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NATTONATL, ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

LOW-SPEED INVESTIGATION OF THE EFFECTS OF LOCATION OF A
DELTA HORIZONTAL TAIL ON THE LONGITUDINAL STABILITY
AND CONTROL OF A FUSELAGE AND THIN DELTA WING
WITH DOUBLE SLOTTED FLAPS INCLUDING THE
EFFECTS OF A GROUND BOARD

By John M. Riebe and Jean C. Graven, Jr.
SUMMARY

A low-speed wind-tunnel investigation was made to determine the
effects of location of a delta horizontal tall on the longitudinal sta-
bility and control characteristics of a fuselage and thin delta wing
with double slotted flaps. The wing, which was mounted on a high-speed
fuselage, was a flat plate with beveled leading and trailing edges and
had a maximum thickness ratio of 0.045, and 60° sweepback of the leading
edge. The characteristics of the model in the proximity of a ground
board were also determined.

Satisfactory locations of the delta tail for longitudinal stability
of the model with double slotted flap deflected were generally below the
wing chord line extended or at positions rearward of a tall length of 1.5
wing mean aerodynamic chord on the wing chord line extended. These tail
positions were lower and farther to the rear than the region indicated
in previous investigations as satisfactery with flaps retracted.

Tail-incidence tests indicated that the delta tail (which was 20 per-
cent of the wing area), when at the optimum locations for longitudinal
stability, would be capable of providing longitudinal trim throughout
the lift-coefficient range with the double slotted flaps deflected.

Location of the delta wing near a ground board with double slotted
flap deflected generally increased the lift-curve slope, lowered the
drag at a given 1ift coefficient, and resulted in an increase of longi-
tudinal stability at high 1ift coefficients. However, for some angles
of attack, ground proximity resulted in a loss of 1ift coefficient at
high flap deflections. '
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2 CONFIDENTIAL NACA RM L53H19a
INTRODUCTION

Recent investigations by the National Advisory Committee for Aero-
nautics have indicated that the use of double slotted flaps on delta-
wing airplanes should result in considerable reduction in the angle of
attack necessary to obtain a given 1ift coefficient and produce some
increase in the maximum 1ift coefficient. The primary purpose of these
investigations was the attainment of flap-vane arrangements which pro-
duced high 1lift (refs. 1 and 2) and the determination of the effect of
fuselage size (ref. 3). The investigations indicated that delta-wing
airplanes with double slotted flaps would require a longitudinal trim-
ming device to offset a diving moment resulting from flap deflection.
Without high-1ift flaps, a horizontal tail is generally not necessary
as a stabilizing device on a delta-wing airplane because of the inherent
stable pitching-moment characteristics of delta wings. A horizontal
tail may, however, be desirable for longitudinal trim. Because of the
large variations in downwash which exist behind delta wings (ref. 4),
the location of a horizontal tail behind a delte wing with flaps might
be expected to be critical.

The present report gives the results of an investigation to deter-
mine the effect of location of a delta horizontal tail on the longitu-
dinal stability and control of a delta-wing—fuselage model with one of
the better double-slotted-flap configurations of reference 2. No tail
locations were investigated with flaps down that were not found to be
satisfactory for the flap-retracted condition in the investigation of
reference 5. The present investigation also included the effects of a
ground board on the longitudinal aerodynamic characteristics.

COEFFICIENTS AND SYMBOLS

The results of the tests are presented as standard NACA coefficients
of forces and moments about the stability axes. The positive directions
of forces, moments, and angles are shown in figure 1. Pitching-moment
coefficients are given about the wing 25-percent-mean-aerodynamic-chord
point. The coefficlents and symbols are defined as follows:

