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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

WIND-TUNNEL INVESTIGATION
OF THE EFFECTS OF GEOMETRIC DIHEDRAL ON THE AERODYNAMIC
CHARACTERISTICS IN PITCH AND SIDESLIP OF AN UNSWEPT- AND
A 45° SWEPTBACK-WING—FUSELAGE COMBINATION
AT HIGH SUBSONIC SPEEDS

By Richard E. Kuhn and John W. Draper
SUMMARY

An investigation was made in the Langley high-speed 7- by 10-foot
tunnel to determine the effects of geometric dihedral on the aerodynamic
characteristics of wing-fuselage combinations hav1ng wings of aspect
ratio 4, taper ratio 0.6, and angles of sweep of 3.6° and 45° at the
quarter -chord line. The investigation covered dihedral angles of —lOO
=59 > 59 , and 10° and a Mach number range from 0.40 to 0.95. In order to
expedite publication only a very brief analysis has been included; how-
ever, the results indicate that at angles of attack to about 6° the
effect of geometric dihedral on the effective-dihedral parameter is
slightly larger than would be predicted. At angles of attack corre-
sponding roughly to the stall, the effect of geometric dihedral on the
effective-dihedral parameter was rather small and somewhat erratic.

INTRODUCTION

A systematic research program is being conducted in the Langley
high-speed 7- by 10-foot tunnel to determine the aerodynamic character-
istics in pitch and sideslip of a series of wing plan forms at high sub-
sonic speeds. (For example, see refs. 1 and 2.) The configurations
investigated are wing-fuselage combinations with the wing mounted in the
midwing position at zero dihedral. Some data on the effects of geometric
dihedral on the low-speed characteristics of a 45° swept wing are given
in reference 3 and some theoretical predictions of the effects of dihe-
dral are given in reference k4.
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This paper presents some data, at Mach numbers up to 0.95, on the
effects of geometric dihedral on the aerodynamic characteristics in
pitch and sideslip of an unswept and a 45° sweptback wing. The tests
covered dihedral angles from -10° to 10° and angles of attack up to 24°. -
In order to expedite publication, only a very brief analysis of the
results is presented.

COEFFICIENTS AND SYMBOLS

The stability system of axes used for the presentation of the data,
together with an indication of the positive directions of forces, moments,
and angles, is presented in figure 1. All coefficients are based on the
area and span of the wing with zero dihedral and the moments for all
dihedral configurations are referred to a common moment reference point
at the projection of the quarter-chord points of the mean aerodynamic
chord on the fuselage center line.

Cy, 1lift coefficient, Lift/qS

Cn pitching-moment coefficient, Pitching moment/qSE

Cp drag coefficient, Drag/qS

Cy rolling-moment coefficient, Rolling moment/qu '
Ch yawing-moment coefficient, Yawing moment/qu '
Cy lateral-force coefficient, Lateral-force/qS

q dynamic pressure, pV2/2, lb/sq ft

o mass density of air, slugs/cu ft

v free-stream velocity, ft/sec

M Mach number

R Reynolds number, BXE

vl absolute viscosity of air, slugs/ft-sec

S wing area, sq ft .
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b wing span, ft

(e wing chord, ft

ol

b/2
mean aerodynamic chord, %u/ﬁ cgdy, ft
0]

(o7 angle of attack, deg
B angle of sideslip, deg
I geometric dihedral angle, deg (measured in a plane perpendicular

to the plane of symmetry)
A sweepback angle of quarter-chord line, deg

ACDb base-pressure drag coefficient
1Y

ac

1
C = g da
ZB 5 , per deg
© BCn RRd
= cmse— e e
ng 36 y P g
: BCY -
= er de
YB 3B y P g
BCZ
& ] - r de
15? T pe g

MODEL AND APPARATUS

The wing-fuselage combinations tested are shown in figure 2 and are
two of the wing-fuselage combinations used in the investigations reported
in references 1 and 2. Both wings had an NACA 65A006 airfoil section
parallel to the fuselage center line and were attached to the fuselage
in a midwing position. Shim blocks used to obtain the desired dihedral
angle were designed so that the wing-chord plane always intersected the
fuselage center line. Negative dihedral angles were obtained by testing
the model inverted.
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The 3.60 sweptback wing was constructed of solid aluminum alloy.
The 45° sweptback wing was of composite construction, consisting of a
steel core and a bismuth-tin covering. The ordinates of the aluminum
fuselage, which was used for both configurations, are presented in
reference 5.

The models were tested on the sting-type support system shown in
figures 3 and 4. With this support system the model can be remotely
operated through a 28° angle-of-attack range in the plane of the vertical
strut. By using couplings in the sting behind the model, the model can
be rolled through 90° so that either angle of attack (fig. 3) or angle
of sideslip (fig. 4) can be the remotely-controlled variable. With the
wings horizontal (fig. 3) the couplings can be used to support the model
at angles of sideslip of approximately -4° and 4°, while the model is
tested through the angle-of-attack range.

TESTS AND CORRECTIONS

The tests were conducted in the Langley high-speed 7- by 10-foot
tunnel. Six component measurements were made by means of an internally
mounted strain-gage balance for dihedral angles of -10°, -5°, 5° and 10°.
A1l configurations were tested at angles of sideslip of -4°, 0°, and L°
through an angle-of-attack range from -3° to 24° at several selected
Mach numbers. In addition, all configurations were tested at 0° angle
of attack through a sideslip-angle range from -3° to 12° at Mach numbers
up to 0.95. The estimated choking Mach numbers were 0.94 and 0.96 for
the 3.60 and 450 sweptback configurations, respectively. The blocking
corrections which were applied were determined by the velocity-ratio
method of reference 6.

