
, 

rl 
"<ji 
"<ji 
C\l 

Z 
f:-i 

cs NATIONAL ADVISORY COMMITTEE 
~ FOR AERONAUTICS 

TECHNICAL NOTE 2441 

Gu f. DOC. 

OPTICAL METHODS INVOLVING LIGHT SCATTERlliG FOR MEASURING 

SIZE AND CONCENTRATION OF CONDENSATION PARTICLES 

IN SUPERCOOLED HYPERSONIC FLOW 

By Enoch J. Durbin 

Langley Aeronautical Laboratory 
Langley Field, Va. 

~ 
Washington 

August 1951 

AUG 30 195 

u;:,.NE'::>S, SCIENCE 
& TECHNvLOGY DEPT. 



L-__________________________ ~ ________ ~ ______________ .~~~~ ________ "_~ __ ~~ __ ~ __ .v __ ~~ ________ ~ ________ . ______________ ~ ______________ ~~ 



1 

.. 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2441 

OPTICAL METHODS INVOLVING LIGHT SCATTERING FOR MEASURING 

SIZE AND CONCENTRATION OF CONDENSATION PARTICLES 

IN SUPERCOOLED HYPERSONIC FLOW 

By Enoch J. Durbin 

SUMMARY 

Optical methods involving light scattering for measuring the size 
and concentration of condensation particles in supercooled hypersonic 
air flow are discussed. Two methods based on scattered-light measure
ments and on transmitted-light measurements are given which can be used 
for obtaining quantitative measurements provided (1) that steady- state 
conditions can be achieved during the time required for the measurement 
of light intensity) (2) that the condensation particles are approxi
mately spher i cal in shape and essentially uniform in size) and (3) that 
the index of refraction of the condensation particle s i s known 
approximately. 

For verification of these methods the radi i of ammonium-chloride 
particles were determined) and a comparison of these reRults with meas
urements made by a method independent of light-scattering theory and 
with measurements made by Langstroth ) Gillespie) and Pearce gave good 
agreement. 

With the use of t he light - scattering methods) the size and concen
tration of condensation particles in supercooled hypersonic air flow 
were measured. 

INTRODUCTION 

The problem of condensation of the components of air in hypersonic 
flow has arisen in connection with work in the Langley II-inch hyper
sonic tunnel and has been reviewed by Becker in reference 1. Because 
of the rapid expansion and cooling of the air in the nozzle of this 
tunnel) the temperature of the air rapidly drops below that at which 
it liquefies . Under these conditions , fog has been observed in the 
test section. This appearance of fog is accompanied by changes in 
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the aerodynamic paramete:~s measured in the tunnel. If the air is pre
heated suf'ficiently to keep the temperature in the test section above 
the condensation pOint, ::og can be prevented from forming. However, 
because of the very high expansion ratio, large quantities of heat must 
be transferred during the test run at a fairly rapid rate if the appear
ance of fog is to be pre'Tented; therefore, high-powered heaters which 
are very expensive to in:3tall and operate are required if fog-free 
hypersonic flow is to be obtained. 

In order to obtain a more satisfactory solution to the problem, 
a satisfactory theory by which the presence of condensation in such a 
tunnel can be predicted :.S needed. The phenomenon of condensation in 
hypersonic flow is, in fact, the subject of much controversy. Several 
plausible explanations of the appearance of the fog have been advanced 
and are summarized in reference 1. However, detailed quantitative 
information concerning the nature of the condensation particles is 
necessary before a satisfactory understanding of the phenomenon can be 
had. 

The purpose of this paper, then, is to provide experimental methods 
for measuring the size ar .. d concentration of condensation particles in 
supercooled hypersonic flow in order to help resolve some of the ques
tions concerning the nat~re of this condensation. 

A fundamental requirement of any proposed method of measuring con
densation particles is that the air flow in which the fog appears be 
undisturbed by the measuring process. This requirement suggests opti
cal methods of measuremeLt. Optical methods involving light scattering 
were investigated because the particles were observed by their ability 
to scatter light. An effective presentation of light scattering by 
condensation particles ie. shown in figures 1 and 2. 

The author is indebted to the Computation Laboratory of the National 
Applied Mathematics Laboratories of the National Bureau of Standards for 
extending the tables of angular-light-intensity-distribution functions 
needed for this project. 