Cy, 1lift coefficient, L/qS

Cp drag coeffiéient, D/qS

Cm ' pitching-moment coefficient, M/qSE
L lift, 1b
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D drag, 1b
M pitching moment, ft-1b
qQ free-stream dynamic pressure, %pv2, lb/sq ft
S wing area, 6.91 sq ft
5 b/2
c wing mean aerodynamic chord, 2.31 ft, gf c2dy
0
b wing span, 3.75 ft
' free-stream velocity, ft/sec
p mass density of air, slugs/cu ft
Sf flap deflection measured in a plane perpendicular to

hinge line, deg

vane deflection measured in a plane perpendicular to

M hinge line, deg

a angle of attack of wing, deg

c local wing chord, ft

t local wing thickness, ft

y lateral distance from plane of symmetry measured
parallel to y-axis, ft

z vertical location of tail with respect to chord liﬁe _
extended, positive when located above chord line extended

1 distance of tail 0.25C4 position back of wing 0.25C position

i incidence of horizontal tail, deg

€ downwash angle, deg

Subscripts:

max maximum

t horizontal tail
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MODEL AND APPARATUS

The model was tested on a single support strut in the Langley 300 MPH
T- by 10-foot tunnel.

The 60° delta wing (fig. 2(a) and table I) was the same as that used
in references 1 to 3 with the exception of rounded tips and an outboard
location of the flaps. The wing was made from a flat steel plate 5/8 inch
thick, with beveled leading and trailing edges. The thickness ratio varied
from 0.015 at the root to a maximum of 0.045 at O.67b/2. The mahogany
fuselage (fig. 2(a)) had the same geometry as that used in the unified
- Langley wing program for supersonic flight.

The double-slotted-flap arrangement tested (fig. 2(c) and tables II
and I11) was one of the optimum configurations (ref. 2) with regard to
1ift effectiveness at both low and high angles of attack.

The delta tail tested on the model (fig. 2(b)) was constructed of
1/k-inch sheet aluminum with geometric characteristics similar to those
of the delta wing and had an area equal to 20 percent of the wing area.
The tail was located at the different positions by means of interchange-
able fuselage afterbody blocks; positioning above and below the wing
chord line extended (fig. 2(b)) was accomplished by supporting the
tail on 1/2-inch steel vertical struts (fig. 2(a)).

For the ground-effect tests a l-inch-thick board with a rounded
leading edge was mounted 0.61C below the center of moments of the model.
The ground board extended 72 inches both ahead of and behind the 0.25¢
location.

TESTS

The tests were made at a dynamic pressure of approximately 25 pounds
per square foot, corresponding to an airspeed of about 100 miles per hour.
The Reynolds number for this airspeed, based on the mean aerodynamic chord

(2.31 ft), was approximately 2.2 X 106. The. corresponding Mach number
was 0.13. Angles of attack ranged from -15° to 33°. Delta-tail locations
investigated were 1.0, 1.5¢, and 2.0¢ behind the 0.25€ location on the
wing chord line extended and 0.25C above and 0.25C¢ below the wing chord
line extended. A tail location 0.75C above the chord line extended at a
tail length of 1.0 was also investigated (fig. 2(b)).

CONFIDENTIAL



NACA RM L53H19a CONFIDENTTAL 5

CORRECTIONS

Jet-boundary corrections, obtained from methods outlined in ref-
erence 6, have been applied to the angle of attack, the drag-coefficient,
and the pitching-moment-coefficient data. No jet-boundary corrections
have been applied to the ground-board data since the effects of the side
walls were estimated to be small. Blocking corrections have been applied
to the model according to the method of reference 7. A buoyancy correc-
tion has been applied to the data to account for a longitudinal static-
pressure gradient in the tunnel.