The variation of Reynolds number with test Mach number is presented
in figure 5 and is based on the wing mean aerodynamic chord of 0.765 feet.

The Jjet-boundary corrections which were applied to the angle of
attack and drag were determined from reference 7. The corrections to
the other components are negligible. Tare values were determined and
were found to be negligible for all components except drag. A drag-
coefficient increment of 0.002 should be added to the data presented to
account for the interference of the sting. The drag data have been
adjusted to correspond to a pressure at the base of the fuselage equal
to free-stream static pressure. For this correction, the base pressure
was determined by measuring the pressure at a point inside the fuselage
9 inches forward of the base. The correction, which was added to the
data and which did not change with dihedral angle, is presented in
figure 6.
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. The angle of attack and angle of sideslip have been corrected for
the deflection of the sting-support system and balance under load.

- No corrections for the aeroelastic distortion have been applied to
the data presented. Although the corrections developed in references 1
and 2 are applicable to the basic data, the effect of aeroelastic dis-
tortion on the effects of geometric dihedral would be expected to be
small.

PRESENTATION OF RESULTS

The results of the investigation are presented in the following

figures:
Figure
BRERERIRREOE C; with @ < & o ¢ o o o v ¢ o & o & w05 s s mleiis i
FEaREn Of Cpn With @ ¢ ¢ o o o o o o o @ o o & o 5 o s .o wie 4 8
VEEREGRIRDR Of C, With @ « « o o ¢ o ¢ o o o o o o o & o o0 aligis 9
Variation of CZB W R A R e o e 10
Variation of Cnf3 W O R e e e e 1
Variation of CYB vz 7 s B0 A S e e o o o s 12
. Variation of C; with B 86 @ =102 ¢ o ¢ &« & o = ¢ « » v & oo i3
Yerdagon of C, with P at @ =02 ¢ v o ¢ ¢ v v o o o o + o b2l
5 Vemlstton of Cy with B at =02 . ... ... ... 00 uo0s 315
Variation of Czﬁ with I' at @ =029 . o o s o s o =« » » % o SEdiEn
Variation of ClB with M 8t @ =02 ¢ « 5 ¢ o o s o o « o oS

T

The data for the zero dihedral configurations (figs. 7 to 12) were
taken from references 1 and 2 and are presented again here for complete-
ness and ease of comparison.

A comparison of the effective dihedral parameter CZB with avail- ‘
r
able wing-alone theory indicates that the experimental dihedral effect
was only slightly larger than that predicted for either of the two wings
throughoul the test Mach number range. It may be noted from the basic
data of figure 10, however, that the values of ng glven in'Piguneliair
i

apply only at angles of attack to about 6°. At higher angles of attack,
variations in geometric dihedral have an erratic effect on CIB and at

20° angle of attack for the unswept wing the highest positive effective
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dihedral actually is obtained with the largest negative geometric dihe-
dral. At angles of attack corresponding roughly to the stall, the effect
of geometric dihedral on the effective dihedral parameter was rather
small.

CONCLUDING REMARKS

An investigation of the effects of geometric dihedral angle on the
characteristics in pitch and sideslip of 3.6° and 45° sweptback-wing—
fuselage combinations indicates that at angles of attack up to about 6°
the effect of geometric dihedral on the effective-dihedral parameter is
slightly larger than the predicted effect. At angles of attack corre-
sponding roughly to the stall, the effect of geometric dihedral on the
effective-dihedral parameter was rather small and somewhat erratic.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., May 25, 1953.
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Lateral force

A
| j\‘ / » Yawing moment
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\x Drag

Figure 1.- System of axes used showing positive direction of forces,
moments, angles, and velocities.
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Wing:
Fuselage: Area 225sqft
S, 30frt
Length 4/ ft pan
Max. diam 4/6 Ft Chord
ok ¢ ; F Tip D62
f .diam. 2
Position of max. di 25ft Root it
Mean aerodynamic chord 7651t
Aspect ratio 4
Taper ratio 15
o / 2 Incidence o
- ; — Airfoil section

parallel fo fuselage ¢ NACA 654006

Scale , feet

A=36° A=45°

Figure 2.- Geometry of the models.

CONFIDENTIAL




TVIINHETCTANOD

Figure 3.- A typical model installed on the sting support system for
variable-angle-of-attack tests. Shown at 4° angle of sideslip.
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Figure 4.- A typical model installed for variable-angle-of-sideslip tests.

Shown at 0° angle of attack.
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B = 0°.
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Figure T.- Effect of Mach number and dihedral angle on 1lift coefficient.
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Figure 13.- Effect of Mach number on the variation of rolling-moment
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Figure 14.- Continued.

CONFIDENTIAL

NACA RM L53F09

o 4 8
Sideslip angle, £, deg

2




33

CONFIDENTIAL

NACA RM L53F09

\D

2

0 4 8
Sideslip angle, £, deg

4

S o 8 |

Y9 pus12144909 juswow-buimos

Q Q Q Q

deg

angle, £ ,

lip

Sides

Y9 “4ua13144902 Juswow-buimoy

(b) A =450,

d

Figure 14.- Continue

CONFIDENTIAL



34 CONF IDENTTAL

Yawing- moment coeftficient, Cp,

o
o
o
o
o
°
k\
3
0 8
3
o/ o 3
' S
5
0 0 §
g
0l ‘5-.

-4 0 4 & 2
Sideslip angle, £g,deg

(b) Concluded.

Figure 14.- Concluded.
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Figure 15.- Effect of Mach number on the variation of lateral-force
coefficient Cy with sideslip angle B. a = 0°.
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Figure 15.- Continued.
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