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THEORETICAL CALCULATIONS OF THE STABILITY DERIVATIVES

AT SUPERSONIC SPEEDS FOR A HIGH-SPEED

AIRPLANE CONFIGURATION

By Kenneth Margolis and Percy J. Bobbitt

SUMMARY

Theoretical calculations of the stability derivatives at supersonic

speeds for a high-speed airplane configuration are presented. The range

of Mach numbers considered includes those cases for which the wing and

tail surfaces have subsonic leading edges, supersonic leading edges, and

combinations of the two. The methods of analysis are discussed; these

represent detailed consideration of the important effects and contribu-

tions of the various airplane components utilizing available theories

and theoretically justifiable and reasonable approximations.

Results of the investigation, which are applicable to motions

involving small angles of attack and sideslip and low rates of rolling,

pitching, and yawing, are presented in the form of graphs illustrating

the variation of the stability derivatives with Mach number.

INTRODUCTION

The prediction of the stability of complete airplane and missile

configurations requires a knowledge of the aerodynamic forces and moments

acting on all component surfaces of the airframe and the rates of change

of these forces and moments with respect to the various attitudes, veloc-

ities, and accelerations (i.e., stability derivatives). Design of air-

planes and missiles for automatic stabilization has accentuated the need

for this information while the design is still in its initial stages.

Thus the problem of estimating by theoretical means the forces, moments,

and resulting stability derivatives of complete airplane configurations

at supersonic speeds is one of considerable interest and importance.

This is particularly true at the present time in view of the difficulties

encountered in determining these quantities experimentally for certain

motions. While there is considerable information available for isolated

CONFIDENTIAL



2 CONFIDENTIAL NACARML53GI7

aircraft components there is relatively little knowledge, either of a
theoretical or experimental nature_ concerning complete configurations.
As a result, it is extremely difficult to estimate with accuracy the
performance and stability characteristics of present-day missiles and
airplanes.

During the past few years (and at present), considerable research
effort has been directed towards the theoretical determination of wing-
body and body-tail interference effects and the effects of induced flow
on the loading characteristics of the component surfaces of complete con-
figurations. Accurate estimates of these mutual and induced interference
effects as well as additional studies related to isolated components and
components in combination are required before accurate theoretical esti-
mates of stability derivatives for arbitrary complete configurations can
be accomplished.

The present paper results from an investigation which concerned
primarily the problems involved in adapting, modifying, and extending
the available theories as _equired in order to estimate reliably the
stability derivatives at supersonic speeds for arbitrary complete air-
plane configurations. For purposes of application, a high-speed
interceptor-type aircraft was chosen. It is primarily this phase of the
investigation, that is, the estimation of stability derivatives for the
specific configuration, which is reported herein. The methods used are
described; particularly detailed emphasis is given the case of steady
rolling. Results of the analysis are presented in the form of graphs
illustrating the variation of the stability derivatives with Mach number.

SYMBOLS

Cartesian coordinates

perturbation velocities along
tively; negative values for

p,q,r angular velocities about x, y, and z axes,
respectively

angle of attack

&

V

y and z axes, respec-
w indicate downwash

rate of change of angle of attack wit I- respect to time

angle of sideslip

flight velocity
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B = _(Mach number)2 - i

P

ACp

¢

f

S

A

b

bvt

Art

C

K

BAvt

BAvt - 2BC

a

xl,Y I

X = x - xI

Y = Y - Yl

i

X i = x - x i

Yi = Y - Yi

density of air

coefficient of pressure difference between upper and

lower surfaces, positive in the sense of lift

velocity potential evaluated on upper surface

_L T. E. /_.p dxcirculation, 2V- .E.

wing area including portion masked by body

aspect ratio of wing

wing span

vertical-tail span

mean _erodynamic chord of wing

distance between center of gravity and center of pres-

sure of sideslipping vertical tail

aspect ratio of vertical tail

leading-edge slope of vertical tail

distance from roll axis to wing-body juncture

Cartesian coordinates used in analysis for rolling motion

variable index, used in summations and as subscripts
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Xi,Yi,z

m

k,kl_k 2

hl,h 2

L

Y

L'

N

M

CL

Xi, Yi, and z, respectively, made nondimensional with

respect to wing semispan

slope of lifting line (absolute value)

constants

Yl limits of integration

lift

side force

rolling moment

yawing moment

pitching moment

lift coefficient_
L

 v2s

side-force coefficient,
Y

V2S

CZ rolling-moment coefficient_
n !

C n yawing-moment coefficient _ N
1 2

Sb

C m pitching-moment coefficient,
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c_

\ 2v/&_>o

Cmq

\ 2Wq--->o

Cyp

Cnp

C Zp

:
\ 2V_-_o

\ 2v/p___>o

\ 2v/p_o

_--_0

(_Cn]
Cnl 3 = \7/13___>0

cz_ \;_/_--_o

CYr = _t_rb /

\ 2v/r__O

\ 2V r --_0
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C_r
/Sct \_\

\ 2V/r 90

Subscripts :

t tail contribution

t,o tail contribution assuming zero end plate

All angles are measured in radians unless indicated otherwise.

SCOPE

The geometry of the configuration under study is shown in figure I

and the detailed characteristics of the component surfaces are given in

table I. Considered in the analysis are the following motions: constant

angle of attack, steady rolling, steady pitching, constant vertical accel-

eration, constant sideslip, and steady yawing. The following stability

Cm&,derivatives are obtained: CL_ , Cm_ , Cyp, Cnp, CZp, Cmq, Cy_3,

Cn_ , CZ_, CYr , Cnr , and CZr.

All airframe components are considered rigid; wing and tail surfaces

are assumed to have zero thickness. The wing, horizontal tail, and body

are at zero geometric angle of attack for all motions other than angle of

attack. The analysis is carried out within the framework of the linearized

theory, the results being valid for small angles of attack and sideslip and

for low rates of rolling, pitching, and yawing. In addition, modifica-

tions and assumptions are introduced into the analysis as needed in order

to cope with the problems encountered in estimating the derivatives for

this particular configuration. Although the final results are by no

means based completely on theoretically rigorous procedures, they do

represent detailed consideration of all important effects and contribu-

tions utilizing theoretically justifiable concepts.

Calculations are carried out for four Mach numbers: _2_ 2, 2.5, and 3.

It may be noted at this point that the range of Mach numbers considered

includes the cases where the wing and tail surfaces have subsonic leading

edges, supersonic leading edges, and combinations of the two.

