutron flux solutions (rc €T < ri) and

j lead to reflector parameters that describe the effect of the entire

refiector combination,

Fast-group gara.metérs.. - The general one~-dimensional solution for
the fast-neutron flux in region a has the form

-¢f = Af[*l(“fr) + De *z(@frﬂ (B1)

wvhere Ap and Dy are constants to be determined by the applied boundary
conditions, and. the functions xyl(a.fr) and Vo(apr) are listed in the
accompanying table for three coordinate systems:

Coordinate | Vj(or) Vo (ar)
system

Rectangular | sinh (ar) | cosh (ar)
Cylindrical Ky (ar) | Iy (ar)

Spherical sinh (ar) | cosh (ar)
r r

At ry, the boundary of reglon a, the neutron current is

n | m
ry" e Ty Ae
R p ar

If(ri) = - E’l'(d-fri) + Dp ’#2'(%@[)] (B2)

Ty
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This current is related to the flux at the boundary r; by the
impedance Zf,b

Pe(rs) | Zo, ¢ [-Wl(“fri) + Dp Yp(aprs)

Z = = - (B3)
0 7 Ie(ry) r,® [fl'(“fri) + Dg Yo' (aprs)
Boundary condition (B3) permits evaluation of the constant D¢
Zo.p Vp{aprs) + v:™ Zo o ¥ ' (aers)
Dy = - 0,f Y1\%ery i 2f,0 V1 \%eFy (B4)

Zo,t Volagry) + 1™ Zp o V' (apr;)

The fast-group flux and current solutions obtained with D¢ permit

the definition of a fast-neutron iﬁpedance for the reflector combination
according to

- ¢f(rc)
Ie(r,)

Zf;c
The value of this impedance is

Zo,r | V1lagre) + De Vp(apr,)

m

(BS)
o ¥ (agre) + Dpvy (o)

Zf,c = -
T

Thermal-group parameters. - The thermal-group equation for region a

is

v Ben - apn’ Pen = - Ro,th Bth,r Ar [Wl(“fr) + Dp ¥p(apr)] (B6)

The general solution of equation (B6) is separated into two parts con-
sisting of a complementary function

Pth,h = Cn [Wl(“thr) + Bgp Wz(atﬁrﬂ (87)

and a part made up of the particular integral and an arbitrary multiple
of the complementary function

R g Af g
0,th ®Sth,f
¢th,p = Ath[‘l’l(athr) + Dyy Wz(athr)] - ;fz - a;hz [wl(a,fr) + D, qu(afr)]

(B8)
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where Cgip, O¢ps Agn, 8nd Dy are constants. This separation of the

solution leads to equations that simplify the definition of parameters
for the double reflector.

. The boundary conditions for the two parts of the thermal-group
solution are

¢th,h(rc) = Ben(re) (B9a)

m .
Lo (o) = - S B | _ fenn() (B9b)
th,n(Ty & = >
0,th . Ztn,p
1
Pih,p (re) =0 ‘ (B10a)
m
ry" By Bin,plri)
I r;) = - % 2P =IW,Ppi _p Ir(r;) (B1Ob
th,p(r1) oo & Zen s th,f,b Ie(ry) (B1OD)
Y.
1

Evaluation of boundary condition (B9b) gives

Zo tn | Vilognrs) + dppn Valogprs)
ri® ¥y (agpry) + Bgp Vo' (agyry)

Zth,b = -

from which the constant 8th is evaluated

_ ) |
Zo tn Vi(ognTi) + Ty Zgnp V' (agpry) (B11)

— ~ '
Zo,tn V2(onTy) + Ty By g Vo' (agTy)

Sh = -

The thermal-neutron diffusion impedance for the combined reflector is
defined in terms of the homogeneous part of the flux solution in
region a. The current of thermal neutrons into the reflector

Ien(re) = Tgn nlre) + Iy plre)
is written

Bep (r,)
Ty (re) = —%%;—9— + Iy p(re) (B12)
c .

b
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The homogeneous part of equation (B12) is then solved for Zth ¢ With
condition (B9a)

g _ Pin(Te) __Zo,tn Vplagr,) + By Vplayr,) (B13)
thoe Lin,n(te) v ¥y M (agr,) + Ben Vo' (agyT)

The undetermined constants in the particular flux solution (B8)
are fixed by the boundary conditions (B1lO). Equation (Bl0Oa) gives

Ay, Ry, th 8th,r Pe(re) (B14)

(ag® -, ?) [wl(athrc) + Dgn 14’2(°‘~1:111'c)]

This value of Ay, permits the evaluation of boundary condition (B1Ob),
giving

¥ (agrh) + Dyg, ¥ (aggery)
b folr,) | X %th’i th Y2 \%n'y

+n @.(r,)
¥y (ogpre) + Dip Valagyre) cre

V1 (agprs) + Dy Valagyry)

= 1 Pe(re) (B15)
Vy(agpre) + Doy Vology T
where
m .
p - i Bo,th Bth,f (B16a)
I |
Zo,tn (% =op,")
R g
. _ _Ro,tn zth,fz (5160)
z (ap-a,, <)
th,b'% ~%h
and
B, th 8th,r 8tn,r To,r . th,f,b ¥y (agry) + Dy ¥p(apr;)

) Zin,b(apt-apn?)  Zp ylapZ-agp?)  Zpy, | (agre) + Dp valapry)

(Bch)‘
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The constant Dy then is obtained directly from equation (B1S):

vy (agpry) - Vg (agpre) + bovg " (apyry)

Diy, = (B17)
n ¥pagr,) - T ¥plagry) - By, (ayr,)
This permits a complete evaluation of Ty p(rc):
Ty o(r) = - re [i (wte) + Dy Vo' (oxpTe )]+ ROfgthf Bo(e)
Bspte m Lﬂfl(%hr + Dgp ¥z (agyre) (u, e
(B18)

In the form employed for the single reflector region this is equivalent
to

. P N
Ith’p(rc) = - _ZEZ_:;LC ¢f(rc) (Blg)
' f,c

The three constants Zth e Ly L2 and Pth £,c appearing in equa-

tions (B5), (B13), -and (B19), respectively, then serve to represent
all properties of the double reflector for two-group calculations.’
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APPENDIX C

SYMBOLS

The following symbols are used in this report:

A,C,D,5
2

Pih,r

Ptn

Ro

undetermined constants

buckling constant for directions normal to r (applies to
solutions involving rectangular or cylindrical geometry)

neutron conductance defined by equation (2b)
neutron transconductance defined by equation (7c)
neﬁtron diffusion current at point r

heutron multiplication constant

0,1, 2

reflection parameter defined by equation (16)

neutron resonance escape probability

neutron diffusion resistance defined by equation (2a)

distance variable

position of reflector outer boundary

position of core-reflector interface

position of boundary between two reflector regions
ratio of flux components @th/@f

reflector impedance

characteristic impedance of reflector material

attenuation constant of reflector material'

buckling constant for core (r-direction)
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g Ko(urb)/lo(drb)

® general function

Atr . neutron transport mean free path

za macroscopic neutron absorption cross section (includes slowing
in fast group)

¢ general function

#(r) neutron flux at point r

g general function

w reactor segment size factor
2

A L

Subscripts:

b parameter for region b

c ' parameter for combined reflecfor

f fast neutron group

h indicates solution of homogeneous equation

P indicqtes particular solution ‘

th thermal ﬁeutron group
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