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AN EXPERIMENTAL INVESTIGATION OF THE ZERO-LIFT-DRAG 

CHARACTERISTICS OF SYMMETRICAL BLUNT-TRAILING-EDGE 

AIRFOILS AT MACH NUMBERS FROM 2.7 TO 5.0 

By Clarence A. Syvertson and Hermilo R. Gloria 

SUMMARY 

The zero-lift-drag characteristics of nine symmetrical airfoils were investigated experimentally at Mach numbers from 2.7 to 5.0 and Reynolds numbers (based on the chord) from 0.35 million to 3.63 million. Eight of these airfoils had blunt trailing edges and were designed to have minimum pressure drag at a Mach number of 3 or 5 for a given torsional rigidity or a given bending strength . The ninth airfoil was a conventional biconvex section having a torsional rigidity equal to that of three of the minimum-drag airfoils . Section thickness ratios varied from 3.74 to 6.10 percent . It was found that each minimum-drag airfoil had, at its design Mach number, the lowest drag of all airfoils tested having the same structural requirement. The differences in drag of comparable sections were found to be smaller at the higher Mach numbers, apparently because of a decrease in pressure drag relative to skin-friction drag. 

Experimentally determined surface pressures compared favorably with the predictions of a high Mach number, small- deflection angle approximation to shock-expansion theory. In this connection it was found necessary to consider distortion of the airfoil profile by the laminar boundary layer at the higher test Mach numbers . 

Measured base pressures on the minimum-drag airfoils are presented. These data are found to correlate against a parameter proportional to the ratio of the boundary- layer height at the trailing edge to the base height. 

INTRODUCTI ON 

Drougge ( ref . 1 ) was among the first investigators to study airfoil profiles for minimum pres sure drag at super sonic speeds. By the use of 
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linear theory, sections with sharp trailing edges were determined, having 

minimum pressure drag for given thickness ratio, cross-sectional area, or 

moment of inertia . Chapman (refs. 2 and 3) pointed out, however, that 

further reductions in pressure drag (up to 30 percent in some cases) 

could be obtained by the use of airfoils with blunt trailing edges . In 

reference 3, general methods for determining blunt- trailing-edge airfoils 

with minimum pressure drag were formulated and a rather complete group 

of structural requirements was considered . The methods of analysis were 

applied to linearized supersonic flow . More recently, blunt-trailing

edge airfoils for minimum pressure drag have been determined using non

linear theories . Klunker and Harder (ref. 4) used the slender- airfoil 

theory of reference 5, and Chapman ( ref . 6 ) used shock- expansion theory 

(see, e . g ., ref . 7 ). Inherent to all the analyses of blunt-trailing- edge 

airfoils is the fact that the base pressure must be known in order to 

determine an airfoil with minimum pressure drag . Thus far , base pressures 

have not been predicted accurately by theoretical methods . 

At high supersonic airspeeds, these analyses indicate that mlnlmum

pressure - drag sections will have relatively large degrees of bluntness, 

and furthermore that the savings in pressure drag over more conventional 

sharp-trailing-edge sections will be relatively large . These theoretical 

findings emphasize the need for comparable experimental dataj however, 

there seems to be very little available for any of the predicted minimum

drag sections. Particularly is this the case for airfoils designed for 

a specified structural requirement, such as a given torsional rigidity or 

a given bending strength . An experimental investigation of the zero-lift

drag characteristics of such airfoils at high supersonic speeds is, there 

fore, the subject of the present report. 

This investigation was undertaken with three aims o The first aim 

was to check experimentally the accuracy of the airfoil theory used to 

design the test airfoils . These airfoils were designed using shock

expansion theory after the method of reference 6, since it has been shown 

( ref . 8) that at high supersonic airspeeds the predictions of this theory 

compare most favorably ~ith those of the more exact method of character 

istics. The second aim was to ascertain at high supersonic Mach numbers 

the reliability of the method of reference 9 for estimating and correlating 

the base pressures acting on the test airfoils . This method was employed 

for the purposes of the present investigation since it has proven rela

tively reliable at low supersonic speeds . The third aim was to compare 

experimentally several airfoils of equal structural properties to determine 

insofar as is poss ible whether or not the predicted (des igned ) shapes do 

indeed have the lo~est drag for their particular design conditions . To 

these ends, nine airfoil sections were tested at Mach numbers from 2.7 to 

5 . 0 and Reynolds numbers (based on the chord ) from 0 . 35 million to 

3 . 63 million . 
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SYMBOLS 

CD drag coefficient, drag 
qS 

Cp pressure coefficiect, 
p~ - Po 

~ 
c chord, in. 

h airfoil base height , in. 