Results for _he stability derivatives arepresented relative to a

body system of axes maintaining, however, the usual stability convention

for denoting positive forces and moments. (See fig. 2.) Radian measure

is used throughout for the derivatives.
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STABILITY DERIVATIVESDUETOANGLEOFATTACK

General Considerations

The body, wing, and horizontal tail are all assumed to be at a small
angle of attack. The lift on the isolated body is concentrated mainly
over the forward portion; the exposed panels of both the wing and hori-
zontal tail in addition to carrying their own lift are affected by the
presence of the body and in turn induce some lift on the body. There is
also, of course, the downwasheffect from the wing which decreases the
lift effectiveness of the horizontal tail. Fortunately, for the angle-
of-attack case there is, relatively speaking, considerable published
information to be drawn upon for purposes of estimating the various con-
tributions. The isolated wing and tail surfaces, both of which are modi-
fied delta plan forms, are treated in references i, 2, and 3; wing-body
and body-wing interference effects may be estimated most conveniently and
apparently quite satisfactorily for circular bodies of revolution by use
of references 4, 5, and 6. The effect of the isolated body is difficult
to determine accurately because of the cross-sectional deviations of the
airplane fuselage from the theoretically treated bodies of revolution.
However, slender-body theory for bodies of revolution in conjunction with
someresults obtained in references 7 and 8 for other types of bodies
enable a qualitative evaluation of the effects of the isolated body and
its influence on the mutual interference effects between body and wing or
tail surfaces. The induced flow from the wing has been treated in some
detail by various investigators (see, for example, refs. 9 to 12) and
hence the net contribution of the horizontal tail maybe readily calcu-
lated. It appears, therefore, that by judicious use of the available
information theoretically justifiable and reliable estimates of the
derivatives CI_ and Cm_ maybe anticipated.

Detailed Considerations and Results

The lift-curve slope CL_ and the pitching momentdue to angle of
attack (i.e., stability derivative Cm_.)for the isolated wing and iso-

lated horizontal tail are directly obtainable from reference I for the
subsonic leading-edge cases and from references 2 and 3 for the supersonic
leading-edge cases. Although a number of methods were investigated in order
to estimate the interference effects between wing and fuselage (and between
horizontal tail and fuselage)_ the results obtained agreed in general with
those predicted by use of references 4 to 6, hence the details of the
calculations will not be presented. The lift on the isolated fuselage
was calculated to be slightly greater than that predicted by slender-
body theory. Inasmuch as slender-body theory fails to predict any lift
on the cylindrical portion of a cone-cylinder fuselage combination, it
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is felt that an estimate based in part on the results given in refer-
ence 7 is more realistic. The downwashin the vicinity of the horizon-
tal tail was calculated using the procedures indicated in references 9
and i0. The assumption (which for this particular configuration is quite
reasonable) is made that the vortex sheet remains flat in the vicinity of
the tail. Values of the downwashwere obtained at several stations behind
the apex of the horizontal tail and then averaged over the horizontal tail
surface to form an "effective" downwashvelocity. Figure 3 presents the
variation of the downwashfactor w/_V with Mach number. The corresponding
induced angle of attack at the tail was then added to the geometric angle
of attack of the tail and the resulting lift (neglecting the presence of
the body) was calculated using references I and 2. Interference effects
between horizontal tail and fuselage were calculated in a manner similar
to that used for the wing-fuselage interference effects. The net result
of adding the lift contributions of all components taking into account
the calculated interference and induced flow effects, that is, the estimated
lift-curve slope of the complete airplane configuration, is presented in
figure 4 together with somebreakdown results. The ordinate is the lift-
curve slope CL_ based on a reference area S that includes both the
area of the exposed wing panels and the masked (by the fuselage) portion
of the wing extended to the fuselage center line. As mentioned previ-
ously (see section entitled "SCOPE"), actual calculations were carried
out for four values of the abscissa Mach number (_, 2, 2.5, and 3) and
the final curve faired accordingly.

Calculation of the pitching momentdue to angle of attack is a bit
more difficult inasmuch as detailed information for the incremental center-
of-pressure shifts or incremental pitching momentsdue to the various com-
ponent effects discussed previously Cfor CL__ is lacking. Reference 5
considers the interference effects between wing and fuselage (and between
horizontal tail and fuselage). Calculations of the other effects were
madeby first assuming center-of-pressure locations (based on approxi-
mate lift distributions due to each effect or component) and then evalu-
ating the significance of varying the assumedcenter-of-pressure locations
through a reasonable range. Inasmuch as the pitching moment is signifi-
cantly different from zero, this method of "averaging" the results should
yield satisfactory estimates. The resulting pitching-moment derivative
for the complete configuration expressed in derivative form is presented
in figure 5; somebreakdown results are also shown. The stability deriv-
ative Cm_ is based on the reference area S and the mean aerodynamic
chord _. Momentsare taken about a center-of-gravity location assumed
to be at 32 percent of the mean aerodynamic chord.
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STABTLITYDERIVATIVESDUETO PITCHING

General Considerations

Aside from calculations for isolated wings (e.g., refs. i, 3, 13,
and 14) there is relatively little theoretical information available con-
cerning the pitching-moment derivatives Cmq and Cm_. Someresults
for various types of isolated bodies of revolution are given in refer-
ences 15 and 16. Reference 17 considers time-dependent downwashat the
tail, which requires knowledge of the downwashdue to steady pitching as
well as that due to constant angle of attack. Calculations for angle-of-
attack downwashare available from a number of sources (see section
regarding angle of attack); data on steady-pitching downwashare lacking
although rather simplified approximations have been used to advantage in
the past. More detailed calculations of the downwashdue to steady
pitching and the downwashdue to linear angle-of-attack variation with
time (i.e., constant _) are in progress. Although subject to restric-
tions on the permissible configurations, reference 18 is quite useful in
determining wing-body effects. Thus, the estimation of the derivatives Cmq

and _n_ for an arbitrary complete configuration is dependent on essen-
tially the material and references given above. Although the present
wealth of published or near-published theoretical studies for pitching
motion is in no way comparable to that for angle of attack, it has been
shown in an unpublished analysis to be adequate for the prediction of the
level or magnitude of Cmq+ Cm_ for a number of missile configurations.
In view of this evidence there is reason to believe that the theoretical
estimates of the pitching derivatives for the present configuration are
fairly realistic in spite of the fact that its geometric variations from
theoretically treated cases are significant in somerespects.

Detailed Considerations and Results

The derivatives Cmq and Cm_ for the isolated wing and horizontal
tail are directly obtainable from reference i for the subsonic-leading-
edge cases. For the case of a supersonic leading edge Cmq is given in

reference 3 and Cm_ in an unpublished analysis. (Actually the wing and
horizontal tail are so near to being delta plan forms that the formula

given in reference 14 for Cm_ may be used without significant error.)
In calculating the wing-body effects by use of reference 18, the wing
trailing edge was modified slightly to form a delta wing with the same
area as the actual wing. The tail contributions to the derivatives Cmq
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and _ were calculated from simplified approximations based in part

on reference 17. The tail contribution to _nq was obtained by adding
to the isolated-tail value a correction for the wing downwashbased on
equation (21) of reference 17. Inasmuch as the horizontal tail of the
airplane configuration is only a short distance behind the wing, the
degree of accuracy of this approximation required consideration. For

a subsonic-edge delta wing at Mach number _-2, values of Wq based on
more exact procedures were compared with those used herein. The resulting
correction to Cmq based on the more exact approach did not result in a

significant change. The tail contribution to Cm_ was calculated from
an unpublished analysis which was based on a simplified approximation to
the method presented in reference 17. The downwashdue to @ also
checked fairly well at M = _ with more exact calculations. Summation
of the results obtained for the various isolated components, components
in combination_ and induced-flow effects yielded the curve shown in fig-
ure 6 for the damping in pitch _q+ Cm& of the complete configuration.
A partial breakdown of the results is also indicated. It is of interest
to point out that the contribution from the & term alone is unstable
for this particular configuration but fortunately is small in comparison
with the damping effect due to the steady pitching component.

