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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

LOW-SPEED LONGITUDINAL CHARACTERISTICS OF TWO UNSWEPT
WINGS OF HEXAGONAL ATRFOIL SECTIONS HAVING ASPECT
RATIOS OF 2.5 AND 4.0 WITH FUSELAGE AND WITH
HORIZONTAL TAIL LOCATED AT VARIOUS
VERTICAL POSITIONS

By William M. Hadaway and Patrick A. Cancro
SUMMARY

Investigations have been made in the Langley 19-foot pressure tunnel
to determine the low-speed horizontal-tall effectiveness and static long-
itudinal characteristics of two model configurations having unswept wings
with aspect ratios of 4.0 and 2.5. Each wing had a taper ratio of 0.625
and hexagonal airfoil sections with 6-percent-thick chords. The wings
were mounted on circular fuselages and tests were made with and without
full-span drooped leading edges and part-span inboard trailing-edge flaps.
Three horizontal tail positions, two above and one below the wing-chord
plane, were investigated. Tests of both wings were made at a Mach number

of 0.15 corresponding to Reynolds numbers of 6.2 X 106 for the aspect-

ratio-4.0 wing and 7.6 x lO6 for the aspect-ratio-2.5 wing. The data of
the aspect-ratio-2.5 wing presented herein for comparison with the aspect-
ratio-4.0 wing are part of a more extensive investigation reported in
NACA RM 152L11b.

Results indicate that the horizontal tails of plain-wing configura-
tions having aspect ratios of 2.5 and 4.0 were exerting a stabilizing
influence at all angles of attack and at all vertical-tall positions
tested, except Jjust below maximum 1ift with the tail located 17.7-percent
semispan above the fuselage on the aspect-ratio-2.5 wing configuration,
in which case the tall was destabilizing.

With flaps deflected, the tails were stabllizing for all vertical

positions and at all angles of attack, except near O° for the aspect-
ratio-2.5 wing configuration with the tail 17.7-percent semispan below
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the fuselage and beyond maximum lift on the aspect-ratio-4.0 wing con-
figuration with the tail 17.7-percent semispan above the fuselage.

In most instances, the tail effectiveness of the aspect-ratio-4.0
wing configuration was better than that of the aspect-ratio-2.5 wing for
corresponding tail positions and flap configurations.

INTRODUCTION

As part of a general investigation of thin unswept low-aspect-
ratio wings by the National Advisory Committee for Aeronautics, tests
of a model having a wing of aspect ratio 4.0 have been conducted in the
Langley 19-foot pressure tunnel.in order to evaluate the low-speed hori-
zontal tail effectiveness and longitudinal characteristics and to compare
the characteristics of this model with those of a similar model having
a wing of aspect ratio 2.5.. Both wings had hexagonal airfoil sections
with 6-percent thick chords.. Test configurations included a combination
of leading- and trailing-edge flaps both deflected and undeflected on
the wing-body combination with and without a horizontal tail. The ratios
of tail spans, tail lengths, and tail heights to the wing span were held
constant on the two models for comparison purposes. It should be pointed
out that results presented in this paper for the aspect-ratio-2.5 wing
were reported previously in reference 1.

Aileron investigations of the two wings are presented in refer-
ences 2 and 3.

Tests of the aspect-ratio-4.0 configuration were made at a Reynolds
number of 6.2 X 106 and those of the aspect-ratio-2.5 configuration were
made at a Reynolds number of 7.6 X 106.

SYMBOLS

The data are referred to wind axes with the origin at the 0.25 mean
aerodynamic chord projected to the plane of symmetry. Symbols and coef-
ficlents are defined as follows:

Cy, 1ift coefficient, Lift/qS
Cp drag coefficient, Drag/qS
Cm pitching-moment coefficient, - Pitching moment/qSE
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o

angle of attack, deg
wing area, sq ft

: - » . rbf2
wing mean -aerodynamic chord, %J[‘ c2dy, ft
‘ | Jo ,

wing span, ft

vertical position of horizontal tail from wing-chord
plane (positive up), ft

dynamic- pressure, pV2/2
local wing chord, ft
spanwise ordinate, ft
density of air, slugs/cu ft

wind velocity, ft/sec

Reynolds number, pV&/u

aspect ratio

viscosity of air, slugs/ft-sec

horizontal tail-effectiveness parameter

tail 1ift-curve slope

ratio of effective dynamic pressure at tail to free-
stream dynamic pressure

effective downwash angle, deg

rate of change of pitching-moment coefficient with
horizontal-tail incidence angle

rate of change of pitching-moment coefficient with

horizontal-tail incidence angle for any tall position
and flap configuration at 0° angle of attack
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value of Cmi at 0° for high tail position with
t

flaps off (assumed interference-free conditon)