RESULTS AND DISCUSSION

An outline of the figures of data presented in the report is as
follows:

Figure

Effect of flap deflection, tail off , ., , ., . ., ., . . . .. ... .. 3
Effect of location of the delte tall , ., ., ., ., . . . . . . . .. . . Lk
Summary of the effect of delta-tail location

on static longitudinal stability . . [ . ., . ... ... ..... 5
Control effectiveness of the delta tail , , , . . . . . .. ... .. 6
Effective downwash angle for delta tail at 1 = 2.0

and z =0 | | L L L L s e e e e e e e e e e e e e e e e o T
Estimated tail incldence required for trim and

angle of tail at 1 =2.08 , , . , . . . ... ... .. ...... 8
Effect of flap deflection, tail off, near ground board , , ., . .., 9
Variation of Cy with 3¢, near and away from ground board . . . . . . 10
Effect of location and incidence of the delta tail

near ground board . . « .+ ¢ « ¢ 4 s 4 e s 4 e s e e e e e e e a . o 11

Effect of flap deflection.- The 1ift, drag, and pitching-moment
characteristics for the double slotted flap at various deflections (fig. 3)
were generally similar to the longitudinal aerodynamic characteristics
of a double slotted flap of reference 2 (vane flap unit E, pivot point X)
which had the same configuration with the exception of fuselage dimensions
and spanwise location of the flap. The increments of 1ift for the smaller
flap deflections at low angles of attack were about the same for the two
configurations. However, the maximum 1ift coefficients and the 1lift-
coefficient increments near zero angle of attack for the higher flap
deflections of the present investigation are somewhat less than the cor-
responding 1ift coefficients of the configuration reported in reference 2.
These lower 1ift coefficients can be attributed to several sources: more
outboard location of the flaps, differences in model support, and also

‘CONFIDENTIAL



6 CONFIDENTIAL NACA RM L53H19a

differences in fuselage geometry. A large part of the effect is believed
to have resulted from the more outboard location of the present flap as
compared with the arrangement of the model of reference 2. The more out-
board location on the delta wing places the flap in a region which is
known to have higher section-lift-curve slope and to stall at lower angles
of attack than the inboard sections. Consequently, it might be expected
that the lift effectiveness of the outboard flap would not hold to as high
a flap-deflection angle as the inboard flap and that the gain in maximum
1ift coefficient over that of the plain wing would be less.

Results obtained with a similar configuration (unpublished) showed
that extension of the flap span toward the wing tip resulted in an increase
in 1ift coefficients near an angle of attack of 0° for the lower flap
deflections but indicated no gain in maximum 1ift coefficients or 1lift
coefficients near an angle of attack of 0° for the higher flap deflections.

Part of the reduction in maximum 1ift coefficient might also be
attributed to the model support used. Unpublished results of another
investigation have shown that larger maximum 1ift coefficients are obtained
for a sting-type mounting (such as that of ref. 2) than for the strut
type of mounting of the present investigation.

Another difference between the model of the present investigation
and that of reference 2 is the difference in the ratio of fuselage diam-
eter to wing-span ratio (0.195 for the present model and 0.095 for the
model of ref. 2). The fuselage effect, however, is believed to be small
since the loss of 1ift shown in reference 3 for the larger fuselages can
be attributed mainly to a change in the span of the flap which occurred
when the fuselage-diameter wing-span ratio increased.

Effect of location of the delta tail on longitudinal stability.-
Satisfactory locations of the delta tail for longitudinal stability of
the model with double slotted flaps deflected 52° were generally at posi-
tions rearward on the wing chord line extended or below the wing chord
line extended (figs. 4 and 5). Location of the delta tail forward and
above this region resulted in instability and undesirable nonlinearity
of the pitching-moment curves. A flap deflection of 520 was selected
for the tail-location investigation because previous (ref. 2) and present
(figs. 3 and 10) tests have shown this flap angle to be one of the best
with regard to lift effectiveness at both low and high angles of attack.

The approximate region (determined largely from ref. 5) at which
"location of delta tails behind plain delta wings resulted in nonlinearity
of the pitching-moment curve and longitudinal instability over part of
the lift-coefficient range is shown in figure 5. Comparison of the flap-
retracted unstable region with the present data indicates that for satis-
factory stability the horizontal tail has to be lower and farther to the
rear for the flap-deflected condition than for the flap-retracted condition.