STABILITYDERIVATIVESDUETO STEADYROLLING

General Considerations

In order to estimate with a reasonable degree of accuracy the sta-
bility derivatives associated with steady rolling motion _C_o, Cyp,

and Cnp) for a complete configuration, a prime requirement is to have
J

reliable knowledge of induced-flow effects. Unfortunately, there is a

lack of information with regard to this aspect. Results for isolated

wings (and horizontal tails) of various plan forms are available in a

number of papers (e.g., refs. 19 to 23); wing-body and tail-body inter-

ference effects for restricted types of configurations are treated in

references 24 to 26. Various types of tail configurations are considered

in references 27 to 29. An attempt to take induced-flow phenomena into

account in estimating the derivative CZp for a missile configuration

was made in reference 30, but the results were not too general in nature

nor was the accuracy of the procedure involved satisfactory. Thus,

although for the previous motions treated (angle of attack and pitching)

experience had shown the methods employed therein in estimating the
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derivatives to be reliable, such is not the situation for the case of
rolling. Consequently, detailed attention will be given to the deriva-
tion of expressions relating to induced-flow calculations as well as to
the estimation of the contributions due to the pertinent airplane com-
ponents and components in combination.

Detailed Considerations and Results

Wing loading.- In order to obtain'reliable force and moment deriva-

tives for a wing-body-tail configuration in roll, the effect of the flow

field on the tail must be considered. Since the flow field is determined

by the span loading_ it is desirous that it (the span loading) be calcu-

lated as accurately as possible. Large changes in the spanwise loading

near the root of a wing which might be occasioned by the presence of a

body or end plate may cause a noticeable difference in the flow field,

yet affect the d_11ping of the wing itself only slightly. For this

reason it was considered necessary to modify the isolated-wing loading

to take into account the presence of the body.

In addition to this "end-plate" effect_ the presence of the body

causes a change in the position of the leading Mach lines on the wing

(as compared to the isolated-wing case). Whereas for the isolated-wing

situation the leading Mach lines emanate from the wing apex, the leading

Mach lines for the wing-body combination originate at the intersections

of the wing leading edge with the body.

In order to approximate the effect on the wing loading of super-

posing a body (and the corresponding change in Mach line position), a

rather straight-forward procedure has been followed. First, the span

loading in roll over a wing composed of the two wing panels exterior to

the body and joined together at their roots was determined by use of

references 31 and 32. Then the two panels were separated and placed on

the body. Since the previously determined span loading for the rolling

wing was predicated on the wing rolling about its axis of s_mmetry, that

is, the half-wings rolling about their root chords, an additional loading

was added to compensate for the greater distance of each point on the

wing from the roll axis. (The angle-of-attack distribution which gives

rise to this additional loading is constant and equal to the quantity pa/V.)

This procedure did not predict the loading on the body. In order to com-

plete this portion of the loading curve_ a straight line was drawn between

the finite values at the wing-body juncture and zero at the roll axis.

The resultant span loadings for the wing-body configuration at Mach num-

bers of _, 2, 2.5_ and 3 are shown in figure 7. For purposes of com-

parison_ figure 8 presents the loading at Mach number _ obtained by the

present method and the corresponding loading for a fictitious isolated

wing formed by extending the leading and trailing edges of the exposed

wing panels to the center line. It will be noted that the loading at the
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root of the wing predicted by the present method is slightly higher than
that obtained for the isolated wing. As the distance from the root along
the span increases, the difference between these two loadings decreases.
Further calculations and comparisons at the higher Mach numbers indicated
insignificant differences between the modified loading (present method)
and isolated wing loading at all spanwise stations.

As expected, it was found that the improved or modified loadings
yielded wing-body force and momentderivatives that differed only slightly
from those obtained by use of isolated-wing loadings. However, it appeared
that the modified loading curves would produce a noticeable change in the
flow-field calculations, especially at the lower Mach numbers, and hence
they have been utilized in all such calculations.

Flow-field theory.- There are many papers which present general for-

mulas for the potential in space due to a thin lifting surface. In most

cases these formulas are extremely difficult to evaluate. It becomes

necessary, therefore, to utilize some approximation which may be more

easily evaluated and which lends itself to numerical calculations.

Reference 9 indicates that a lifting line can be used as a very good

approximation for most downwash problems. A similar statement regarding

sidewash problems may not be made since there are no exact expressions

available for the sidewash behind rolling wings. It might be noted, how-

ever, that an approach somewhat like the above was used in reference 33

for calculating sidewash behind rolling wings traveling at subsonic speeds

and very good agreement with experimental results was realized.

Taken together, references 34, 9, and 12 represent a fairly thorough

study of the lifting-line approximation, especially with regard to down-

wash problems, and show that bent lifting lines will probably give the

best results for swept and triangular wings. The shape of the bent

lifting line most often used in these papers and also used herein con-

sists of a pair of straight lines connecting the midpoints of the root

and tip chords of the wing. The potential due to a slanted lifting line

of this type may be obtained from reference 34 (certain errors present

therein having been corrected in the following equation):

z_X 2 - B2(y 2 + z2)I h2
tan-i

YX Z2 y2 l
m m lhl

i f h2 dF(Yl) tan_ I $2 _ B2(y2 + z2)

Jh z2 y2 dYl
2_ i dYl YX

m m

(i)
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where the equation of the lifting line is

Yl +k
Xl - m

(See fig. 9 for pertinent symbols, etc.)

tion (i) becomes

When is zero_ equa-

= ___Ftan-i z_X2 - B2(y 2 + z2)'Ih2

2_ z2 y2 hYX m m hI

(2)

which might be considered as the potential in space (at a point (x,y,z))

of a finite bent vortex of constant strength. A number of these super-

posed on one another can be used to approximate the potential in space

of a lifting line with any prescribed lift distribution_ for example,

such as those previously calculated (fig. 7) for the rolling wing-body

of the configuration (see ref. 34).

From equation (2) the sidewash and downwash due to a bent vortex

are readily obtained by taking the derivative with respect to y and

The following results are obtained:

Z.