I 

SYMBOLS 

intensity of beam of light after it passes through a length l 
of condensation particles 

intensity of light scattered at any angle B 
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10 incident intensity of team of light 

8 angle between direction of incident beam and reverse 
direction of ob served scattered light 

~ wavelength of light source 

R distance from particle to point of observation 

i l (8),i2 (8) functions of angular distribution of intensity propor
tional to intensities of plane-polarized components of 
scattered lightj precisely defined in first section of 
appendix 

K 

r 

CL = Kr = 2nr 
T 

7, 

k 

propagation constant of electromagnet i c wave in conden
sat ion particle 

particle radius 

particles per unit volume 

di stance light travels through condensation particles 

scattering- area coefficient 

THEORY OF LIGHT SCATTERING 

Intensity of Scattered Light 

The angular distribution of intensity and degree of polarization 
of the light scattered by a fog is related to both t he s ize and index 
of refraction of the fog particles. This relationship permits the 
calculation of fog-particle s izes from observations of the distribution 
of intensity and polarization of the scattered light. 

Maxwell ' s equat ions de scribing the behavior of electromagnetic 
waves have been used to derive a theory of light scattering by small 
particles . If an electromagnetic wave impinges on a body, a forced 
oscillation of all free and bound charges within the body occurs. This 
oscillation occurs at the same frequency as that of the applied field. 
These constrained moving charge s in turn set up secondary fields . The 
net field, then, at any point is made up of the vector sum of both the 
primary incident field and the secondary fields. The solution of 
Maxwell's wave equations in spherical coordinates for the condition of 
an electromagnetic wave incident on a sphere was derived by 
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Gustav Mie in 1908. The complete derivation is given in a compact 
form by Stratton (reference 2). 

The ge:J.eral solution for particles of any size illuminated by a 
monochromatic light beam of unit intensity can be written as 

where 

e 

R 

i (e),i (e) 
1 2 

2 

I = 1..2 2t(e) + i (e~ e 8 1 2 
n:R 

angle betw'een incident beam and direction of observation 

intensity of light scattered at any angle e 

wavelengtb of the monochromatic light source 

distance from the particle to the point of observation 

functions of angular distribution of light intensityj 
precisely defined in the first section of the appendix 

The angular-intensity-distribution functions il(e) and i 2 (e) 

are proportional to the intensities of the two plane-polarized com
ponents scattered by a particle illuminated with monochromatic light 
(see fig. 3). The function il(e) is the component of the scattered 

light the electric vector of which is perpendicular to the plane of 
observation (the plane containing the incident ray and the point of 
observation), and i 2 (e) is the component the electric vector of 

which is in the plane of observation. When the particle is illuminated 
by a light of unit intensity, the components of the intensity of the 
light scattered per unit solid angle as measured at an angle e from 
the incident ray are given by 

and 

-~--
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The scattering theory, as given here, is derived for a single 
particle. For the results to be applicable to measurements of fog 
particles, the light must be scattered only once in going from the 
incident beam to the observer. This type of scattering can be assumed 
to occur, when the particles are separated by a distance of 100 times 
the particle radius . Scattering theory further assumes that the effect 
of each particle can be added to determine the net effect of a group of 
particles. 

Determination of Particle Size by Light-Scattering Method 

A study of the equations of Miels solution in the first section 
of the appendix indicates the complexity and difficulty in attaining 
numerical solutions . Fortunately, however, the application of these 
equations to the determination of particle size can be made less diffi
cult by considering three limiting cases (reference 2) which serve to 
reduce Miels solution to a more readily usable form. 

The three limiting cases are defined in terms of a which equals 
Kr where K is the propagation constant of an electromagnetic wave 
in the spherical condensation particle and r is the particle radius. 
Or they can be defined in terms of the relation of r to A, the wave
length of the light, since 

and therefore 

K ill~ 

1 v 
~ 

where ~ is the permeability of the particle, € 

v is the velocity of the wave in the particle, ill 

frequency of the wave, and f is its frequency. 

is its permittivity, 
is the angular 

(1) For the first limiting case, assume ~« 1. This case is 
then the case of particles of radii very much less than the wave
lengths of the light employed. True solutions and the fine colloidal 
solutions have particles with sizes falling in this group, In this 
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case, the inf'inite serieE; representing il(e) and i 2 (e) converge very 

rapidly, and only the first-order electric oscillation term. need be 
considered. 'Dohis mode of oscillation corresponds to that of an electric 
dipole. This particular solution to Miels equations is the well-known 
Rayleigh law of scattering (references 3 and 4): 

q~~m2 - lJ2V2 2 18 = ~:2. ---4(1 + cos e) 
cR ~ + 2 A. 

where m is the index of refraction of the particle and V is the 
particle volume. 

