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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

LOADS DUE TO FLAPS AND SPOILERS ON SWEPTBACK WINGS 

AT SUBSONIC AND TRANSONIC SPEEDS 

By Alexander D. Hammond and F. E. West, Jr. 

SUMMARY 

A summary is presented of the available data on the loads associated 
with deflection of controls on thin sweptback wings at high subsonic and 
transonic speeds. The results show that the centers of pressure of the 
additional loads resulting from control deflection are in general farther 
forward for spoiler-type controls than for flap-type controls. The cen-
ters of additional load resulting from deflection of flap-type controls 
may be estimated at subsonic speeds in the low angle-of-attack range by 
existing theory. The variation of the centers of additional loads 
resulting from control deflections with angle of attack and Mach numbers 
through the transonic speed range may be obtained either from pressure 
distribution data or force-data results from semispan investigations of 
the controls. Spoiler loads may be estimated if the wing pressures 
immediately ahead of and behind the spoiler are known. 

INTRODUCTION 

One of the important considerations in the structural design of 
wings with controls for high-speed aircraft is the loads resulting from 
control deflection: In the past, most of the available data that show 
the effect of flaps (refs. 1 to 7) and spoilers (refs. 6 and 7) on wing 
loads at high subsonic and transonic speeds have been obtained on moder-
ately thick or very thick wings. This paper presents results of some of 
the more recent data that show the loads which result from deflection of 
flaps and spoilers and their point of application on thin sweptback wings 
at high subsonic and transonic speeds. Also shown are the loads on a 
spoiler on a typical sweptback-wing configuration. 
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COEFFICIENTS AND SYMBOLS 

Insc	 incremental section pitching-moment coefficient resulting from 
C/If	 control deflection, measured about the local quarter-chord 

line, Incremental pitching moment 

incremental section normal-force coefficient resulting from 
control deflection, Incremental normal force 

qc 

C
N	 spoiler normal-force coefficient., Spoiler normal force 

5

p - p0 P	 pressure coefficient, 

pressure coefficient on wing upper surface 

P	 pressure coefficient on wing lower surface 

PR	 resultant pressure coefficient, P - 

incremental resultant pressure coefficient resulting from 
control deflection 

A	 aspect ratio, b2/S 

b	 wing span, ft 

bf	 control span, ft 

c	 local wing chord measured in planes parallel to wing plane of 
symmetry, ft 

C	 root chord of wing, ft 

Ct	 tip chord of wing, ft 

-
	
fb/2 

c	 wing mean aerodynthnic chord, 	 c2dy, ft 
SO
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h	 spoiler height measured from wing surface, ft 

M	 Mach number 

p	 static pressure, lb/sq ft 

Po	 free-stream static pressure, lb/sq ft 

q	 free-stream dynamic pressure, IpV2 , lb/sq ft 

S	 wing area, sq ft 

S	 spoiler area, sq ft 

V	 free-stream air velocity, ft/sec 

x	 chordwise distance from wing leading edge, ft 

&cp	 chordwise distance of the center of additional load resulting 
from control deflection from wing leading edge, ft 

y	 spanwise distance from plane of symmetry, ft 

'cp	 spanwise distance of the center of additional load resulting 
from control deflection from plane of symmetry, ft 

spanwise distance of the center of pressure of the spoiler 
PS	 load from the plane of symmetry, ft 

z	 vertical distance from wing surface 

a	 angle of attack of wing, deg 

control deflection 

A	 sweep angle, deg 

taper ratio; ratio of tip chord to root chord, ct/cr 

P	 mass density of air, slugs/cu ft 

DISCUSSION 

Figure 1 shows some chordwise pressure-distribution measurements 
obtained in the Langley high-speed 7- by 10-foot tunnel at the midsemispan 
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station of a sernispan model (refs. 8 and 9). The wing had 350 sweepback 
of the quarter-chord line, an aspect ratio of 4.0, a taper ratio of 0.6, 
and an NACA 65A006 airfoil section parallel to the plane of symmetry. 
The pressure distributions show how the resultant pressure 	 caused 
by the projection of a plug-type spoiler (that is, a spoiler with a slot 
through the wing behind the spoiler when the spoiler is deflected) and 
the deflection of a 20-percent-chord flap is distributed across the wing 
chord. The results are for a spoiler projection of 0.04c and a flap 
deflection 5 of 150 . These distributions are shown for angles of 
attack a of 00 and 160 at Mach numbers of 0.60 and 0 .90 . It is evident 
from the pressure distributions at a Mach number of 0.60 and at 00 angle 
of attack that the center of pressure is farther forward for the spoiler 
than for the flap, since the loading on the flap is large, whereas the 
loading on the wing behind the spoiler is small. As the Mach number is 
increased from 0.60 to 0.90, the center of pressure of the flap moves 
rearward as does the center of pressure for the spoiler. At the large 
angles of attack at either Mach number, the gap behind this deflected 
spoiler is not sufficient to produce much control effectiveness and there 
is little change in center-of-pressure location. The center of pressure 
moves rearward, however, with increase in angle of attack for either 
positive or negative flap deflection at both Mach numbers. 