_y fV --

2_

--%

_X2 - B2(y2 ÷ z2> Z2m y2)2 + z2(X 2 _ B2y2 _ B2z2

(3)

h2

hl

and

-w= -_z = -_

yx 3 X 2

m + z2( X2 - B2y2 - B2z

(4)
h 1
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Since the loading on a rolling wing is antisymmetrical, the induced

sidewash velocity from each panel is in the same direction and equal in

the y = 0 plane (the plane of the vertical tail). For this reason, it

is necessary to calculate only the sidewash from one panel (using eq. (3))

and double it. To calculate the total downwash at any arbitrary point

on the horizontal tail requires that the contribution from both panels

be determined. Hence it is necessary to obtain an expression for _z

when bent lines have negative slopes. Inasmuch as m and k are

defined as absolute values_ this condition is represented by the fol-

lowing equation for the lifting line:

-Yl + k

Xl = m

Appropriate modification of the potential (eq. (2)) and differentiation

with respect to z yields

F
-W= -_ =

F_ 2_

B2Y2<z2+m

L
(9)

h I

Flow-field calculations.- Equation (3) can be utilized to formulate

an approximate expression for the sidewash due to a series of constant-

strength_ horseshoe vortices spaced along a line so as to represent as

closely as possible some prescribed span loading. This expression is

i=O 4_

-F_ i -B_i2- - -

z2 Y

_Xi2 - B2(Yi2 + z 2) iXi- _- - + z2(Xi 2 - B2Yi 2 - B2z2)_

(6)

where Yi = Y - Yi and X i = x - x i. The subscript i takes on all

integral values from 0 to n. Since span load distributions are usually

determined from prescribed angle-of-attack distributions and since the
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primary purpose of calculating the flow field behind the wing is to
determine the induced loads on the tail, it is advantageous to write
equation (6) in the following form:

n

v/v_ }pb

2V i=o 9 m 2 B2#)]
(7)

From this equation the induced angle of sidewash v/V per unit pb/2V

is arrived at directly. The bar simply denotes that the quantity is non-

dimensional with respect to the wing semispan. Following this same pro-

cedure_ the induced angle of downwash per unit pb/2V at any point in

space behind a rolling wing may be obtained from equations (4) and (5) as

_/v ¢ _(b/27-_ i&3-
-- p--_ = - A_V

i=n I
+ _2 _2 (_i 2 - B 24_I_i2- B2(Yi2 _2) i£i +__._ + + _ B2Yi2 -

z + _2 i2 _ B2Yi 2 _ B2z
m

(8)

where nI is associated with negative values of Yi and n 2 is asso-

ciated with positive values of Yi" It should be noted that in equa-

tion (8) the parameters i, nl, and n 2 are always positive. The

expression for x i corresponding to positive values of Yi is

Yi + k
x i -

m
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and that corresponding to negative values of

-Yi + k

xi - m

Yi is

Seventeen horseshoe vortices on each half-wing were used to approximate

the span load distribution (expressed in terms of F in the equations).

(See fig. i0.) Calculations of the induced angles of sidewash and down-

wash (eqs. (7) and (8), respectively) were carried out for a number of

longitudinal locations along the tail surfaces. For each longitudinal

location considered, the induced angles of sidewash and downwash were

obtained at the root, tip, and intermediate spanwise positions of the

appropriate tail surfaces. By means of an averaging process, resultant

curves for the spanwise variation of the "effective" induced angles were

obtained. The results at various Mach numbers for the spanwise variation

in downwash angle for the horizontal tail are presented in figure ii;

corresponding results for the sidewash angle for the vertical tail are

presented in figure 12. It should be noted that the chordwise variations

of the induced angles on the tails were small and hence the curves obtained

by the averaging process represent fairly accurately the spanwise varia-

tion at any longitudinal station. It should also be no_ed that the effect

of the body on the flow field behind the wing has been assumed to be small

and therefore neglected.

Tail loads; forces_ and moments.- To determine the induced pressures

and the corresponding induced loadings on the tail surfaces by the exact

methods requires detailed knowledge of the induced angles of sidewash and

downwash at each point of the pertinent tail surface. Furthermore, deri-

vation of the induced pressures from the induced-angle distributions

entails considerable difficulties except for the most simple cases. To

utilize a theoretically rigorous approach in the present investigation

would obviously necessitate an almost prohibitive amount of work. An

alternate method of attack on the problem is to determine the desired

induced loadings on the tail surfaces by utilizing loadings that have

been previously obtained in references 31 and 32 for isolated wings under-

going various motions. In order to do this, however, it is necessary that

the induced-angle distributions for the tail be defined by constant or

linear (zero value at origin) expressions as is the case, for example, of

an isolated wing at a constant angle of attack, in steady rolling, or in

steady pitching. Inasmuch as superposition of these solutions is permis-

sible, the criterion for enabling the utilization and application of

isolated-wing loadings to the calculation of induced tail loadings is

that the induced angles of sidewash and downwash on the tail surfaces be

approximated by arbitrary straight lines. While it _y not be possible

to represent accurately with straight lines the induced angles of sidewash

and downwash for all configurations, it does seem that for the majority

of cases this may be done without incurring a large percentage error in
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the induced loading. Whenthere is little or no longitudinal variation
in the induced angles of downwashand sidewash (as has been stated in the
previous section to be the situation for the configuration under study)
the induced loading may be built up solely of two load distributions, one
corresponding to that obtained for a wing at a constant angle of attack
and the other corresponding to that obtained for a wing in steady rolling.
This point will be more fully explained in the discussion which follows.

The straight-line approximation of the average induced-downwash and
induced-sidewash curves for the tail surfaces of the configuration is
indicated in figures ii and 12. For convenience, a typical curve has
been selected (see fig. 13) to indicate how the induced-angle distribu-
tion may be broken up into two components, one component being a hori-

zontal line defined by

(9)

and the other component being a line of nonzero slope passing through

the origin:

(lO)

z is the actual induced-angle distribution

The difference kl - k2 b/2

(as approximated by a straight line). It is readily seen that the com-

ponent angle distributions defined by equations (9) and (i0) are simi-

lar to the distributions obtained for isolated wings at a constant angle

of attack and in steady rolling_ respectively. Taking into account the

constants used to nondimensionalize the quantities given by equations (9)

and (i0), the induced load distribution for each component may easily be

obtained from charts presented in references 31 and 32.

The induced load distributions thus far obtained have utilized wing

loadings that are applicable to one panel of a symmetrical wing. It is

of course necessary to modify these results so as to account for the

mutual interference effects between the horizontal and vertical tail sur-

faces as well as to simulate in some manner the proper end-plate effects

caused by the presence of the body. Inasmuch as the isolated tail sur-

faces performing a steady roll have load distributions which must also

be modified to take into account interference phenomena, it is more
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convenient to add together the uncorrected induced load distributions to
the isolated tail load distributions and then correct all load distribu-
tions simultaneously. The load distribution due to the isolated tail
surfaces in roll has been obtained directly from references 31 and 32,
once again considering each tail panel as one-half of a symmetrical wing.

Inasmuch as there is little information at supersonic speeds con-
cerning horizontal-vertical tail combinations in roll with the exception
of "slender" arrangements (ref. 28), the interference effects must be
evaluated in an approximate manner. Since the tail surfaces of the
present configuration are highly swept and of moderate aspect ratio, it
has been found advantageous to modify the previously obtained load distri-
butions by interference correction factors based on results obtained for
slender tail arrangements in steady roll (ref. 28) and slender tail
arrangements at constant sideslip (ref. 35)-

Before discussing the interference correction factors in detail it
should be remembered that each induced load distribution was subdivided
into two component load distributions, that is, an angle-of-attack distri-
bution (which is directly comparable to a load distribution due to constant
sideslip for a vertical tail) and a steady-roll distribution. Inasmuch
as the mutual interference effects are different for the rolling and
angle-of-attack (or sideslip) cases, each of these load distributions
must be modified in a different manner. The rolling component of the
induced load distributions may of course be combined with the isolated-
rolling-tail load distributions for purposes of applying the interference
correction factor.