CONFIDENTIAL



NACA RM L53H19a . CONFIDENTTIAL T

It has been shown (ref. 5) that the linearity of the pitching-moment

curve and the degree of stability of a delta-wing model with flaps retracted
could be attributed largely to differences in the rate of change of down-
wash angle with angle of attack. Changes in dynamic pressure at the tail
were found to have a minor effect.

Surveys of the flow field behind delta wings by means of tuft grids
have indicated that deflection of trailing-edge flaps produces a general
downward displacement of the vortex system. These facts in addition to
the difference in tail-off curves (for the flaps retracted and deflected)
account for the difference in extent of the region of unsatisfactory tail
location.

The variation of effective downwash angle with angle of attack is
shown in figure 7 for the model with delta tail located at 2.0Z on the
wing chord line extended. These effective downwash angles were computed
from tail-off and tail-incidence data of figure 6. Above an angle of
attack of 4°, these data show a reduction of effective downwash angle
which caused the tail located in this position to provide a large sta-
bilizing effect which overcame the unstable break of the pitching-moment
curve of the wing-fuselage combination above an angle of attack of 4°
shown in figure 3. Figures 3 and 4(a) show a general similarity of the
pitching-moment curve for the model with high forward tail position to
the model with tail off. This similarity indicates that this tail loca-
tion behind the delta wing is generally outside the vortex region behind
the delta wing. An early investigation of double slotted flaps (ref. 1)
which had a different vane than that of the present investigation and
reference 2, did not have an unstable break in the pitching-moment curve
at the stall with tail off. It therefore may be possible to have longi-
tudinally stable configurations with the tail in a high forward position
or at positions higher than those indicated in the present investigation
with a vane geometry different from the one used here.

Control effectiveness of the delta tail at good locations for longi-
tudinal stability.- When located at one of the better locations for
longitudinal stability (1 = 2.08, z = 0), the delta tail would probably
be capable of providing longitudinal trim through the lift-coefficient
range as indicated by the tail-incidence data of figure 6. Extrapolation
of the data to more negative tail-incidence angles and computation of the
tail angle of attack (fig. 8) indicates that the required tail deflection
for trim would be considerably below the stall angle of attack of the
tail. Neutral longitudinal stability or slight instability, however, would
probably be present in the intermediate lift-coefficient range. For tail
locations below the wing chord line extended, a more stable variation
of it required to trim with CL can be expected because of a more

stable pitching-moment curve. The it to trim for this condition (fig. 8)
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8 CONFIDENTTAL NACA RM L53H19a

was estimated by applying the same tail effectiveness to the low tail
position that was found for the wing-chord-line-extended position.

Effect of double-slotted-flap deflection near ground board, tail off.-
The data of figure 9 indicate that location of the model near a ground
board with the tail off and the double slotted flap deflected generally
resulted in an increase in longitudinal stability at the high 1ift coef-
ficients, increased 1ift curve slope, and lower drag at a given lift
coefficient. These results were somewhat similar to the effects of ground
proximity on other flaps and wing plan forms (ref. 8). The change in 1ift
coefficient at a given angle of attack caused by location of the model
near the ground board was dependent upon the angle of flap deflection
(figs. 9 and 10). For some angles of attack and for the highest flap
deflection tested, ground proximity resulted in a loss of 1lift coeffi-
cient. These reductions in 1lift coefficient, however, generally occurred
for flap deflections which were beyond the flap-deflection angle for
largest 1ift effectiveness (about 5p = 520).

Effect of location and incidence of the delta tail near ground board.-
The usual effects of ground proximity on an airplane with a horizontal
tail were indicated in the present investigation. For two delta tail
locations investigated (z =0 and 2z = -0.25¢ at 1 = 1.5¢) with the
double slotted flap deflected 520, location near the ground board resulted
in a slight increase in lift coefficient at a given angle of attack and
an increase in longitudinal stability (fig. 11). Figure 11(b) indicates
that the configuration (I = 1.5¢ and 2z = O) which had some longitudinal
instability away from the ground through part of the high-lift-coefficient
range generally became longitudinally stable through the entire angle-of- ‘
attack range near the ground. In the high angle-of-attack range, the slight
gain in 1ift coefficients near the ground will be nullified by the increased
download on the tail required to trim out the increased diving moments.