(2) For the second case, assume a,» 1. Now the particle radius 
is very much greater than the wavelength of the light employed. Coarse 
suspensions and most natlrral fog water droplets have particle sizes in 
this group. In this case, Miels solution reduces to the much more 
simple Huygen I s principle as used in diffraction and reflection problems 
in physical optics (reference 5) . With increasing particle size, the 
practical value of Miels solution diminishes, and an approximate macro
scopic theory should be used. This theory is based on simple reflection 
and refraction of a wave at the boundary between two surfaces. The 
intensity of the light reflected is no longer dependent on the droplet 
size but rather is a function of index of refraction and angle of 
incidence. 

(3) For the third case, assume a, ~ 1, where the particle radii 
are of the same order of size as the wavelength of the light employed. 
A major portion of all colloidal solutions and fine suspensions have 
particle sizes in this ~·oup. In this case, no simplifying reductions 
occurj however, the Computation Laboratory of the National Applied 
Mathematics Laboratories of the National Bureau of Standards has 
computed and tabulated the series of Miels solution for particles of 
sizes ranging from a = 0.5 to a, = 6.0 and for particles with index 
of refraction m from 1.33 to 2.00. (See reference 6.) 

Each of the three ~'oups in the preceding section has distinctive 
light-scattering characteristics due to which particles in an aerosol 
or fog can be classified according to siz.e by simple light-scattering 
measurements. 

If a fog of unknown particle size is illuminated by a beam of 
monochromatic light and the intensity of the scattered light is measured 
simultaneously at two angles 81 and 82 , which are symmetrical about a 

line drawn normal to the direction of incidence, then classification of 
the particles in the fog according to size is possible. As an example, 

----------



NACA TN 2441 

if the angles chosen for the scattering measurement are 20° and 160°, 
as measured from the direction of incidence, then the following three 
conditions can occur: 

7 

(1) If the intensities at 200 and 1600 are equal, then the particle 
falls in the first group and the radius is less than approximately 0.02 
of the wavelength of the light source. This upper limit for the Rayleigh 
type of scattering can be determined from the values computed from Mie's 
solution. 

(2) If the intensity of scattered light at 200 is negligible com
pared with the intensity at 1600

, then the particle falls in the second 
group, and its radius is greater than approximately 2 wavelengths of 
the light source. 

(3) If the intensities at 200 and 1600 are not equal and that at 
20° is not negligible compared with that at 160°, then the particle 
radius is in the third group and its size can be determined more exactly. 
Within this group, the ratio i l (e)/i2 (e) or the polarization of the 

scattered light at a known angle of scattering provides a measure of 
particle size when used with the previously mentioned tabulation of Mie's 
solution. Unless absolute intensities of i l (8) and i 2 (e) are known 

however, this method does not provide a unique solution to the particle
size problem for all sizes within this group since there is more than 
one particle size which will yield the same ratio i l (8);li2 (e). A 

unique solution can be obtained, however, when the particle size is in 
the third group, without the need for measuring absolute intensities if 
the ratio i2 (8l )/i2 (82) is used. Since this measurement of 

i2 (81)/i2 (82) can be used to establish the group to which the particles 

belong, the measurement of a single ratio of intensities can be used to 
establish both the size group and particle size if the particles are in 
the third group. 

Although Miels solution was derived for spherical particles, small 
deviations from the spherical shape produce no large error in the calcu
lation. In choosing angles 81 and 82 it should be noted that measure-

ments of scattered light at angles close to the incident beam are desir
able. The relative intensity i(81)/i(82) is a function of particle 
size. If 8i and 8

2 
are chosen to be ciose to the line of incidence, 

the ratio i (el)/i (82 ) is found to have greater variation for small 

changes in particle size. 
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Determination of Uniformity of Particle Size 

Since the preceding method requires a reasonably uniform particle 
size in the fog under investigation, a convenient method of determining 
particle-size uniformity is necessary. 

When a fog is illum:Ullited with white light, the angular distribution 
of scattered light is dL'ferent for each color component of the white 
light. If the particles in a fog are uniform in size, one wavelength 
is scattered with intens:Lty greater than all others at each angle of 
scatter. Thus if the anl~le of observation of i (e) is varied from 

1 
00 toward 1800

, a sequenc::e of color spectra in the order violet, blue, 
green, yellow, orange, and red is seen if the particles are uniform in 
size. Study of the tab~Lated solution of Miels equation (reference 6) 
reveals that the ntnnber ()f spectra is roughly equal to 105 times the 
particle radius in cent~neters. These spectral sequences are known as 
higher-order Tyndall spel::tra. 