For the rolling load distributions, interference correction factors
based on slender-body theory have been used. To obtain these slender-
body correction factors, the tail system of the configuration under study
has been approximated by an equivalent tail system composedof half-delta
panels intersecting in a commonchord at the roll axis. The areas of
both the horizontal and vertical tails in the equivalent system were
essentially unchanged from those in the original configuration. Actually
the vertical tail which is by far the more important contributor to the
rolling momentand the sole contributor to the yawing momentwas changed
only slightly from its original shape. With the ratio of the vertical-
tail span to the horizontal-tail span known for this equivalent tail
system, correction factors have been obtained from references 28 and 35
and applied to the uncorrected load distributions in the following manner:
Let L0' be the uncorrected rolling load component and LI' be the
uncorrected angle-of-attack (i.e., sideslip) load cc_onent;
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For the vertical tail,

L0 ' z_

xj }

\
of vertical panel of slender inverted T-tail in roll 1

)
of one panel of a slender triangular wing in roll J

and

LI 'z_

LI 'xJ

!}
Y}L'

(ml)

\
of vertical panel of slender inverted T-tail in sideslip

of one panel of a slender triangular wing at an angle

of attack t

(12)

For the horizontal tail,

,%

of horizontal panel of slender inverted T-tail in roll_

)of one panel of a slender triangular wing in roll

(13)

The rolling moment contributed by the angle-of-attack component of

the load distribution on the horizontal tail is proportional to

Ll'y dy (14)

There is also an induced loading on the horizoKtal tail due to the induced

angle-of-attack component of the load acting on the vertical tail. This

effect would be in addition to the result given by expression (14) and has

been calculated by use of reference 35.
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The expressions (ii) to (14) must of course be nondimensionalized
and combined properly to yield tail forces and moments. The tail con-
tributions to the stability derivatives C and may then_p, Cyp_ Cnp
readily be obtained by use of the conventional definitions.

In determining the total forces and momentscontributed by the tail
surfaces, however, only those portions of the loads exterior to the body,

(body boundary defined by b_2 = 0.i06 for the case of the vertical tai_

were integrated (see expressions (ii) to (14)). It was assumedthat the
resultant of the forces and momentsacting on the body, that is, those
due to the isolated body in roll, the induced effects_ and so forth, was
very small and hence neglected.

It is possible to compare the accuracy of someof the approximations
used with calculations based on rigorous applications of linearized theory.
Inasmuch as these checks deal with the angle-of-attack component of the
induced load on the vertical tail (i.e., sideslip effect), the compari-
sons will be made in a subsequent section of the report dealing with the
sideslipping motion.

Specific derivatives.- The value of C_p due to the wing-body com-

bination is readily obtained from the loadings which were discussed in a

previous section and presented in figure 7. The addition of the wing-

body contribution to the total tail contribution yields the dmnping-in-

roll derivative CZp for the complete configuration (fig. 14). It is

interesting to note that the net tail contribution to the derivative C_p

was found to be insignificant through the Mach nm_ber range considered.

For this particular configuration, the flow field and other interference

effects almost entirely nullified the damping of the isolated tail unit.

Thus the curve shown for the complete configuration is very close to the

result obtained for the wing-body contribution.

Inasmuch as the configuration was assmaed to be at zero geometric

angle of _ttack, there were no suction forces on the wing leading edge

at Mach nu_$ers for which the edge was subsonic. (At Mach nmnbers for

which the wing leading edge is supersonic, there would be no suction

forces present at any angle of attack.) Thus the derivatives Cyp and

Cnp are composed solely of the tail contributions. The variation of

the stability derivative Cyp with Mach number for the complete con-

figmration is shown in figure 15; some pertinent breakdown results are

also included.

In order to obtain the stability derivative Cnp , each of the previ-

ously discussed load components acting on the vertical tail was isolated
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and the center-of-pressure location for each component was determined at
the four Mach numbers considered. (It is interesting to note that the
center-of-pressure locations for all components and at all Mach numbers
did not vary too greatly from the 3/4-root-chord position.) Each load
component was then multiplied by the appropriate arm length (measured
from the center of gravity to the calculated center-of-pressure location)
and the results added to obtain the total yawing moment. The variation

of the corresponding derivative Cnp with Mach number is presented in

figure 16. The sidewash effect on the derivative Cnp land CyD1 is
--I

quite marked; note the reversal in sign near Mach number 1.6.

STABILITY DERIVATIVES DUE TO CONSTANT SIDESLIP

General Considerations

The information available pertinent to the theoretical calculation

at supersonic speeds of sideslip effects for complete configurations is

of relatively scant nature. Results for isolated wings without geometric

dihedral are available for combined sideslip and angle-of-attack motion

(refs. 36, 37, and 38). Wings with geometric dihedral are considered in

references 39 and 40. For bodies of revolution, results available for

angle of attack (e.g., refs. 7 and 41) may of course be applied to the

sideslip motion. For fuselage shapes with noncircular cross sections

and abrupt contour changes there is very little information. Some

results of investigations for various tail configurations in sideslip

are given in references 35, 41, and 42; other information is as yet

unpublished. Flow-field and component interference effects have not

received any significant attention to date in the literature. It is

seen, therefore, that considerable additional research is required before

accurate estimation of the stability derivatives due to sideslip for

arbitrary complete configurations can be obtained. In analyzing the

present configuration themost important effects have been accounted for

by utilizing the available theory in conjunction with several semiempirical

approximations. The reasonableness of the approximations is demonstrated

wherever possible.

Detailed Considerations and Results

The forces and moments produced by the vertical tail at an angle of

sideslip may be obtained by a procedure analogous to that used in treating

the angle-of-attack component of the induced load on the vertical tail due

to steady rolling. (See section for rolling motion entitled "Tail Loads,

Forces, and Moments.") From this angle-of-attack component, forces and

moments on the sideslipping tail may be obtained in a fairly single manner.
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While before the angle of attack was given in terms of pb/2V (see
eq. (9)) and only a fractional part of the loading due to a fictitious
angle _ was used, now the actual angle of sideslip is _ and the
entire loading must o_' course be considered. It should be noted that
end-plate effects on the load distribution due to sideslip have also
been taken into account in treating the angle-of-attack component of
the induced load due torolling motion and hence no further considera-
tion of them is necessary.

From the loadings just discussed,, contributions of the tail unit to

the stability derivatives Cy_, Cn_, and CZ_ may be readily obtained.
The accuracy of the end-plate corrections made in obtaining the vertical-
tail contributions to the sideslip derivatives may be examined in the
light of somerigorous results available for isolated vertical tails
with zero and complete end plates. Values for the tail contributions
obtained herein using wing loadings corrected for end-plate effects
should, of course_ fall between these two limiting cases.

