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RESEARCH MEMORANDUM 

THE STATIC AND DYNAMIC LONGITUDINAL STABILITY 

CHARACTERISTICS OF SOME SUPERSONIC 

AIRCRAFT CONFIGURATIONS 

By Jesse L. Mitchell 

The purpose of this paper is to discuss some longitudinal stability 
characteristics of supersonic aircraft configurations. The discussion 
is presented under two general headings: static longitudinal stability 
and dynamic longitudinal stability. Some information on the variation 
of pitching-moment coefficient with angle of attack as influenced by the 
vertical location of the horizontal tail is presented in the section on 
static stability. The static-stability variation with Mach number and 
its effect on maneuverability and trim is discussed for several typical 
configurations on which data are available. In the dynamic stability 
section the short-period longitudinal oscillation is the subject of dis-
cussion. Some data on the damping-in-pitch derivatives of tailless air-
craft are presented and the period and damping characteristics of some 
supersonic aircraft configurations are discussed. 

Static Longitudinal Stability 

The flow characteristics behind low-aspect-ratio wings indicate that, 
for a configuration having a low-aspect-ratio delta or swept wing and a 
horizontal tail back of the wing, the vertical location of the horizontal 
tail greatly influences the variation of pitching-moment coefficient with 
angle of attack. 

The variation of pitching-moment coefficient Cm with angle of 
attack a for a configuration consisting of an aspect-ratio-2.0 delta 
wing having a horizontal tail mounted behind, either in the plane of the 
wing extended or at a point 0.25 semispan above the wing, is shown in 
figure 1. These data were obtained from Ames transonic-bump tests (refer-
ence i) and are shown for Mach numbers of O. I-O, 0.90, and 1.10. Note 
that at all these Mach numbers the configuration with the low horizontal 
tail has the more nearly linear variation of pitching moment with angle 
of attack. References 2 and 3 present other data which substantiate the 
above results.
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Since the flow field characteristics behind plain, sweptback, low-
aspect-ratio wings are similar to those behind delta wings, it is to be 
expected that a similar effect of tail height on the variation of Cm 

with a will exist for sweptback wing configurations. This result is 
confirmed at subsonic speeds (N = 0.17) and low Reynolds number 
(0.9 x 106) by the results presented in figure 2. These data of Cm 
as a function of a were obtained from tests in the Langley stability 
tunnel (reference 4) on-an aspect-ratio J4.0, 450 sweptback wing con-
figuration with a horizontal tail located behind either in the plane of 
the wing extended or at a position 0.29 semispan above the wing plane. 
The model with the tail in the low position also has a more nearly linear 
variation of Cm with a. Additional data on tail-height effect on sta-
bility at low speeds are given in references 5 and 6. No comparable data 
were available at higher Mach numbers. In figure 3, however, are pre-
sented some results on lift and pitching-moment variation with angle of 
attack at a Mach number of 0.93 for a configuration having an aspect-
ratio-4.0, 450 sweptback wing and a horizontal tail mounted 0.50 semispan 
above the wing. The solid curves are actual test results of the complete 
configuration as obtained from rocket-model tests. The short-dash and 
long-dash curves were computed from wing-fuselage moment and lift, and 
downwash data from the indicated sources (references 7 and 8). The 
results indicate that, at least for this wing, Reynolds number effects 
are small. 

In order to define what is meant by a high or low horizontal tail, 
figure 4 has been prepared. Tail positions have been plotted with 
reference to their distance behind and above the trailing edge of the 
wing mean aerodynamic chord. These tail positions have been classified 
as to the characteristics of the downwash at these positions. The 
solid points indicate a, downwa.sh variation with angle of attack in 
which dE/da increases with increasing angle of attack; the half-solid 
points indicate essentially a linear variation of downwash with angle 
of attack; and the. open points indicate a downwash variation with angle 
of. attack in which d€/da decreases with increasing angle of attack. 
The data were average downwash behind some ten different swept and 
delta wings. The range of aspect ratio, sweep, Mach number, tail span, 
and Reynolds number covered by the data are indicated in the figure. 
See references 1 to 3, 6, and 9 to 12. 

All the open or half-open points fall below a line which makes an 
angle of about . 10° from the origin. It can be expected therefore that, 
for swept or delta wing configurations, horizontal-tail locations on 
or below the 100 line shown are most likely to result in linear or more 
nearly linear variation of pitching moment with angle of attack. 