With the tail length of 1.5C and with the tail effectiveness indicated
by figure ll(a), the tail tested will probably be unable to provide longi-
tudinal trim for the model in the high angle-of-attack range near the ground.
However, other considerations of delta-wing airplanes may also limit the
angle-of -attack range available near the ground. For example, the long
fuselages being considered for some airplanes will limit the angle of attack
near the ground to low values.

CONCLUSIONS

A low-speed wind-tunnel investigation to determine the effects of
location of -a delta horizontal tall on the longitudinal stability and
control characteristics of a fuselage and.a thin delta wing with double
slotted flaps indicated the following conclusions:

CONFIDENTIAL
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1. BSatisfactory locations of the delta tail for longitudinal sta-
bility of the model with double slotted flap deflected were generally
below the wing chord line extended or at positions rearward of a tail
length of 1.5 wing mean aerodynamic chord on the wing chord line extended.
These tail positions were lower and farther to the rear than the region
indicated in previous investigations as satisfactory with flaps retracted.

2. The delta tail (which was 20 percent of the wing area), when at
the optimum locations for longitudinal stability, would be capable of
providing longitudinal trim throughout the lift-coefficient range with
the double slotted flaps deflected.

3. Location of the delta wing near a ground board (with double
slotted flaps deflected) generally increased the lift-curve slope, lowered
the drag at a given 1ift coefficient, and resulted in an increase of longi-
tudinal stability at high 1ift coefficients. At high flap deflections for
some angles of attack, however, ground proximity resulted in a loss of 1lift
coefficient and stability.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 17, 1953.
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TABLE I.- PHYSICAL CHARACTERISTICS OF THE TEST MODEL

Wing:
Span, ft . . & v v v i e e e e e e e e e e e e e e e e e e o k0O
Aspect ratio . . . . . -
Thickness of flat plate (max1mum thickness
ratio, 0.045), in. . « v « © . .. L L e e e e e e 5/8

SWEED, GEEB « « + « 4 + 4 4 4 e e e e e e e e e e e e e e e .. . 60.00
Area, sq ft . . . e S o)
Mean aerodynamic chord ft - 2
Leading-edge bevel angle, deg .+« v+ v e e e e e s e e e ... 6.8
Trailing-edge bevel angle, deg T s Mo
Taper ratio . . . . e e e e e e e e e e e e e e 0

Vane:
Span, £ . . . . 0 i e e e e i e e e e e e e e e e e e e e e, 2
Chord, ft . . . . e e e e e e s e e e e e e e e e . O,
Chord, percent wing root chord C e et e e e e e e e e e e e e
Chord, percent flap chord . . . . . . . . ¢ ¢« v v v v v o o « . 27.

Flap:
Span, £t . . . . . . . . e e e s e e e e e e e e e e e e .. 2,98
Chord, ft . . . . S O 8 1T
Chord, percent wing root chord c e e e e e e e e e e e e e e .. 13,2
Area, sq ft . . . . T R 0
Area, percent wing area . . . . . . . . . . . . .t . . . . . . 14,83
Trailing-edge bevel angle, deg e S N6 ¢

Horizontal tail:

Span, £t . . . . . ¢ i L e e e e e e e e e e e e e e e e 179
Aspect ratio . . . . - A
Thickness of flat plate (max1mum thickness

ratio, 0.045), dn. . . . . . . ... ... ... L. .. 1/
SWweep, A€ + + v+ 4 4t 4t e e e e e e e e e e e e e e . .. 60.00
Area, sq ft . . . . e e e s e e e e e e e e e e e e e .. . 1.39
Area, percent wingarea . . . . .. ... ... ... .. ... 20.0
Mean .aerodynamic chord ft.....0.000 000000 ..., 1.03
Leading-edge bevel angle, deg . i it i i e e e e e e e e e .. 6.0
Taper ratio . . . e s e 4 e e s e e e e e e e .. 0
Trailing-edge bevel angle, deg e e e e e e e e e e e e e e e 7.3
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TABLE II.- ORDINATES OF THE LEADING EDGE OF THE TRAILING-EDGE FLAP