" rate of change of pltching-moment coefficient due to

tall with angle of attack

tall efficiency factor, Cmi Cmi
t 0 t

'
o)

angle of incidence of horizontal tail measured with
respect to wing-chord plane, positive when trailing
edge moves down, deg

horizontal-tail length, distance in wing-chord plane
from quarter-chord point of wing mean aerodynamic
chord to quarter-chord point of horizontal-tail
mean aerodynamic chord, ft

angle of deflection of plain trailing-edge flaps, deg
angle of deflection of drooped-nose flaps, deg

rate of change of effective downwash angle with
angle of attack

S¢

tail volume, 5

Qi

angle of sweep

Subscripts and abbreviations:

t

Y

horizontal tail
value at O° angle of attack (flaps neutral)

effective

wing
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" MODEL

Details of the wings, fuselages, and horizontal tails are shown in
figure 1. Both wings were constructed of solid steel and had taper ratios
of 0.625, symmetrical hexagonal airfoil sections of 6-percent-thickness
chord that were parallel to the plane of symmetry, and 0° sweep of the
50-percent-chord line. The leading- and trailing-edge angles were 11.42°
and the upper and lower surfaces of each airfoil surface were parallel
between 0.30c and 0.70c for both wings. The aspect-ratio-4.0 wing tips
were round and had an elliptical cross section and the aspect-ratio-2.5
wing tips had a wedge-shaped cross section. The leading edge of each
wing could be drooped at the 0.15-chord line from the . wing-fuselage
Juncture to spanwise station O.95b/2. Likewise, the trailing edge of
each wing could be deflected about the 0.75-chord line from the wing-
fuselage Jjuncture to station O.95b/2. Each trailing-edge flap was
divided at the O.55b/2 spanwise station on both the aspect-ratio-4.0
wing and the aspect-ratio-2.5 wing.

Both wings were tested with and without a cylindrical mahogany
fuselage mounted at the midfuselage position at.OO incidence. The fine-
ness ratio was 10:1 for the fuselage of the aspect-ratio-4.0 wing and
8:1 for the fuselage of the aspect-ratio-2.5 wing. The fuselages were

attached to the two wings in such a manner that the ratio L of

by /2

1.660 for the aspect-ratio-4.0 wing was approximately equal to that of
the aspect-ratio-2.5 wing (1.628). Also, the spans of the tails were such
that the values of the ratio bt/bw of 0.499 were equal for the two

configurations. The horizontal tail of both configurations employed

NACA 0012 airfoil sections with 0° sweep of the 50-percent-chord line.

The tail of the aspect-ratio-4.0 wing had an aspect ratio of 4.18, a

taper ratio of 0.525, and a ratio of tail area to wing area of 0.238;
whereas the tail of the aspect-ratio-2.5 wing had an aspect ratio of 3.12,
a taper ratio of 0.625, and a ratio of tail area to wing area of 0.20.

The tail was attached to the fuselage by means of a strut and could be
located vertically at either O.hObw/2 or O.l77bw/2 above or O.l77bw/2

below the wing-chord plane extended for both the aspect-ratio-4.0 and
aspect-ratio-2.5 configurations: The incidence of either tail measured
with respect to the wing-chord plane could be varied through an angle
range from 6° to -6° in increments of 2°.