For isolated vertical tails with supersonic leading edges, both the
zero-and complete-end-plate solutions for (CY_)t , (Cn_)t _ and (C_)t
are presented in reference 42. For the subsonic-leading-edge condition_
complete- and zero-end-plate boundaries for (CYB)t__and _(Cn_)t may be

obtained by use of the CL_ and Cm_ expressions for isolated wings
presented in reference i. (The s_igle-of-attack solution for a wing is
comparable to the complete-end-plate case for a vertical tail in side-
slip.) The complete-end-plate solution for (Cz_)t has been derived
in an unpublished analysis. The zero-end-plate boundaries for the

derivatives (CY_)t _ (Cn_)t , and (C_)t that are valid at Machnum-

bers for which the tail leading edge is subsonic maybe obtained from
expressions presented in reference 43.

The calculated tail Contribution (which includes a finite end-plate

effect) to the stability derivative Cy_ is compared with the zero- and
complete-end-plate boundaries in figure 17; the reasonableness of the
approximations used in the calculation is readily apparent. Similar
comparisons for the tail contributions to the stability derivatives Cn_

and CZ_ yielded equally satisfactory results. (It should be mentioned
that the zero-end-plate boundarY for Mach nmubers corresponding to sub-
sonic leading edges was calculated from ref. 4_, with the vertical tail
being slightly modified to fonu a half-delta of equivalent area.)

CONF IDENTIAL



NACA RM L53GI7 CONFIDENTIAL 23

In calculating the isolated-body effects, it was realized that the

airplane fuselage would probably have a relatively large side force

associated with the sideslip motion. (As can be seen from fig. i, the

cross sections of the rearward part of the body are almost rectangular

in shape.) Unfortunately most of the existing information concerning

bodies is restricted to slender bodies of revolution. No formulas are

available at present which will predict the forces and moments on yawed

bodies with noncircular cross sections and abrupt contour changes simi-

lar to the body considered herein. It becomes necessary therefore to

approximate the body by an equivalent body of revolution. Obviously

there are any number of circular body shapes which could conceivably

represent an "equivalent" body. Thus any theoretical approximation

based on conventional bodies of revolution would be subject to considera-

ble uncertainties. In order to minimize the error involved, two estimates

of the body contribution were calculated; one that was felt to be an

underestimate and one an overestimate, both being calculated from slender-

body theory (for example, see ref. 41). The resulting two values for Cyp

were averaged and this average value was used for the body effect. A

similar sort of averaging process was used in estimating the longitudinal

center-of-pressure location in order to obtain the body contribution to

Cnp. The body contribution to CZp is very small and hence can be neg-

lected. In connection with these isolated-body effects_ it should be

borne in mind that any inaccuracies present in the body estimates would

of course affect the total Cyp estimate more than the total Cnp or

total CZp estimates because of the relatively short moment arm involved

for the body as compared to that of the vertical tail. Variations of the

derivatives Cyp, Cnp , and CZp with Mach number for the complete con-

figuration are shown in figures 18, 19, and 20, respectively_ some break-

down results are also included.

STABILITY DERIVATIVES DUE TO STEADY YAWING

General Considerations

With regard to steady yawing motion, there is an almost complete

lack of the information required for estimating stability derivatives

for complete configurations. In fact, this statement is almost equally

applicable to isolated components. Isolated wings have been treated in

references i, 44, 45, and 46 but some of the results obtained therein are

based on fairly crude approximations and must be considered of only quali-

tative value. For isolated bodies of revolution the relatively few calcu-

lations available for steady pitching motion (e.g., refs. 15 and 16) may

of course be applied to the case of steady yawing. For fuselage shapes
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other than bodies of revolution there is essentially no information.
Wing-body interference effects and flow-field calculations have not been
considered to date. In analyzing the present configuration_ a number of
semiempirical approximations have been employed in estimating the more
important effects. Calculations for various tail configurations are now
in progress and these have been utilized to someextent in checking the
reasonableness of the approximations for the tail-body contribution.

Detailed Considerations and Results

In the absence of information concerning the end-plate effects of
bodies and horizontal tails on yawing vertical tails, two methods were
used to evaluate the vertical-tail contribution to the stability deriva-
tives CYr_ Cnr_ and CZr. The first method was an approximation based
on the results obtained for the sideslipping motion and utilized the
following relationships

- (lg)
6(CY) t _ (CY_)t _ __(CYr)t - _ _ r__b rb

2V 2V

where the minus sign is introduced to maintain the conventional system of

positive forces and moments and

r Z rb
--

V 2V b/2

It is clear then that

b/2
2V

and hence

= !
(CYr) t -(CYJ3)t b/2

(16)
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Analagous procedures yield

=
(Cnr) t - (Cn_)t b/2

(17)

and

_- (18)
(C Zr)t - (Cz_)t b/2

In the preceding equations Z is the distance between the center

of gravity of the airplane and the center of pressure of the vertical

tail (in the presence of the body) for the sideslip motion.

A second method of estimating the tail contribution to the yawing

derivatives is to calculate the two limiting cases (similar to what was

done for sideslip) corresponding to zero- and complete-end-plate situations

and then obtain an average value. In order to obtain the complete end-plate

solutions for CYr and Cnr , the results for CLq and Cmq available

for wings may be utilized by simply making appropriate changes in the

nondimensionalizing parameters. The stability derivatives CLq and Cmq

are available in reference i for subsonic leading edges and in reference 3

for supersonic leading edges. At present there is no information for the

zero-end-plate solution corresponding to the subsonic-leading-edge condi-

tion_ for supersonic leading edges the following expressions have been

obtained:

B(Cy )tr o = x2B4c 4 (-! + 2K) +

4KB3C3(4 - 9K + K 2) + 4B2C2(-2 + 6K + K 2 - 5K3) +

4Bc(-i - 5K + lOK2) + _(3 - 5K)_ (_9)
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B(Cnr)t,o=
15A_3(l - K)2(_C - I)3(B2C2- l)_(BC + I)_K(BC- l)

2KSB4_(61 193K + 213K2 - 21K3) + KB3C3(-I12 + 403K -

472K2 - 37K3 + 138K_) + B2C2(30 - 152K + 89K2 + 390K3 -

449_ + 12K5) + BC(15 + 122K - 441K2 + 436K3 - 12K4) +

(-45 + 130K - Z25K2)_
_]

OK3B5C5(-Z + 3K - 3K2) +

(2o)

Equabions (19) and (20) are applicable to sweptback vertical tails of

arbitrary aspect ratio and zero taper ratio with supersonic leading

and trailing edges; rotation and moments are laeasured about the apex

of the vertical tail.

The differences between the two methods of estimating the tail con-

tribution to the yawing derivatives may be evaluated. Figure 21 presents

(C r) based on equation (16)and also the limitingthe results for _Y .t

cases corresponding to zero- and complete-end-plate situations using

equation (19) and wing results for CLq. (The numerical results pre-

sented in figure 21 are for a yawing motion about the center of gravity;

hence the usual transfer-of-axis formula, which involves the previously

( ) , must be used in conjunction with equation (19).)mentioned Cy_ t,o

It is seen that an average value fo9 (CYr)t based on the second method

would not be significantly different from the value calculated by equa-

tion (16). A similar situation was found to exist for the derivative (Cnr)t.