The preceding discussion of tail height has been for delta or 
sweptba.ck wing configurations. Figure 5 presents pitching-moment coef-
ficient as a function of angle of attack at Mach numbers of 0.5 and 0.92
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for an aspect-ratio-4.0, unswept wing configuration (reference 13). The 
horizontal tail was mounted either in the plane of the wing extended 
or at a high position in which the tail height over tail length corre-
sponded to an angle of 170. As with the swept or delta configurations, 
the airplane with the horizontal tail in the low position had greater 
stability than the high-tail model in some moderate to high angle-of-
attack range. In this case, however, the total stability changes with 
angle of attack are about equally large for the high- or low-tail models 
as contrasted to the swept or delta configurations on which the sta-
bility changes for the low tail were noticeably less than for the high 
tail.

The discussion up to this point has been concerned with the varia-
tion of stability with.angle of attack. Of equal importance is the varia-
tion of stability with Mach number. Some static-longitudinal-stability 
and trim data for three widely different supersonic aircraft are examined. 
See references 14 to 23. The configurations considered are shown in fig-
ure 6. The first configuration has a swept wing and horizontal tail, the 
second a straight wing and tail, and the third is a tailless delta. 

Also presented in figure 6 is the variation of the aerodynamic 
center in percent of the mean aerodynamic chord behind the leading edge 
of the mean aerodynamic chord. As is to be expected, the aerodynamic 
center moves back at supersonic speeds. It is interesting to note that 
the total aerodynamic-center travel, in feet, for all these aircraft 
is of the same order of magnitude, about 2.5 to 2.75 feet. 

As a consequence of the increased stability, it is to be expected 
that the maneuverability of all these aircraft will be less at super-
sonic speeds than at subsonic speeds. Figure 7 presents the variation 
of trim lift coefficient with Mach number for several control deflec-
tions. Since complete trim data were not available, estimations were 
made in certain regions as indicated by the dotted lines. Also shown 
are estimated values of maximum lift. The control for the swept and 
unswept configuration is an all-movable tail whereas that for the delta 
configuration is a constant-chord trailing-edge elevon. 

Note that all the configurations have adequate control to attain 
maximum lift at subsonic speeds, but that only the unswept_wing airplane 
has enough control effectiveness at supersonic speeds to attain maximum 
lift without inordinately large control deflections. In this connection 
it is necessary to point out, however, 

2t 
that the straight-wing configura- 

St 
tioñ has a tail-volume coefficient 	 that is about 2.5 times that 

of the swept configuration. Another factor which must be considered is 
that the design wing loadings for these aircraft are quite different. 
The wing loading for the sweptback configuration is about 60, for the 
unswept configuration about 120, and for the tailless delta configuration
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about 30. For a given altitude of flight and normal acceleration, 
therefore, the unswept-wing aircraft requires twice as much lift coeffi-
cient as the swept-wing aircraft and four times as much as the delta 
configuration. 

Another significant consideration of static stability and trim is 
the control deflection as a function of Mach number for trim at a given 
value of acceleration. Figure 8-presents control deflection as a func-
tion of Mach number for, trim at zero lift and for trim in level flight 
at 40,000 feet. 

As can be noted from figure 7 there is a pitch-up tendency at low 
values of lift coefficient near a Mach number of 1.0 for all these air-
craft. This result is evident in the control deflection required to 
trim at zero lift for the swept-wing configuration; for instance, more 
trailing-edge down movement of the all-movable tail is required as the 
Mach number range is traversed from subsonic to supersonic speeds. It 
is interesting to note that this same pitch-up has occurred in many 
rocket-propelled model tests of aircraft configurations (references 24 
to 27). The only thing common to all these aircraft was the asymmetry 
usually associated with an airplane, for instance, vertical tail above 
the center of gravity, horizontal tail in a region in which there is 
downwash at zero lift due to flow around the tail of the fuselage. 

An examination of the control required to trim in level flight 
indicates regions for all the aircraft in which more up-control is 
required to trim as the Mach number increases. This result has been 
noted in flight tests of supersonic research aircraft and so far pilots 
have not particularly objected since the aircraft is stable in the sense 
that more up-control, at a constant speed, gives increasing normal accel-
eration. This unstable variation of control with Mach number, however, 
is probably not a desirable characteristic if the airplane is to be 
flown in sustained level flight in this speed range. This unstable vari-
ation of control with Mach number indicates that a divergence in speed 
will occur if the airplane is disturbed from trim; therefore, for any 
particular design, calculations should be made to make sure that the 
divergence is slow enough to be controlled by the pilot. 