A two-support system was used in testing the plain wings and a
three-support system (shown in fig. 2) was employed for all tests with
a fuselage.
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TESTS

Tests were conducted in the Langley 19-foot pressﬁre tunnel with ‘
the tunnel air compressed to 33 lb/sq in. abs. For the aspect-ratio-4.0 .
wing configuration, all tests were conducted at a Reyholds number

of 6.2 x lO6 and a corresponding Mach number of 0.15; tests of the aspect-

ratio-2.5 configuration were made at a Reynolds number of 7.6 X 106 and
a corresponding Mach number of 0.15. The configurations tested were the
plain wings with and without a fuselage (fig. 3) and the wing-fuselage
combinations with full-span leading-edge flaps deflected 300 and inboard
part-span plain trailing-edge flaps deflected 50° (fig. 4). The flap-
deflection angles used for comparison (Sn = 300; Sf = 50°) are considered

among the most favorable tested for a wing of similar plan form and air-
foil section (ref. 4). The effects of a horizontal tail at various
vertical stations were investigated for the wing-fuselage configuration
of both wings with and without flaps deflected. Lift, drag, and pitching-
mo%ent megsurements were obtained through an angle-of-attack range from
-4° to 24°.

Lift characteriétics of the two horizontal talls tested alone are
presented in figure 5. The tail of the aspect-ratio-2.5 wing was tested

at Reynolds numbers of 3.0 X 106 and 2.3 X 106, corresponding to values
of 7.6 X lO6 and 5.7 X lO6 based on the wing ¢ (ref. 1). The tail of
the aspect-ratio-4.0 wing was tested at Reynolds numbers of 2.8 X 106

and 1.0 X 106, corresponding to values of 6.2 X 106 and 2.1 X 106 based
on the wing €. The lift-curve slope Cp of the tail used with the
G..t
aspect-ratio-2.5 wing was constant to approximately 230 for both Reynolds
numbers, and the value of Cy for the tall used with the aspect-
o

ratio-4.0 wing was constant to approximately 16° for both values of
Reynolds number tested.

Studies of the flow over the upper surface of the two wings were-
made at various angles of attack with and without leading- and trailing-
edge flaps deflected by observing the action of wool tufts attached to
the wing upper surfaces at various chordwise and spanwise positions.
These tests were made with a fuselage attached, except for the aspect-
ratio-2.5 wing configuration with flaps undeflected. Sketches based on
these observations are presented in figure 6. Flow studies were also
made by observing the action of a mixture of kerosene and lampblack in
the stalled region of the aspect-ratio-4.0 wing-body combination with
and without flaps deflected. The procedure employed was to allow the
mixture of lampblack and kerosene to flow onto the wing through a tube
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at the end of a strut-mounted probe. With this probe it was possible to
release the mixture at any spanwise or chordwise position desired, as
can be seen in figure 7.

CORRECTIONS TO DATA

The 1ift, drag, and pitching-moment coefficients have been corrected
for support tare and interference effects, and the angle of attack has
been corrected for airstream misalinement and jet-boundary effects. Jet-
boundary corrections were also applied to the drag coefficients and
pitching-moment coefficients with tail on, but were considered negligible
for tail-off piltching-moment coefficients and were not applied. The
Jet-boundary corrections were calculated by the method of reference 5.

REDUCTION OF DATA
Effeétive Downwash and Dynamic Pressure

For both aspect-ratio-4.0 and aspect-ratio-2.5 wing configurations,
the values of €c and GH/Q)e were obtalned from the pitching-moment

data for three or more incidence angles at each tail height investigated.
Since the isolated tail tests indicated C to be constant to high

values of % 5 the methods of determining €e and Q@t/@)e were simpli-
fied to

€ = @ + it - oy

where

%=z-mi
my,

The values of effective dynamic-pressure ratio (ét/é)e at the tail were
determined by computing the ratio of the values of Cmi obtained
t
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through the angle-of-attack ranges of the various configurations to the
values of Cmi for the comparable tail height of the flap-neutral con-
t

figuration at zero 1ift.

Tail Efficiency Factor

The lift-curve slope of the horizontal tail may be altered because
of the interference effects of the wing-fuselage combination, and a tail
effeciency factor 7 has been used to represent the effective change
in CL The values of 1 were calculated on the assumption that the

(e
tail located at 2z = O.hOOb/2 was 100 percent efficient since the dis-
tance from the fuselage was large and the interference effects of the
tail support were considered to be small. The values of 17 were
obtained from the relation Cmit /(Cmit)r for each tail position and con-

0 0

figuration. The following table presents values of Cmi and 7n cal-
t
0

culated for configurations with flaps in a neutral position:

Aspect-ratio-4.0 Aspect-ratio-2.5
configurations configurations

Tail

height c C

elgh = g =" y .