M Mach number (ratio of local velocity to local speed of sound) 

p static pressure, lb/sq in . 

q dynamic pressure, lb/sq in . 

Re Reynolds number (based on chord) 

S exposed wing area, sq in . 

t airfoil thickness, in . 

x airfoil abscissa, in . 

y airfoil ordinate, in . 

Subscripts 

o free-stream conditions 

b conditions at airfoil base 

1. conditions on surface 

EXPERIMENT 

Test Apparatus and Techniques 

3 

All tests were conducted in the Ames 10- by 14- inch supersonic wind tunnel, which is of the continuous flow, nonreturn type with a nominal reservoir pressure of six atmospheres . Stream Mach numbers can be varied from 2.7 to 5.0 by changing the relative positions of the symmetrical 

----~------------~~----~~ ----- --- - ---
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nozzle blocks . A more complete description of the wind tunnel and its 

auxiliary equipment can be found in reference 10. 

The wings were tested in combination with a slender body of revolu

tion having a fineness ratio of 14. 25. Total- drag forces acting on the 

wing-body combination at zero lift were measured by a strain- gage - type 

balance . Measured tare drag acting on the support body was subtracted 

from the measured total drag to give the net drag on the airfoil . ~ Tare 

forces on the sting supports for the models were essentially eliminated 

by shrouding that extended to within 0 .06 inch of the support- body base . 

Base pressures were measured on the support body and the blunt

trailing- edge airfoils with McLeod type low-pressure manometers . Reser 

voir pressures were measur ed with a Bourdon type pressure gage, and static, 

dynamic, and pitot pressures were determined from tunnel calibration data . 

stream Mach numbers were determined from ratios of these static and pitot 

pressures. 

Models 

Eight blunt- trailing- edge airfoils, designed by the method of refer

ence 6 to have minimum pressure drag at zero lift for a given structural 

requirement and a given Mach number, were used in this investigation . 

The structural requirement was either a given torsional rigidity or a 

given bending strength. With the method of reference 6, it is necessary 

to know in advance the variation of base pressure with Reynolds number, 

Mach number, and airfoil shape (especially base height ). An approximation 

to this variation was obtained by estimating the effect of Mach number on 

the curves of correlated base-pressure data presented in reference 9 (see 

discussion of base-pressure data ). 

Airfoils with torsional rigidity specified .- The first airfoil section 

was designed to have minimum pressure drag at a Mach number of 3 for a 

given torsional rigidity (moment of inertia about the chord axis ). 2 

Since it was difficult to specify arbitrarily a reasonable numer ical 

value of the moment of inertia, the procedure was to take the value that 

lInterference drag 'is therefore included in the drag results presentedo 

In this connection, however , it was observed in reference 11 that the 

interference drag is small , at least at low super sonic Mach numbers , 

for wing- body combinations of the type tested if the wings are defined 

as the exposed half- wings joined together . It might be expected that 

the interference drag would be even less at the present test Mach numbers o 

2The sections were consider ed to be solid . In the notation of r eference 6, 

this is the case where n = 3 and cr = O. It also corresponds to a given 

bending stiffness o 

• j 

I 
- I 

I 
• 

~ -- -- ------- --------...---- -----
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corresponded to the first airfoil section with a thickness ratio of 6 percent. The second airfoil was designed to have minimum pressure drag at a Mach number of 5 for the same torsional rigidity as the first airfoil. 

5 

Airfoils with bending strength specified.- The third airfoil section was designed to have minimum-pressure drag at a Mach number of 3 for a given bending strength (section modulus ) .3 Again in this case, it was difficult to specify offhand a reasonable numerical value of the section modulus. The procedure was to adjust the value of the design section modulus until the moment of inertia was equal to that of the first two airfoils. This was done to enable an additional comparison of the two types of minimum-drag airfoils. The fourth airfoil was designed to have minimum drag at a Mach number of 5 for the same bending strength as the third airfoil. 