[éll dimensions are in inche%]

Station, Upper surface; Lower surface,
> y y
0 -0.15 -0.15
.1 .01 -.25
.2 .08 -.27
A .18 - =29
.6 .25 -.30
.8 .30 -.31
1.1 .31 -.31
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TABLE IIT.- ORDINATES OF THE VANE

[hll dimensions are in incheé]

l\/—-&
Station, Lower surface, Upper surface,
X y y
0] 0 o)
.025 -.067 .051
075 -.105 .100
125 -.125 .130
175 -.139 153
.225 -.145 A75
.275 -.145 .190
.325 -.138 .205
.400 -.125 .219
.500 -.099 221
.600 -.074 .215
.700 -.055 .205
.800 -.0kk .180
.900 -.039 .153
1.000 -.042 .115
1.100 -.050 075
1.200 -.066 .025
1.300 -.083 -.032
1.400 -.105 -.083
1.500 -.153 -.153

*‘!ﬂ‘;!!'
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(b) Horizontal-tail locations tested and
details of horizontal tail.

Figure 2.- Continued.
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' Station O, Table III
Upper surtace lip 4.62 inches
from wing {ra/{/nq ea’9€2 {
) AR\ 4 ?

] —

Lower surface lip / >
522 inches from wing
trailing edqge

Station O, Table IL

JF X zfo JV XV ZV

: fﬁ’- _ Ay, |<V,
nchesl inches nc hes| inches

33°135| 89| 3° o6 | .31 | BT
40°129| 96| 7°|-06 | 28|
47121105 17°|-06| 27
115|113 | 22°|-06 | 27
s57°-110(121| 27°-06 | .26

(

(c) Details of double slotted flap. The values of x measured from the
wing upper lip are positive in the upstream direction and the values
of 2z measured from the wing upper lip are positive in a direction
toward the lower wing surface (similar to the positive directions for
the stability axes, fig. 1). ’

Figure 2.~ Concluded.
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Figure 3.- Effect of deflection of the double slotted flap on the
longitudinal aerodynamic characteristics in pitch of the delta-
wing—fuselage model, tail off; fuselage with 1.0c afterbody.
(8¢ = 0° configuration with 1.5¢ afterbody.)
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Figure 3.- Concluded.
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(a) 1 =1.08G.

Figure 4.- Effect of location of the horizontal delta tail on the
longitudinal aerodynamic characteristics in pitch of the delta-
wing—fuselage model with double slotted flap deflected 52°,
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(a) Concluded.

Figure 4.- Continued.
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Figure 4.- Continued.
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(b) Concluded.

Figure 4.- Continued.
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gure 4.- Continued.
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Figure 4.- Concluded.
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Figure 6.- Effect of incidence of the delta horizontal tail on the
longitudinal aerodynamic characteristics in pitch of the model
with double slotted flaps deflected 52°; 1 = 2.0c; and 2z = O.
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Figure 7.~ Variation of the effective downwash angle with angle of attack

for the delta tail at 1 =2.0c and z =0 on a thin delta wing with
double slotted flaps deflected 52°.
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Figure 8.- Estimated tall incidence required for trim and angle of
attack of tail at 1 = 2.0cC.
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Figure 9.- Effect of ground board on the aerodynamic characteristics
in pitch of the model with double slotted flaps deflected, tail
off (0.25¢ of model, 0.61C above ground board).
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Figure 9.- Continued.
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Figure 11.- The effect of ground board on the longitudinal aerodynamic

characteristics in pitch of the delta-wing—fuselage model with
double slotted flaps deflected 52°, tail on.
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(a) Concluded.

Figure 11.- Continued.
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Figure 11.- Concluded.
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