In view of this evidence_ it was not felt necessary to estimate the zero-

and complete-end-plate solutions for (CZr)t. Thus equation (18) was used

to calculate the tail contribution to CZr.

With regard to the body contribution to the side force and yawing

moment_ the difficulties previously encountered for sideslip motion are

also present for the yawing motion. These have been treated in an

analagous manner (see sideslip section) using equivalent bodies of revo-

lution and results obtainable in references 15 and 16. The body contri-

bution to the rolling moment was assumed to be small and hence was

neglected.

The derivatives CYr , Cnr , and CZr for the complete configuration

(and for the body and tail contributions) are presented in figures 22,

23, and 24, respectively.
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CONCLUDINGR_ARKS

Theoretical calculations of the stability derivatives at supersonic
speeds for a high-speed airplane configuration have been presented. The
methods used represent detailed consideration of the important effects
and contributions of the various airplane components utilizing available
theories and theoretically justifiable and reasonable approximations.
The results are valid for motions involving small angles of attack and
sideslip and low rates of rolling, pitching, and yawing.

It should be emphasized that the theoretical information available,
although supplying many of the basic requirements, is by no means suffi-
cient to allow estimation of the various forces, moments, and stability
derivatives for arbitrary complete configurations. Someof the approxi-
mations developed in the present analysis would be applicable; others
would require considerable modifications depending on the configuration
under study. It is felt, however, that a detailed analysis analagous to
that undertaken for the present airplane would result in reliable esti-
mates for many types of complete airplane configurations suitable for
supersonic flight. Further theoretical research on fundamental problems
indicated in the text is of course required in order to improve the
accuracy of the estimations and to help minimize the time and effort
required to obtain them.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., July 27, 1953.

CONFIDENTIAL



28 CONFIDENTIAL NACARML53GI7

REFERENCES

i. Malvestuto, Frank S., Jr., and Margolis, Kenneth: Theoretical Sta-
bility Derivatives of Thin Sweptback Wings Tapered to a Point With
Sweptback or Sweptforward Trailing Edges for a Limited Range of
Supersonic Speeds. NACARep. 971, 1950. (Supersedes NACATN 1761.)

2. Harmon, Sidney M., and Jeffreys, Isabella: Theoretical Lift and
Damping in Roll of Thin Wings With Arbitrary Sweepand Taper at
Supersonic Speeds. Supersonic Leading and Trailing Edges. NACA
TN 2114, 1950.

3. Martin_ John C., Margolis_ Kenneth, and Jeffreys, Isabella: Calcula-
tion of Lift and Pitching MomentsDue to Angle of Attack and Steady
Pitching Velocity at Supersonic Speeds for Thin Sweptback Tapered
Wings With Streamwise Tips and Supersonic Leading and Trailing
Edges. NACATN 2699, 1952.

4. Nielson_ Jack N., and Kaattari, George E.: Method for Estimating Lift
Interference of Wing-Body Combinations at Supersonic Speeds. NACA
RMA51J04, 1951.

5. Kaattari, George E., Nielson, Jack N., and Pitts, William C.: Method

for Estimating Pitching-Moment Interference of Wing-Body Combinations

at Supersonic Speed. NACA RMA52B06, 1952.

6. Tucker, Warren A.: A Method for Estimating the Components of Lift of

Wing-Body Combinations at Supersonic Speeds. NACA RM L52D22, 1952.

7. Moskowitz, Barry: Approximate Theory for Calculations of Lift of

Bodies, Afterbodies, and Combinations of Bodies. NACATN 2669,

1952.

8. Nonweiler, T.: The Theoretical Lift and Pitching Moment of a Highly-

Swept Delta Wing on a Body of Elliptic Cross-Section. Tech. No.

Aero. 2055, British R.A.E., June 1950.

9. Mirels_ Harold_ and Haefeli_ Rudolph C.: Line-Vortex Theory for Calcu-

lation of Supersonic Downwash. NACA Rep. 983, 1950. (Supersedes

NACA TN 1925. )

i0. Lomax, Harvard, Sluder, Loma, and Heaslet, Max. A.: The Calculation

of Downwash Behind Supersonic Wings With an Application to Triangular

Plan Forms. NACA Rep. 957, 1950.

CONFIDENTIAL



NACARML53GI7 CONFIDENTIAL 29

ii. Lagerstrom, P. A., Graham, Martha E., and Grosslight, G.: Downwash
and Sidewash Induced by Three-Dimensional Lifting Wings in Super-
sonic Flow. Rep. No. SM-13007, Douglas Aircraft Co., Inc., Apr. 14,
1947.

12. Haefeli, Rudolph C., Mirels, Harold, and Cummings, John L.: Charts

for Estimating Downwash Behind Rectangular, Trapezoidal, and Triangu-

lar Wings at Supersonic Speeds. NACA TN 2141, 1950.

13. Walker, Harold J., and Ballantyne, Mary B.: Pressure Distribution

and Damping in Steady Pitch at Supersonic Mach Numbers of Flat

Swept-Back Wings Having all Edges Subsonic. NACA TN 2197, 1950.

14. Miles, John W.: On Damping in Pitch for Delta Wings. Jour. Aero.

Sci. (Readers' Forum), vol. 16, no. 9, Sept. 1949, pp. 574-575.

15. Smith, C. B., and Beane, Beverly J.:

Revolution at Supersonic Speeds.

Sci., Feb. 1951.

Damping in Pitch of Bodies of

Preprint No. 311, Inst. Aero.

16. Dorrance, William H.: NonsteadySupersonic Flow About Pointed Bodies

of Revolution. Jour. Aero. Sci., vol. 18, no. 8, Aug. 1951,

pp. 5o5-511, 5 2.

17. Ribner, Herbert S.: Time-Dependent Downwash at the Tail and the

Pitching Moment Due to Normal Acceleration at Supersonic Speeds.

NACA TN 2042, 1950.

18. Henderson, Arthur, Jr.: Pitching-Moment Derivatives Cmq and Cm_

at Supersonic Speeds for a Slender-Delta-Wing and Slender-Body

Combination and Approximate Solutions for Broad-Delta-Wing and

Slender-Body Combinations. NACA TN 2553, 1951.

19. Margolis_ Kenneth: Theoretical Calculations of the Lateral Force

and Yawing Moment Due to Rolling at Supersonic Speeds for Swept-

back Tapered Wings With Streamwise Tips. Subsonic Leading Edges.

NACA TN 2122, 1950.

20. Harmon, Sidney M., and Martin, John C.: Theoretical Calculations of

the Lateral Force and Yawing Moment Due to Rolling at Supersonic

Speeds for Sweptback Tapered Wings With Streamwise Tips. Super-

sonic Leading Edges. NACA TN 2156, 1950.