A second family of airfoils was then designed following this same procedure, only the thickness ratio of the first airfoil was 4 percent. Thus, the airfoils fall into two families according to thickness ratiO. The airfoils in one family are approximately 6 percent thick; those in the other, approximately 4 percent thick. In each family, then, there are four airfoils; two are designed for a given torsional rigidity and two for a given bending strength. One of each type is designed for a Mach number of 3; the other for a Mach number of 5. Three of the airfoils have the same torsional rigidity; two have the same bending strength. In addition to the eight minimum-drag profiles, a ninth airfoil with a parabolic-arc biconvex section was designed to have the same moment of inertia as the torsional-rigidity airfoils in the thicker (6 percent thick) family. The biconvex airfoil has a sharp trailing edge and is 6.10 percent thick. This airfoil is included to aid in comparing the minimum-drag airfoils to more conventional shapes. The design conditions and the method of identifying each airfoil are given in table I. The coordinates of all the airfoils tested are presented in table II, and a sketch of the different airfoil profiles is presented in figure 1. 

All airfoils tested were made of polished steel with a chord of 2 inches and exposed span of 3 inches. A photograph of the airfoils tested is presented in figure 2 . The force models were supported in the wind tunnel on an 0.875- inch-diameter body having a minimum-pres sure-drag nose (see ref. 10 for optimum body of given fineness ratio) of fineness ratio 7, faired to a cylindrical body of fineness ratio 7.25. A picture of the entire test assembly is shown in figure 3. Each of the blunttrailing-edge airfoils had four orifices in the base which were used to measure the base pressure . A sketch of a typical airfoil showing the location of the orifices is presented in figure 4. 
3Again the sections were considered to be solid. In the notation of reference 6, this is the case where n = 3 and 0 = 1. 

L-~~ _ _______ _ _ ~~_~_ ~ _ - -------~--~~~-----~~~~--
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In addition to the force models, a model of airfoil 306-T (designed 

for Mo=3, approximately 6 percent thick, and having a given torsional 

rigidity; see table I), having a chord of 4 inches and a span of 4 inches, 

was constructed to measure the chordwise pressure distribution . This 

model had a single row of orifices along the midspan . Only the side of 

the airfoil containing the pressure orifices was contoured; the ot her 

side of the airfoil was made a simple wedge of relatively larger thick

ness in order to increase structural strength . A photograph of thj.s 

model is presented in figure 5 . 

Accuracy of Results 

Surface and base pressures, measured on McLeod type manometers, are 

accurate to within ±l percent of true pressures. At free - stream Mach 

numbers of 4 . 48 and above, the measured base pressures were influenced 

by some condensation of the air . Condensation partially inhibits expan

sion about the base and thus leads to higher base pressures than would 

be expected in the absence of this phenomenon . All base- pressure data 

were therefore corrected to stream conditions without condensation, using 

the method of reference 12 . As pointed out in reference 12, this method 

probably gives a maximum correction . (See ref. 13 for a more detailed 

discussion of the effects of condensation on .flow about models .) Since 

there is some uncertainty in this correction, both corrected and uncor 

rected data are presented for Mo = 4 . 48 and Mo = 4 . 98 . 4 As the test 

airfoils are very slender and produce pressure ratios only slightly 

above 1, no correction of the surface pressures for air re - evaporation 

was necessary, as can be seen in figure 11 of reference 13 . 

The variation in stream Mach number in the region of the airfoil 

was ±0.01 or less at all Mach numbers except Mo = 4 . 98 . At this Mach 

number, the variation in the spanwise direction was ± 0 . 025 . The variation 

in stream static pressure was sufficiently small in all cases to make 

buoyancy corrections negligible. All airfoils were located on the test

section center line, and the variation in stream inclination was disre

garded since it was ±Oolo or less in all cases . The error in Reynolds 

number was less than 1 percent . 

In general, the force measurements were accurate to within ±3 percent 

of the total load on the balance sys t em a t the highest Mach number . A 

small buoyancy correction, due t o i nt ernal pressure differences in the 

balance housing, was made to the measured dat a. No corrections to 

4 
Because the local Mach numbers in the region of the base are higher than 

the free stream, there is also some effect of condensation a t Mo = 4 . 03 . 