The longitudinal center of pressure of the additional load resulting 
from spoiler and flap deflection has also been obtained, for the 
symmetrical-loading case, from force-data results on semispan wings 
equipped with these controls. Figure 2 shows the span and spanwise loca-
tions of flap and spoiler configurations that were investigated at tran-
sonic speeds on a small-scale semispan model in the Langley high-speed 
7- by 10-foot tunnel. The model had the quarter chord swept back !i. 5°, an 
aspect ratio of 4.0, a taper ratio of 0.6, and an NACA 65A006 airfoil 
section parallel to the plane of symmetry. In the upper half of the fig-
ure are shown several span outboard flaps (flaps starting at the wing 
tip and extending inboard) and one inboard flap (a flap starting at the 
inboard end of the wing and extending outboard). The flap configurations 
were tested utilizing the transonic-bump method (ref. 10). In the lower 
half of the figure are shown several span inboard spoilers that were 
tested on a small reflection plane (results are as yet unpublished). 

The loads resulting from symmetrical control deflection may be 
obtained directly from semispan investigations. The location of the 
longitudinal center of pressure measured from the quarter chord of the 
mean aerodynamic chord 	 and expressed as a fraction of	 is the 
ratio of the incremental pitching-moment coefficient to the incremental 
lift coefficient. The location of the lateral center of pressure meas-
ured from the plane of symmetry and expressed as a fraction of the wing 
semispan is the ratio of the incremental root bending-moment coefficient 
to the incremental lift coefficient. 
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Figure 3 shows a typical example at a Mach number of 0.60 of the 
results that can be obtained from semispan tests and shows the loci of 
the centers of additional load resulting from deflection of the spoilers 
and flaps at near 00 angle of attack. The symbols shown below the con-
figurations of figure 2 were plotted on the 450 sweptback-wing plan form 
at the location of the centers of additional load for the corresponding 
configurations. These locations of the centers of additional load hold 
for deflections of the 30-percent-chord flaps through a range of ±200. 
The spbilers located along the 70-percent-chord line were projected 
10 percent of the local chord. Although appreciable differences exist 
in the lateral positions of the centers of additional load resulting 
from deflection of the various span spoilers and flaps, there Is very 
little effect of control span on the chordwise position of the centers 
of additional load. The centers of additional load resulting from projec-
tion of the various span spoilers fail approximately along the 34-percent-
chord line and are farther forward than the centers of additional load 
resulting from deflection of the various span flaps which fail approxi-
mately along the 48-percent-chord line. 

Figure 4 shows the variation at low angles of attack of these 
LXCp 

common chord lines c	
with Mach number for a series of model config- 

urations which differ only in wing sweep from the flap configurations 
shown in figure 2. Data for the flap configurations having sweep angles 
of 00, 350, and 60° were obtained from the results published in refer-
ences II, 12, and 13, respectively. The results shown for the 11.50 swept 
wing were obtained from the same investigations as the data presented 
in figure 3 (ref. 10 and unpublished data). The results show that, as 
the Mach number is increased, the centers of additional load resulting 
from deflection of the flaps move rearward and, at the highest Mach number, 
lie along the 80- to 90-percent-chord lines. There seems to be only a 
small effect of wing sweep on this movement, except that the rearward 
movement is delayed to a higher Mach number for the swept wings. The 
curve for inboard spoilers on the 4 0 swept wing shows that there is 
considerably less movement of the longitudinal center of additional load 
with increase in Mach number than there is for the flaps; in fact, there 
is a slight forward movement at Mach numbers above 0.90. 

Figure 5 shows the variation of the lateral center of additional 

load

	

	 cp (which is measured from the plane of symmetry and expressed 
b/2 

as a fraction of the wing semispan) with control span for the outboard 
flaps (that is, flaps starting at the wing tip and extending inboard) on 
the wings referred to in the discussion of figure 4. The results are 
shown for Mach numbers of 0.60 and 1.10. At a Mach number of 0.60 the 
lateral center of additional load resulting from flap deflection moves 
inboard with increase in flap span. This variation is greater for the 
swept wings than for the unswept wing. Also, the center of additional 