0 0

0.400b/2 -0.0k472 1.000 | -0.0202 1.000

.17To/2 -.0kk2 .9k -.0189 .9k
-.17Tp/2 -.0430 .91 -.0190 .9k

Tail Effectiveness Parameter

A tail effectiveness parameter T which combines the effects of
both the dynamic-pressure variations and the downwash angle on the
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stability contribution of the horizontal tail is derived in reference 6
and is defined as

a aq—t)
Cmg 1 n(g)éd_)+% a/e
( °‘>t ©

Negative values of T 1indicate that the tail is contributing sta-
bility to the model configuration. Examination of the aforementioned

equation indicates that, when the tail is out of the wake and 8(%%)2/6a

approaches zéro, values of T are independent of tail load and are,
consequently, independent of trim condition and the center-of-gravity
location of the model. TFor angles of attack where the tail enters the

wake, however, finite values of a(ﬁ) /Ba are obtained and the values

of T are dependent on the tail load. The values of T presented
herein are applicable to the model when trimmed with the center of gravity
at 0.25C and were calculated from the relationship

el () XD

after oy had been determined to provide trim at each angle of attack.
RESULTS

Comparisons of 1ift, drag, and pitching-moment coefficients of the
aspect-ratio-4.0 wing with those of the aspect-ratio-2.5 wing are pre-
sented in figures 3 and 4. Data from tests of the isolated horizontal
tail are presented in figure 5. Figure 6 shows stall patterns as deter-
mined by tuft studies of both wings and figure 7 shows results of lamp-
black and kerosene studies on the aspect-ratio-4.0 wing. The effects of

a horizontal tail on C,, ¢, and (qt/@)e are Indicated for both wings

with flaps neutral and deflected in figures 8 and 9, respectively, for
various representative tail helghts at nearly constant -incidence angles.
Figure 10 presents a summary plot comparison of the tail-effectiveness

- . CONFIDENTIAL - o
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values of the aspect-ratio-4.0 configurations with those of the aspect-
ratio-2.5 configurations at various tail heights.

On both the aspect-ratio-4.0 and aspect-ratio-2.5 wings having
flaps undeflected, the flow separated along the leading edges of the
inboard sections at low angles of attack and reattached at about the
15-percent-chord line (fig. 6). With increase in angle of attack, the
leading-edge separation spread toward the wing tips and then did not
reattach as the angle approached that for maximum lift. Accompanying
rearward shifts in center of pressure are indicated by the pitching-
moment curves of figure 3. As the angle of attack was increased further,
the separated flow region moved outboard until it engulfed the entire
wing. The marked change in the area of separated flow on both plain-
wing configurations at moderate angles of attack is characteristic of
wings having unswept, sharp leading edges and low ratios of thickness
to chord (ref. 7).

The addition of leading- and trailing-edge flaps delayed the onset
of separation to larger angles of attack for both the aspect-ratio-2.5
and aspect-ratio-4.0 configurations and incredsed the maximum 1ift coef-
ficient about 0.6 in both instances. The flaps also confined the initial
stall along the entire chord of the wing to the inboard sections and the
stall progression toward the wing tips was more gradual with increase in
angle of attack than on the plain-wing configurations.

Figure 7 gives an indication of the.direction of flow at the sur-
face of the aspect-ratio-4.0 wing-fuselage combination in the region
beyond maximum 1ift with flaps both undeflected and deflected.

Figure 10 indicates that the horizontal tail of the plain-wing
aspect-ratio-4.0 configuration was contributing more stability than that
of the aspect-ratio-2.5 configuration for all tail positions tested to

maximum 1ift. The stabilizing effect of the high tail position (S§§ = o,hoo)
on the aspect-ratio-2.5 plain-wing configuration was small at angles of
attack near maximum 1ift, and the tail located just above the fuselage

<S§§ = 0.177> was destabilizing at angles just below maximum 1lift; otherwise,

the tails of both plain-wing configurations were eXerting a stabilizing
influence at all tail positions and angles of attack tested.