However, the correction to the data at this Mach number was within the 

experimental scatter. 
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measured for ces ( exclusive of base force ) for condensation and re- evaporation of the air str eam at Mach numbers of 4. 48 and above were necessary (see previous discussion of sur face pr essures ). 

Summarizing, the pressure coefficients are estimated to be accurate to within ±O . 003, the base pr essure ratios to within ±O . 02, and the drag coefficients to within ±O . 0002 . 

RESULTS AND DISCUSSION 

Pressure Data 

Chordwise pressure distributions. - The pressure coefficients along the midspan of the pressure - distribution model of airfoil 306-T are presented in figure 6 . 5 Comparison is made with the predictions of the relatively simple small- angle, high Mach number approximation to shockexpansion theory (see ref . 8). As shown in reference 8, no significant differences will exist between these predictions and those of exact shock-expansion theory for airfoils like those under consideration. Two sets of theoretical curves are presented . The first set was determined neglecting the distortion of the effective airfoil profile caused by the laminar boundary layer. The second set was obtained including an estimate of this distortion . This estimate was based on the method of reference 14, in which the airfoil profile is changed locally by an amount equal to the displacement thickness of the boundary layer. The displacement thicknesses were calculated using the method of reference 15. Up to a Mach number of 4.48, the increment in pressure coefficient caused by the boundary layer is small except near the leading edge. In this Mach number range, the experimental data agree closely with both sets of theoretical pressure distributions. 6 At a Mach number of 4.98, the distortion effect of the boundary layer is more pronounced over the entire chord ' length of the airfoil , and experiment agrees with the theory only after this effect is included . The marked pressure rise near the nose of the airfoil , which results from the rapid build-up of the laminar boundary layer at high Mach numbers and low Reynolds numbers, was also noted for a flat plate in reference 16 . The good agreement observed in figure 6 between the experimental results and the theoretical predictions 
sThe test Mach number was sufficiently high in all cases so that the mid-span pressures were not affected by disturbances originating at the airfoil tips. 
6Some pressure distributions were also calculated with linear and secondorder theory. The agreement wi t h linear theory was relatively poor at higher Mach numbers. The agreement with second- order theory was subs t antially the same as with shock-expansion theory . 
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gives experimental verification for the conclusion of reference 8 , 

wherein it was observed that the shock- expansion theory has a wide range 

of applicability at high supersonic speeds . The results given in refer

ence 16 also give additional verification to this conclusion . 

Base-pressure survey.- The Reynolds numbers at which the base 

pressures were measured are presented as a function of Mach number in 

figure 7. With the exception of Mo = 3 . 49 and Me = 4 . 03, all tests 

were made at only one Reynolds number for each test Mach number . The 

Reynolds number ranges for these two Mach numbers are also indicated in 

figure 7. The base pressures were measured simultaneously with the force 

data, and no attempt was made to induce artificial transition by adding 

surface roughness . All results presented are therefore for laminar

boundary-layer flows . 

As was stated previously, base-pressure measurements were made at 

four points on the trail ing edge of each airfoil . Typical spanwise 

distributions of Pb/Po for one airfoil, 306- T, are shown in figure 8 . 

Since the spanwise variation is generally small over the test range, the 

remaining data are presented as arithmetic means of the four individual 

measurements . 

Following the example of reference 9 , all base -pressure data are 

presented in correlated form as a function of the parameter 7 c/(h~ ) 

(see fig . 9). A small amount of data, not presented in figure 9, was 

also obtained at Me = 4.67 and Mo = 4.84 . These data show the same 

trends as those presented . All the data correlate reasonably well to 

single curves at each Mach number . To show the effects of condensation, 

uncorrected data for Me = 4.48 and 4 . 98 are also shown in figure 9 . 

The design- base -pressure estimates are also shown; those for Me = 3 are 

included with the Me = 2 . 73 curve . In general , the estimates are within 

the experimental scatter of the measured data . 