CONFIDENTIAL



6	 CONFIDENTIAL	 NACA RN L53D29a 

load resulting from flap deflection is farther outboard for the small 
span controls on the swept wings than on the unswept wing; however, as 
the Mach number is increased to 1.10, the center of additional load 
resulting from flap deflection moves inboard with increase in flap span 
at about the same rate for all the wings. There is, in general, a 

nearly linear variation of the lateral center of additional load ____ 

resulting from flap deflection with increase in Mach number between 0.60 
and 1.10 for all flap configurations investigated. This variation is 
illustrated in figure 6 for 43-percent-seimispan flap-type controls on 
the 45 sweptback wing; however, the shift of the lateral center of 
additional load with increase in Mach numb.er may not be as shown for 
other span controls on other swept wings, although the variation is 
nearly linear for the other configurations. The curve for the inboard 
43-per6ent-semi-Spafl spoilers also shows a nearly linear variation of 
the lateral center of additional load with increase in Mach number and, 
in general, shows the same trend as the inboard flap-type controls on 
the 450 swept wing. 

In figure 7 is shown the theoretical and experimental variation of 

the lateral center of additional load 14cp resulting from control 
b/2 

deflection with control span at a Mach number of 0.60 on the 450 swept-
wing configurations of figure 2. The theoretical variation of the lateral 
center of additional load is shown for symmetrically deflected outboard 
and inboard flaps. This variation was obtained from theoretical control 
loadings by an adaptation of the method outlined in reference i ii- by 
assuming an increase in angle of attack of 1 radian over the flapped por-
tion of the wing seinispan. The loading and lateral center of pressure 
may be obtained by integrating the loading curve over the semispan. The 
symbols represent the experimental points for the control configurations 
of figure 2. There is good agreement between the experimental and theo-
retical values for the flap-type controls. Similar agreement can be 
obtained for flap-type controls on wings of other sweeps and, hence, in 
the low angle-of-attack range, the variation of the lateral center of 
load resulting from flap deflection with control span can be estimated 
for Mach numbers up to at least 0.60. 

As the span of the inboard spoilers is increased, the lateral center 
of load moves outboard and, in general, is slightly outboard of the theo-
retical curve for the flap for most spoiler spans. This fact indicates 
that, although the magnitude of the lateral center of additional load 
may not be predicted from the flap theory, the trend of the variation 
of the center of additional load with span for inboard spoilers is 
similar to the trend shown for inboard flaps. 

Thus far, the centers of additional load at small angles of attack 
have been discussed. Figure 8 shows the variation of the longitudinal 
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LX 
cp 

____	 AY 
and lateral	 locations of the centers of additional load 

c	 b/2 
resulting from spoiler projection on a Is.° swept wing with angle of attack 
for Mach numbers of 0.60 and 0.98. The longitudinal positions of the cen- 

&cp 
ter of additional load 

c	 were measured from the wing leading edge and 

are expressed as a fraction of the local wing chord c at the lateral 

positions of the center of additional load 	
c r
r • The values of 

b/2	 b/2 
were measured from the fuselage center line and expressed as fractions 
of the wing seinispan b/2. These data were recently obtained from inte-
grated pressure distributions at seven spanwise stations on a sting-
supported model in the Langley 16-foot transonic tunnel. 

The 450 swept wing is similar to that shown in figure 2; however, 
the Reynolds number based on the wing mean aerodynamic chord was about 

6 x 106 at a Mach number of 1.0 for this model and only about 0.75 x 106 
at this Mach number for the model of figure 2. The spoiler was of the 
plug type and was projected to a height of 4 percent of the local wing 
chord. It was located along the 70-percent-chord line and extended from 
the wing-fuselage junction (0.14b/2) to the 87-percent-semispan station.

Inx 
The variation of the longitudinal centers of additional load c 

shows a rather irregular behavior with angle of attack at Mach numbers 
of 0.60 and 0.98. The lateral centers of additional load show an inboard 
movement above angles of attack of approximately 10 0 for both Mach num-
bers; this inboard movement indicates that the largest changes in the 
bending moments will occur in the low angle-of-attack range. The irregu-
lar trends of the longitudinal centers of additional load and the inboard 
movement of the lateral centers of additional load are caused by flow 
separation over the outboard wing sections at the higher angles of attack. 