21. Malvestuto, Frank S., Jr., Margolis, Kenneth, and Ribner, Herbert S.:

Theoretical Lift and Damping in Roll at Supersonic Speeds of Thin

Sweptback Tapered Wings With Streamwise Tips, Subsonic Leading

Edges, and Supersonic Trailing Edges. NACA Rep. 970, 1950.

(Supersedes NACA TN 1860.)

CONFIDENTIAL



30 CONFIDENTIAL NACA RM L53GI7

22. Margolis_ Kenneth: Theoretical Lift and Damping in Roll of Thin

Sweptback Tapered Wings With Raked-ln and Cross-StreamWing Tips

at Supersonic Speeds. Subsonic Leading Edges. NACA TN 2048, 1950.

23. Walker, Harold J., and Ballantyne, Mary B.: Pressure Distribution

and Damping in Steady Roll at Supersonic Mach Numbers of Flat

Swept-Back Wings With Subsonic Edges. NACA TN 2047, 1950.

24. Bleviss_ Zemund 0.: Some Roll Characteristics of Cruciform Delta

Wings at Supersonic Speeds. Jour. Aero. Sci., vol. 18, no. 5,

May 1951, pp. 289-297.

25. Tucker_ Warren A., and Piland, Robert 0.: Estimation of the Damping

in Roll of Supersonic-Leading-Edge Wing-Body Combinations. NACA

TN 2151, 1950.

26. Lomax, Harvard, and Heaslet, Max. A.: Damping-ln-Roll Calculations

for Slender Swept-Back Wings and Slender Wing-Body Combinations.

NACA TN 1950, 1949.

27. Ribner, Herbert S.: Damping in Roll of Cruciform and Some Related

Delta Wings at Supersonic Speeds. NACA TN 2285, 1951.

28. Bobbitt_ Percy J._ and Malvestuto, Frank S., Jr.: Estimation of

Forces and Moments Due to Rolling for Several Slender-Tail Configura-

tions at Supersonic Speeds. NACA TN 2955, 1953.

29. Adams, Gaynor J.: Theoretical Damping in Roll and Rolling Effective-

ness of Slender Cruciform Wings. NACA TN 2270, 1951.

30. Scherrer, Richard, and Dennis, David H.: Damping in Roll of a Missile

Configuration With a Modified Triangular Wing and a Cruciform Tail

at a Mach Number of 1.52. NACARM A51A03, 1951.

31. Hannah, Margery E., and Margolis, Kenneth: Span Load Distributions

Resulting From Constant Angle of Attack_ Steady Rolling Velocity,

Steady Pitching Velocity, and Constant Vertical Acceleration for

Tapered Sweptback Wings With Streamwise Tips - Subsonic Leading

Edges and Supersonic Trailing Edges. NACA TN 2831, 1952.

32. Martin, John C._ and Jeffreys, Isabella: Span Load Distributions

Resulting From Angle of Attack_ Rolling_ and Pitching for Tapered

Sweptback Wings With Streamwise Tips. Supersonic Leading and

Trailing Edges. NACA TN 2643, 1952.

CONFIDENTIAL



NACA RM L53GI7 CONFIDENTIAL 31

33. Michael, William H., Jr.: Analysis of the Effects of Wing Interference

on the Tail Contributions to the Rolling Derivatives. NACA Rep. 1086,

1952. (Supersedes NACA TN 2332.)

34. Martin, John C.: The Calculation of Downw_sh Behind Wings of Arbitrary

Plan Form at Supersonic Speeds. NACATN 2135, 1950.

35. Katzoff, S., and Mutterperl, William: The End-Plate Effect of a

Horizontal-Tail Surface on a Vertical-Tail Surface. NACA TN 797,

1941.

36. Jones, Arthur L., Spreiter, John R., and Alksne, Alberta: The Rolling

Moment Due to Sideslip of Triangular, Trapezoidal, and Related Plan

Forms in Supersonic Flow. NACA TN 1700, 1948.

37. Jones, Arthur L., and Alksne, Alberta: The Yawing Moment Due to

Sideslip of Triangular, Trapezoidal, and Related Plan Forms in

Supersonic Flow. NACA TN 1850, 1949.

38. Margolis, Kenneth, Sherman, Windsor L., and Hannah, Margery E.:

Theoretical Calculation of the Pressure Distribution, Span Loading,

and Rolling Moment Due to Sideslip at Supersonic Speeds for Thin

Sweptback Tapered Wings With Supersonic Trailing Edges and Wing

Tips Parallel to the Axis of Wing Symmetry. NACA TN 2898, 1953.

39. Robinson, A., and Hunter-Tod, J. H.: The Aerodynamic Derivatives

With Respect to Sideslip for a Delta Wing With Small Dihedral at

Supersonic Speeds. Rep. No. 12, College of Aero., Crandfield

(British), Dec. 1947.

40. Purser, Paul E.: An Approximation to the Effect of Geometric

Dihedral on the Rolling Moment Due to Sideslip for Wings at Tran-

sonic and Supersonic Speeds. NACA RM L52B01, 1952.

41. Spreiter, John R.: The Aerodynamic Forces on Slender Plane- and

Cruciform-Wing and Body Combinations. NACA Rep. 962, 1950.

(Supersedes NACA TN'S 1897 and 1662.)

42. Martin, John C., and Malvestuto_ Frank S., Jr.: Theoretical Force

and Moments Due to Sideslip of a Number of Vertical Tail Configura-

tions at Supersonic Speeds. NACATN 2412, 1951.

43. Heaslet, Max. A., Lomax, Harvard, and Jones, Arthur L.: Volterra's

Solution of the Wave Equation as Applied to Three-Dimensional

Supersonic Airfoil Problems. NACA Rep. 889, 1947. (Supersedes

 ACA 1 12.)

CONFIDENTIAL



32 CONFIDENTIAL NACARML53GI7

44. Ribner_ Herbert S.: The Stability Derivatives of Low-Aspect-Ratio
Triangular Wings at Subsonic and Supersonic Speeds. NACATN 1423,
1947.

45. Harmon, Sidney M.: Stability Derivatives at Supersonic Speeds of

Thin Rectangular Wings With Diagonals Ahead of Tip Mach Lines.

NACA Rep. 925, 1949. (Supersedes NACA TN 1706.)

46. Ribner, Herbert S., and Malvestuto_ Frank S._ Jr.:

tives of Triangular Wings at Supersonic Speeds.

1948. (Supersedes NACA TN 1572.)

Stability Deriva-

NACA Rep. 908,

CONFIDENTIAL



NACARML53GI7 CONFIDENTIAL 33

TABLEI.- CHARACTERISTICSOFAIRPLANECONFIGURATION

Eimensions correspond to those of a i/lO-scale mode_

Over-all length, in ........................ _ 90Wing area (total), sq ft ...................... Ol
Wing airfoil section ............... NACA65A003
Horizontal-tail area (total) ] sq ft ............... 0.908
Horizontal-tail airfoil section .............. NACA65A003
Vertical-tail area (exposed), sq ft ............... 0.874
Vertical-tail airfoil section ............... NACA65A003
Center-of-gravity location, percent M.A.C.............. 32
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Figure 9.- Finite vortex used to approximate a bent lifting line.
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