To further illustrate the reliability of this method of correlation, 

the variation of base -pressure ratio with Reynolds number for three 

different airfoils at a Mach number of 4.03 is shown in figure 10. In 

correlated form ( fig. 9(c)) these data combine reasonably well into seg

ments of the same curve. Some deviations from a single curve are, of 

course, evident, but these deviations are generally less than the differ

ences in the three distinct curves of figure 10. In general, then, it 

appears that for airfOils, the methods for correlating base-pressure data 

that were used at low supersonic speeds in reference 9 are also useful at 

high supersonic speeds . This result is somewhat in contrast to the results 

obtained for bodies of revolution in reference 12, where it was observed 

7As pointed out in reference 9, for laminar boundary layers this parameter 

is proportional to the ratio of the boundary-layer height at the trailing 

edge to the base height . - I 

I 

J 
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that the corresponding correlation method was not as reliable at high supersonic speeds as at low supersonic speeds. 

Force Data 

9 

Results of the drag measurements on all the test airfoils are presented in figure 11. The drag coefficients are based on the net forces on the airfoils; that is , they represent the difference between the measured total drag of the wing-body combination and the tare drag of the body. 

Comparison of experimental with calculated drag curves is made in figure 11. The calculated drag curves were determined by adding the two-dimensional pressure drag, skin- friction drag, and the measured base drag. The pressure drag was calculated from pressure distributions determined in the same manner as those previously discussed; that is, using the slender-airfoil theory of reference 8 and the distortion effect of the boundary layer after the method of reference 14. The use of section theory to calculate the drag of finite - span airfoils is supported in reference 17, where it is observed that if the aspect ratio is of the order of 1 or greater , flow about wings at high supersonic speeds may be treated as a two-dimensional problem. 

In general, the agreement between the calculated and experimental drag coefficients in figure 11 is good . Differences observed at Mo == 5.0 are due in part to the errors in measuring the small forces encountered. s The increase in the total drag coefficients at the high Mach numbers results primarily from the decrease in test Reynolds number as the free-stream Mach number is increased, leading to a corresponding increase in skin-friction drag coefficient . 

The drag coefficients of two of the minimum-drag airfoils, 306-T and 506-T, are compared in figure 12 to those of the biconvex airfoil. It is recalled that all three airfoils are designed to have the same torsional rigidityo Consistent with the design conditions of the airfoils, airfoil 306- T has the lowest drag at the lowest Mach numbers, and airfoil 506-T has the lowest drag at the highest Mach numbers. The biconvex airfoil has drag higher than either of the minimum- drag airfoils at their respective design Mach numbers . The largest difference in drag is about 20 percent . It is also apparent from the curves in figure 12 that there is very little difference in drag between the two minimum-drag airfoils at the higher Mach numbers . This result is again attributed mostly to the decrease in pressure- drag coefficient and increase in skinfriction drag coefficient with Mach number at the higher Mach numbers of 
SIt is possible that air condensation, as previously discussed, could also have been a contributing factor, a l though the pressure data (fig. 6(d)) do not indicate that this is the case . 

L..-..______________ __ _ ______________ _ 
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the present tests. It is evident that because of this effect of skin 

friction, an airfoil required to operate. over the present test range of 

Mach numbers and Reynolds numbers would have greater drag savings, on 

the average, if designed for Mo = 3 rather than for Mo = 5. It appears, 

then, that in some cases it may be worthwhile to consider skin friction 

in picking the design conditions of an airfoil. 

The drag coefficients of two airfoils, 306-B and 506-B, are compared 

in figure 13. Both these airfoils have the same bending strength. Again, 

in agreement with the design conditions, airfoil 306-B has the lower drag 

at the lower Mach numbers and airfoil 506-B has the lower drag at the high 

Mach numbers. Again, too, the difference in drag is smaller at the high 

Mach numbers. 

The drag coefficients of airfoils 306-T and 306-B are compared in 

figure 14. Although both airfoils have the same torsional rigidity, only 

airfoil 306-T was designed for this criterion; airfoil 306-B was designed 

for a given bending strength. (See Models.) There is very little differ

ence be t ween the drags of the two airfoils; however, at the design Mach 

number of 3 , airfoil 306-T does have slightly lower drag, which is in 

a greement with theory. 

Similar comparisons have been made with the family of four-percent

thick airfoils. The same trends were evident; however, since these air

foils are thinner and have lower drags, the differences in drag coeffi

cients were even less. 

CONCLUSIONS 

Investigation of the zero-lift-drag characteristics of nine symmet

rical airfoils at Mach numbers from 2.7 to 5.0 and Reynolds numbers from 

0.35 million to 3.63 million leads to the following conclusions: 

1. Pressure distributions can be predicted within engineering 

accuracy by the use of shock-expansion theory. It is necessary to 

account for distortion of the effective airfoil profile by the laminar 

boundary layer at the higher Mach numbers and lower Reynolds numbers of 

these tests. This r.esul t is in agreement with previous experimental and 

theoretical findings. 