When leading- and trailing-edge flaps were deflected, all horizontal-
tail positions of the aspect-ratio-4.0 wing configuration were contributing
more stability than the corresponding tail positions of the aspect-ratio-
2.5 wing configuration for most angles of attack to maximum 1lift. The
exceptions were at angles of attack near maximum lift with the tail just

CONFIDENTTIAL
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above the fuselage (E%E = O.lT?), where the tail of the aspect-ratio-4.0 wing
began to be destabilizing; and at angles of attack just below maxiﬁum 1ift
with the tail below the fuselage (1725 = -o..177), where the effectiveness

values seemed to be about the same for both configurations. With flaps
deflected, the tail of the aspect-ratio-2.5 wing configuration located

Just below the fuselage (E%E = -0.177) was slightly destabilizing at angles

near Oo; The tail effectiveness of the aspect-ratio-k.o model was better
than that of the aspect-ratio-2.5 model for most of thé conditions tested,
primarily because the values of dee/da were, in general, smaller

throughout the angle-of-attack range for the aspect-ratio-4.0 configura-
tions (figs. 8(b) and 9(b)) as was expected. The variations of (qt/q)e

were generally in agreement for the two unflapped wings; however, with
flaps deflected, the (qt/q)e values of the aspect-ratio-4.0 wing were

generally higher. " Both lower values of dee/aa and higher values
of Glt/q)e tend to make the horizontal tail for the aspect-ratio-4.0 wing

configuration more stabilizing.
CONCLUSIONS

A comparison was made of the low-speed longitudinal characteristics
of two unswept wings of hexagonal airfoil sections having aspect ratios
of 2.5 and 4.0 with fuselage and with horizontal tail located at various
vertical positions. The following conclusions are presented:

1. The horizontal tails of the plain-wing configurations exerted
a stabilizing influence at all angles of attack and at all vertical-tail
positions tested, except just below maximum 1ift with the tail located
17.7-percent semispan above the fuselage on the aspect-ratio-2.5 wing
configuration, in which case the tail was destabilizing.

2. With flaps deflected, the tails were stabilizing for all verti-
cal positions and at all angles of attack except near 0° for the aspect-
ratio-2.5 wing configuration with the tail 17.7-percent semispan below
the fuselage and beyond maximum 1ift on the aspect-ratio-4.0 wing con-
figuration with the tail 17.7-percent semispan above the fuselage.

- CONFIDENTIAL
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3. In most instances, the tail effectiveness of the aspect-ratio-
4.0 wing configuration was better than that of the aspect-ratio-2.5 wing
for corresponding tail positions and flap configurations.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 13, 1953.
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(a) Aspect ratio, 4.0.

Figure 1.~ Details of the wings, fuselages, and horizontal tails.. All
dimensions are in inches unless otherwise noted.
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Figure 1l.- Concluded.
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(a) Aspect ratio, 4.0.

Figure 6.- Stall patterns of aspect-ratio-4.0 and aspect-ratio-2.5 wings
with and without leading- and trailing-edge flaps deflected.
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Figure 6.- Concluded.

(b) Aspect ratio, 2.5.

Plain wing
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L-77586,1
(a) Plain-wing-fuselage configuration. a = 14.6°.

Figure T7.- Example of air flow over wing-fuselage combination of aspect-
ratio-4.0 wing at stalled conditionms.
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(b) The 0.79b/2 leading-edge flap and 0.39b/2 trailing-edge flap deflected
on wing-fuselage configuration. a = 18.1°.

Figure T7.- Concluded.
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(a) Variation of pitching-moment coefficient with angle of attack.
Figure 8.- Comparisons of Cp, €e, and (ai/a)e at various tail heights

for the aspect-ratio-4.0 wing and the aspect-ratio-2.5 wing. Plain
wing; fuselage on.
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(b) Variation of downwash and dynamic-pressure ratio with angle of attack.

Figure 8.- Concluded.
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(a) Variation of pitching-moment coefficient with angle of attack.
Figure 9.- Comparisons of Cp, €, and (q¢/q)e at various tail heights

for the aspect-ratio-4.0 wing and the aspect-ratio-2.5 wing. Leading-
and trailing-edge flaps deflected, fuselage on.
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(b) Variation of downwash and dynamic-pressure ratio with angle of attack.
Figure 9.~ Concluded.
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(b) Leading- and trailing-edge flaps deflected.

Figure 10.- Comparison of tail effectiveness parameter at various vertical-
tail positions for the aspect-ratio-2.5 wing and aspect-ratio-4.0 wing.
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