The weighted spanwisé loading parameters at a Mach number of 0.98 
associated with the centers of additional load in figure 8 are shown in 
figure 9. The variations of the weighted section normal force cric/ 

and the weighted section pitching moment 6cmc,( c/) 2 across the 

semispan are shown for several angles of attack. The vertical dashed 
line shown in figure 9 represents the spanwise location of the fuselage 
maximum diameter. Irregular trends of the section pitching-moment 
parameter with angle of attack are shown here with increase in angle of 
attack. Also shown is a loss in effectiveness of the control on the 
outboard sections of the wing at 160 angle of attack which results from 
flow separation over the outboard wing sections. This loss of effective-
ness causes the inboard shift In the lateral center of additional load 
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and results in small incremental section pitching moments over the out-
board wing sections. The results shown are for one spoiler configuration 
on a 150 swept wing and may not be typical of the variation of the load 
distributions on other plan forms. For example, had leading-edge-devices 
designed to improve the flow over the wing been employed in conjunction 
with the spoiler on this wing, or had the spoiler configuration been 
improved so as to increase the effectiveness of the control over the 
separated-flow region of the wing, the trends of the variation of the 
centers of additional load and of the span loadings with angle of attack 
would not be expected to be as shown. The load distributions and centers 
of additional lOad vary considerably; this variation depends on both the 
spoiler effectiveness and on the flow-separation phenomenon associated 
with the wing plan form. 

Loadings for the plug-type spoiler, which is described in the dis-
cussion of figures 8 and 9, are presented in figure 10. This figure 
shows how the pressure coefficients P are distributed over the front 
and rear faces of the plug-type spoiler (shown by the dashed curve) at 
three spanwise stations for a Mach number of 0.98 and angles of attack 
of 00 and 160 . The solid curve shows the distributions over the front 
and rear faces of the same spoiler without a gap through the wing. These 
pressure distributions were measured over the front and rear faces of the 
spoiler by using pressure orifices distributed from the wing surface to 
the top of the spoiler at several spanwise stations. The pressure dis-
tributions shown are typical of those obtained at other angles of attack 
and Mach numbers and show that both with and without a gap through the 
wing behind the spoiler the loading is generally rectangular and the 
pressure coefficients are generally more positive over the front face 
of the spoiler than the rear face. The results also show that the 
loading Is generally less for the plug-type spoiler than for the spoiler 
without a gap. Figure 11 shows for tile spoiler without a gap how the 
resultant spoiler normal-force coefficient CN5 varies with angle of 

attack at Mach numbers of 0.60. and 0.98 and how the spoiler lateral cen-
Ycp 

ter of pressure
b/2

 varies with angle of attack at a Mach number of 

0.98. The solid curves of-figure 11 were obtained by integrating pres-
sure distributions similar to those shown in figure 10. Also shown as 
a dashed line connecting the circle symbols are the estimated values of 
the spoiler normal force and lateral center of pressure obtained by 
assuming the spoiler sectional loading is rectangular and equal to the 
difference between the wing pressures measured immediately ahead of and 
behind the spoiler. These curves show fair agreement with the measured 
values and show that the spoiler loads may be estimated if the wing 
pressures ahead of and behind the spoiler are known. 
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The results show that there is a decrease in spoiler normal-force 
coefficient and an inboard movement of the lateral center of pressure 
with increase in angle of attack as is indicated by the pressure dis-
tributions of figure 10 for the outboard stations at 16 0 angle of attack. 

CONCLUSIONS 

The results show that the centers of pressure of the additional 
loads resulting from control deflection are, in general, farther forward 
for spoiler-type controls than for flap-type controls. The centers of 
additional load resulting from deflection of flap-type controls may be 
estimated at subsonic speeds in the low angle-of-attack range by existing 
theory. The variation of the centers of additional loads resulting from 
control deflections with angle of attack and Mach number through the 
transonic speed range may be obtained either from pressure distributions 
or force-data results from semispan investigations of the controls. 
Spoiler loads may be estimated if the wing pressures immediately ahead 
of and behind the spoiler controls are known. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va.
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CHORDWISE PRESSURE DISTRIBUTION 
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Figure 2. 

CONFIDENTIAL



NACA E4 L73D29a	 CONFIDENTIAL	 13 

TYPICAL LOCI OF CENTERS OF ADDITIONAL LOAD 
DUE TO SPOILERS AND FLAPS 
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A = 0.6 NACA 654006	 48c 
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.7c 

LAP / 

SPOILER // 

, /

Figure 3. 

CHOROWISE CENTERS OF ADDITIONAL LOAD DUE TO 
SPOILERS AND FLAPS 
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Figure l. 
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LATERAL CENTERS OF ADDITIONAL LOAD
DUE TO OUTBOARD FLAPS 
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Figure 5. 

LATERAL CENTER OF ADDITIONAL LOAD
EFFECT OF MACH NUMBER 
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Figure 6. 
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LATERAL CENTER OF ADDITIONAL LOAD 
EFFECT OF CONTROL SPAN 
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Figure 7. 

CENTER OF ADDITIONAL LOAD
DUE TO SPOILER 
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Figure 8. 
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SPANWISE LOAD DISTRIBUTION 
DUE TO SPOILER 
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Figure 9. 
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SPOILER LOADS 

Figure 11. 
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