2. Base pressures measured on the blunt-trailing-edge airfoils were 

found to correlate, in the case of laminar boundary layers, against a 

parameter proportional to the ratio of the boundary- layer thickness at 

the base to the base height. The correlation curves should prove useful 

at high supersonic Mach numbers, just as at low supersonic Mach numbers, 

in estimating design base pressures for blunt-trailing-edge, minimum

pressure-drag airfoils. 

- J 

j 
_J 
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3. Each minimum- drag airfoil had, at its particular design conditions, the lowest drag of all comparable airfoils tested. The largest saving in drag was about 20 percent. The differences in drag at higher Mach numbers were quite small, due in good part to a decrease in pressure drag relative to skin- friction drag. The results showed that because of this effect of skin friction , an airfoil required to operate over the present test range of Mach numbers and Reynolds numbers would have greater drag savings, on the average, if designed for a Mach number of 3 rather than for a Mach number of 5. It appears, then, that in some cases it may be worthwhile to consider skin friction in picking the design conditions of an airfoil. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif . 
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TABLE 1.- AIRFOIL DESIGN CONDITIONS AND STRUCTURAL PROPERTIES 

Moment of 
Airfoil Design tic hlc hit inertia about Section Mach number chord axis, modulus, 

in.4 in. 3 

304-T 3 0.0400 0.0226 0 . 564 41.6 X 10-6 10.4 X 10-4 
504-T 5 . 0399 .0348 . 871 41.6 X 10- 6 10.4 X 10-4 
304-B 3 .0376 . 0233 . 621 41.6 X 10-6 11.0 X 10-4 
504-B 5 .0374 . 0336 . 898 41.2 x 10- 6 ll.O X lO-4 306-T 3 .0600 . 0356 .594 138.7 X 10-6 23.1 X 10-4 
506-T 5 .0598 .0528 .884 138 .7 X 10-6 23.2 X 10-4 
306-B 3 . 0562 .0376 . 669 138.7 x 10- 6 24. 8 X 10-4 
506-B 5 .0563 . 0513 .912 139.4 X 10-6 24 . 8 X 10-4 

Biconvex - .0610 0 0 138 .7 X 10-6 22.7 x 10-4 

Key to airfoil identification: 
Airfoil 3 06 - T 

~ Design structural condition 
(T Torsional rigidity) 
(B Bending strength ) 

Approximate tic 
Design Mach number 
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TABLE II . - AIRFOIL COORDINATES IN INCHES 