In the case of the sweptback and unswept configuration, it is of 
interest to point out again the advantage of the all-moving tail as a 
means of control. This advantage is evident in figure .8 by the moderate 
changes in control required to trim over the Mach number range, as con-
trasted to the inordinately large amounts of elevator required by the 
Bell X-I.
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Dynamic Stability 

The following remarks on dynamic longitudinal stability are con-
cerned with the characteristics of the short-period oscillation in 
pitch. Shown in figure 9 are some useful approximations for the period 
and damping characteristics of this oscillation. These expressions are 
the usual approximations, valid for two degrees of freedom and low 
damping. The various quantities have been arranged so that the effect 
of wing loading, scale, atmospheric properties, and aerodynamic prop-
erties may be seen by inspection. The quantities contained in these 
expressions are defined as follows: 

Symbols: 

Cm	 pitching-moment coefficient 

CL	 lift coefficient 

P	 period of the oscillation, seconds 

t i/la	 time to damp to 1/10 amplitude, seconds 

C1/10	 cycles to damp to 1/10 amplitude 

k 	
radius of gyration in pitch, feet 

mean aerodynamic chord, feet 

S	 wing area, square feet 

W	 weight of airplane, pounds 

M	 Mach number 

p	 atmospheric static pressure, pounds per square foot 

P	 atmospheric density, slugs per cubic foot 

V	 velocity, feet per second 

M	 angle of attack, radians 

e	 angle of pitch, radians 

t	 time, seconds
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Subscripts: 

- dcL c 
dt 2V 

- 
q dt2V
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The symbols a, &, and q 
tive of the quantity with respect 

dCm
dm L"a-
	 •

used as subscripts indicate the deriva-
to the subscript, for example 

The quantity C + C	 that appears in the expressions for damping
mq 

gives the damping in pitch due to pitching velocity and rate of change of 
angle of attack with respect to time. On conventional aircraft, that is, 
aircraft having a wing and a horizontal tail mounted back of the wing, 
the horizontal tail always provides a predominate negative contribution 
to this derivative. Some of the airplanes that are being suggested for 
supersonic aircraft, however, are tailless-delta or swept-wing configura-
tions Since the theory indicates that these configurations might have 
very low negative or even positive values of Cmq + C	 in the transonic 

region, it is of interest to examine some available wind-tunnel and 
rocket-model measurements of this pitch-damping derivative for delta and 
sweptback wings. 

The quantity Cm + C% as a function of Mach number is given in 

figure 10 for several tailless delta-wing configurations. The tunnel 
oscillation test data are for three delta wings of aspect ratio 2, 3, 
and 4 which correspond to leading-edge sweep of 63 0 , 530, and 450, 

respectively. Note that the 450 delta configuration (reference 28) 
indicates a very wide region, M = 0 . 94 to N = 1.35, of unstable or 
positive values of Cmq + C. Within the limits of the test data there 

were no instabilities obtained for the delta. wings of aspect ratio 2 
and 3. The rocket-model test data substantiate the tunnel data in that 
the results available from the 45 0 delta configuration indicate a 
region of positive C + C% approximately the same as the tunnel data. 

The rocket-test data of the 600 delta wing show that the damping in 
pitch for this configuration was maintained throughout the region of 
the test results. 

Some preliminary tunnel and rocket-model data on Cmq + C	 varia-

tion with Mach number for a swept wing of aspect ratio 3.0 are shown
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in figure 11. The subsonic tunnel test results for the wing alone 
indicate positive values of Cm q + C1	 above a Mach number of 0.93. 
These results are substantiated by recent rocket-model tests of a tail-
less configuration with this same wing and having the axis of pitch 
or center of gravity at the same position as the tunnel model. The 
rocket-model data indicate that the region of instability is very 
narrow, from about M = 0.93 to M = 0.99. Additional confirmation 
of these results is indicated by the supersonic tunnel tests of a con-
figuration having a slightly different wing plan form and a more rear-
ward axis of rotation. 

As can be seen from figure 9, the aerodynamic contribution to the 

damping consists of two terms, CL, and	
(k)2 

Figure 12 illustrates the relative contributions of these terms 
for a straight wing and tail configuration and for two tailless delta 
wings, one with 600 leading-edge sweep and the other with 45 0 leading-
edge sweep. 

In the upper left-hand part of figure 12 is shown , the variation 
of Cmq + C	 with Mach number for these three configurations. Note 

that the values of Cxnq + C1	 for the configuration with a horizontal' 

tail are 7 to 10 times the magnitude of those for the tailless delta 
wings. When these values of Cmq + C r,,ja are divided by the appropriate 

radius-of-gyration factor (upper right-hand part of fig. 12) note that 
the rotary damping factor of the tailless 600 delta wing and the air-
plane with tail are practically identical. This identity is fortuitous 
in this case; however, it does indicate one fallacy of comparing damping 
on the basis of Cmq + Cm , alone. The lower left-hand part of figure 12 

gives the variation of lift-curve slope C LC, with Mach number. Note 

that, for the two configurations which maintained negative damping in 
pitch, the C	 contribution to the aerodynamic damping is of the same 

C +C.
Mq 

order of magnitude as the	 contribution. This result again 
2(92 

'C 
points to the necessity of considering two degrees of freedom for all 
dynamic longitudinal-stability calculations. Finally, the total 
aerodynamic-damping term as a function of Mach number indicates that 
all the configurations have aerodynamic damping of the same order of 
magnitude. The particular point of interest with regard to the
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450 tailless delta wing is that, when the total aerodynamic damping in 
pitch is considered, the apparent region of instability as indicated, by 
the Cmq + C	 term has been greatly reduced and might even be 
eliminated. 