Airfoil 304- T Airfoil 504- T 

Abscissa x Ordinate y Abscissa x Ordinate y 

0 0 0 0 

.100 . 0042 . 100 . 0034 

. 200 . 0084 . 200 . 0069 

. 300 . 0126 .300 . 0103 

. 400 . 0168 .400 .0137 

. 500 . 0209 . 500 . 0172 

. 600 . 0248 . 600 .0205 

. 700 .0283 .700 . 0237 

. 800 .0315 . 800 . 0267 

. 900 .0343 . 900 . 0294 

1.000 . 0367 1.000 . 0320 

1.100 .0384 1 . 100 . 0343 

1 . 200 . 0395 1.200 .0363 

1 . 300 . 0400a 1.300 . 0379 

1.400 .0395 1.400 . 0391 

1.500 .0382 1 . 500 .0397 

1.600 .0360 1.573 . 0399a 

1.700 .0333 1.600 . 0399 

1.800 .0301 1.700 . 0394 

1.900 .0264 1.800 . 0383 

2.000 . 0226 1.900 . 0368 

- - - - - - 2.000 . 0348 

Airfoil 304-B Airfoil 504-B 

Abscissa x Ordinate y Abscissa x Ordinate y 

0 0 0 0 

. 100 .0047 .100 . 0039 

.200 .0094 . 200 . 0078 

. 300 . 0142 .300 . 0116 

. 400 .0189 . 400 .0155 

.500 .0234 . 500 .0194 

. 600 . 0273 . 600 .0230 

. 700 . 0307 . 700 .0264 

. 800 .0336 . 800 .0294 

. 900 .0357 . 900 .0321 

1 . 000 .0372 1.000 . 0343 

1 .087 .0376a 1.100 . 0361 

1.477 .0376a 1.200 . 0371 

1.500 .0376 1.295 . 0374a 

1.600 . 0368 1.689 .0374
a 

1.700 . 0350 1.700 .0374 

1.800 . 0322 1 . 800 . 0368 

1 . 900 .0283 1.900 .0356 

2.000 .0233 2 .000 .0336 

~axlmum ordlnates 
• I 

j 

- _____ --J 
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TABLE II. - AIRFOIL COORDINATES IN INCHES - Concluded 

Airfoil 306- T Airfoil 506- T Biconvex airfoil 
Abscissa x Ordinate y Abscissa x Ordinate y Abscissa x Ordinate y 

0 0 0 0 0 0 .100 .0061 .100 .0050 .100 . 0116 .200 .0122 . 200 . 0099 .200 .0220 .300 . 0183 . 300 . 0149 .300 .0311 .400 .0244 . 400 . 0199 .400 .0391 .500 .0302 .500 . 0248 .500 .0458 .600 . 0357 . 600 . 0296 .600 .0513 .700 . 0411 .700 . 0343 .700 .0556 .800 .0459 .800 . 0389 .800 .0586 .900 . 0502 . 900 . 0431 .900 .0604 1.000 . 0539 1 .000 . 0470 1.000 .0610a 
1.100 .0569 1.100 .0504 1.100 .0604 1.200 . 0588 1.200 .0533 1.200 .0586 1.300 . 0598 1 . 300 . 0558 1.300 .0556 1.342 . 0600a 

1.400 . 0578 1.400 .0513 1.400 .0598 1 . 500 .0592 1.500 .0458 1.500 .0582 1.600 .0598 1 . 600 .0391 1.600 .0555 1 . 613 . 0598a 
1.700 .0311 1.700 .0521 1.700 .0594 1.800 .0220 1.800 . 0477 1.800 . 0581 1.900 .0116 1.900 . 0423 1 . 900 .0560 2.000 0 2.000 . 0356 2 .000 .0529 - - - - - -

Airfoil 30b-B Airfoil 506-B 
Abscissa x Ordinate y Abscissa x Ordinate y 

0 0 0 0 
. 100 .0068 .100 .0056 
.200 .0136 .200 .0113 
.300 .0203 . 300 .0169 
.400 . 0271 . 400 .0225 
.500 .0334 . 500 .0280 
.600 .0393 . 600 .0333 
.700 .0445 .700 .0383 
.800 . 0489 . 800 .0430 
.900 .0526 . 900 . 0471 

1.000 .0549 1.000 .0507 1.100 .0561 1.100 . 0534 
1.125 .0562a 1.200 . 0552 
1.517 .0562a 

1.300 . 0562 
1.600 .0554 1.334 . 0563a 
1.700 .0532 1.720 . 0563a 
1.800 .0495 1.800 .0559 
1.900 .0444 1.900 .0541 
2.000 .0376 2.000 . 0514 

8maxlmum ordlnates 
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Figure I. - Sketch of the airfo/~ pro"~es with expanded vertical scale. 
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Figure 2.- Force models. 
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( a ) Wing mounted in Position. 
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(b) Support body alone. 

Figure 3.- Force model test installation. 
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Figure 5.- Pressur e - di stribution model of airfoil 306-T. 
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Figure 6- The pressure distribution on airfo/~ 306-T for several 
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6 (a) Mo = 2.73, Re = 134 x 10 

(b) Mo = 349, Re as shown 

o Re = 1.58 x 106 

• Re =!.O5 x 106 

(e) Mo = 4.03, Re as shown 

1° II i 11° It I I 
(d) Mo = 4.48, Re = 120 x 106 

~:I 11101 1:}:Fa I 
.50 10 20 30 40 50 60 70 80 90 100 

Percent semispan distance inboard from tip 

(e) ~ = 4.98, Re = 0393 x 106 

Figure 8 - Typical spanwise base-pressure distribution for airfoil 306-T with laminar boundary layer. 
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Figure 12.- Variation of drag coefficient with Mach number far airfoils 
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Figure 14. - Variation of drag coefficient with Mach number for airfoils 
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