The period, time to damp to 1/10 amplitude, and cycles to damp to 
1/10 amplitude have been calculated as a function of Mach number for the 
straight wing and tail configuration and for the 60 0 tailless delta wing. The results presented in figure 13 are for level flight at 40,000 feet, wing loading of 120 for the straight-wing airplane, and wing loading 
of 30 for the tailless delta wing. Note that, in general, the variations 
of P, t1,10 , and C1/10 with Mach number are similar for both air-
planes. The period decreases quite a ppreciably with increasing Mach 
number, but the time to damp to i/io amplitude is relatively constant; 
an increase in the cycles required to damp to i/ia amplitude results. 
The present requirement for damping is C 1/10 = 1.0 and is indicated 
by the shaded band. Note that neither configuration meets this 
requirement. The fact that the delta-wing configuration has the 
better damping in terms of C1/10 might be expected since it has a 
much lower wing loading than the straight-wing airplane. See figure 9 
which indicates that C1/10 - Iw7 

This poor damping in terms of C 1110 may be objectionable from 
several viewpoints. In the first place it probably means that the 
aircraft will tend to have sustained small-amplitude oscillations 
in pitch due to random disturbances. Another possible objection 
is illustrated in figure 14. The characteristics of two oscillations 
in angle of attack following a step-function movement of the horizontal 
control are plotted as a function of time in the upper part of figure 14. 
The first oscillation is for a typical subsonic case in which the damping 
meets present requirements, that is, C 1110 = 1.0. The second oscilla-
tion is a supersonic case in which C 1/10 = 5.0. The maximum overshoot 

am above the desired trim value is about 

2.5 times as great for the 
= 5.0 oscillation as for the C 1110 = 1.0 oscillation. For other 

values of damping this maximum overshoot may be estimated from the plot 

(also fig. 14) of maximum overshoot parameter ioo	 as a function of 
CIt cycles to damp to i/ia amplitude C1110 . This result indicates that an 

airplane having lightly damped pitch Oscillations might 
inadvertently 

attain higher load factors in a sharp pull-up, for instance, than an 
airplane having a well-damped Oscillation in pitch.
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CONCLUDING REMARKS 

On the basis of the information presented in this paper, the 
following conclusions are indicated. 

For plain swept- and delta-wing aircraft configurations, a more 
nearly linear variation of pitching moment with angle of attack will 
probably be obtained with the horizontal tail mounted in a relatively 
low position. 

The large increase in stability associated with flight from sub-
sonic to supersonic speeds should not prevent the attainment of adequate 
maneuverability at supersonic speeds. 

For tailless delta-wing aircraft configurations, those having the 
lower aspect ratio are more likely to have stable, that is, negative, 
values of the pitch damping factor Cm q + C	 throughout the Mach 

number range. 

Low values of damping associated with the short-period longitudinal 
oscillation result in larger maximum loads in sharp pull-ups. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va.
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Figure 8.- Variation of control deflection with Mach number 
for trim at zero lift and for trim in level flight at 
110,000 feet.
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Figure 9.- Some approximations for calculating the character-

istics of the short-period, longitudinal oscillation in 

pitch. 
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Figure 10.- Variation of the pitch-damping factor Cm  + C


with Mach number for tailless delta-wing aircraft.
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Figure 11.- Variation of the pitch-damping factor 	 Cm 	 + C 

with Mach number for tailless sweptback-wing aircraft.
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Figure 12.- A comparison of the damping-in-pitch factors for 

three supersonic aircraft configurations. 



NACA RN L52A1Oa
	 19 

ALTITUDE 40,000 FT 

w-- 120 

5- 

P,t I ,CI 
00 00 

0
1.0	 2.0 

M

60° 

4 
30 

5 

011210 

Figure 13.- Characteristics of the short-period longitudinal 
oscillation in pitch for two supersonic aircraft 
configurations. 
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Figure 14._ Effect of damping on the maximum angle of attack 
attained after a step-function disturbance of the hori-
zontal control. 
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