The purity and brightness of the spectra increase with uniformity 
of particle size. For s:naller-size particles the number of spectra is 
reduced until at a radius of approx~tely 10-5 centimeters the spectral 
sequence s disappear. Thus, higher-order Tyndall spectra cannot be used 
in determining particle-size uniformity for particles of radius less 
than 10-5 centimeters. :~or particles having a radius less than this 
value the angular distri"bution of scattered light is almost independent 
of wavelength. For small particles the effective scattering area 
increases for decreasing values of wavelength. Thus, if small particles 
are illuminated with white light, the scattered light will appear 
bluish white and the traasmitted light will appear reddish. This differ
ence is illustrated py the blue color of the scattered light from the 
sky, and the red color of the transmitted light of the sun as it sets. 

Intensity of Transmitted Light 

In the foregoing sections, the determination of particle size from 
measurements of the char~cteristics of the scattered light was presented. 
An alternate approach to the problem utilizes the change in the charac
teristics of the transmitted light due to the subtraction of the scat
tered light. The use of light-transmission measurements is based on the 
following relations: 

If a beam of light of intensity 10 impinges on a region of con
densation particles of r~dius r and concentration n particles per 
unit volume, the intensity of the beam I after it passes through a 
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lell~th I of such particles is given by the basic transmission equa
tion as 

I 
2 

I e-knr nl 

° 
The term knr2 represents the effective area for light scattering for 
each particle . 

9 

The scattering- area coefficient k is a function of particle size , 
wavelength, and index of refraction of the particle and is defined 
mathematically in the second section of the appendix. The expression 

represents the sum of all the light scattered over the distance I. 
Since this sum is a function of k and for a given group of fog parti
cles of uniform size and uniform concentration k is a function of 
wavelength A only, then the transmission I/Ia is a function of wave
length only. 

Determination of Particle Size and Concentration 

by Transmission Method 

If kl is the scattering-area coefficient for the particles in a 
given fog at a wavelength Al and ~ is the scattering-area coef
ficient for these same particles at a wavelength A2 , then the inten

sities of the light for the two conditions are 

2 
I - klnr nl ° e 1 

2 
I - k2nr nl ° e 2 

where I is the incident light intensity at A and I i s the 01 1 02 
incident light intensity at A2" These equations can be written as 
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Now if these two equations are divided, 

kl loge 101 - loge II 

k2 loge 102 - loge 12 

Therefore, if measuremer..ts are made of the transmission at two wave
lengths "'1 and "'2' tt.e ratio kl /k2 can be determined. 

Since 

define 

2nr 
0,1 --

"'I 

0,2 == 2nr 
"'2 

then 

From reference 6 or from table 1 of the present paper, a curve 
of k as a function of a, can be obtained for the index of refraction 
of the particles being studied. If this curve is plotted with loga
rithmic scales, a simple geometric process can be used to determine the 
particle size. For illustrative purposes, a curve of k as a function 
of a for an index of r=fraction of 1.44 is plotted in figure 4. 

The ratio k.Jk2, j"J.st determined, represents a fixed distance 
0,1 _ "'2 

along the ordinate of fi,~e 4. Similarly, the ratio ~ - "'1 repre-

sents a fixed distance along the abscissa of figure 4. If now, the curve 
is examined for two pOint s, separated by an abscissa difference 
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of A2/Al and an ordinate difference of kl /k2
, the values of Q 

corresponding to these two points can be read off the abscissa scale. 
The radius can be found from 

or 

2:rr 

r = ~A.2 
2 :rr 

The chief advantages of this method are that i t permits a study to 
be made of the growth of particl es, and, in addit i on, a single set of 
measurements suffices for both concentr ation and size. 

Reference 6 contains a tabulation of k as a function of Q for 
indices of refraction from 1 . 33 to 2 . 00 . The Computation Laboratory of 
the National Bureau of Standards has extended the computations of refer
ence 6 for this project. Included in this extension is a tabulation 
of k as a function of a for an index of refraction of 1.20 which 
approximates the value of the index for both oxygen and nitrogen. In 
addition, the angular-light-intensity- di stri bution functions i l (8) and 
i2(8) have been calculated for this index of refraction. These exten
sions are given in table 2. 

The concentration of particles can be easily determined when the 
particle radius is known. Solvi ng the basic transmission equation 
for n gives 

n 
loge 10 - lo~ I 

k:rrr22 

If the particle radius has been determined by measurements of the 
scattered light, a simple measurement of l i ght transmission at one wave
length will be necessary for the cal cul ation of the particle concen
trationj if the radius has been determined by the light-transmission 
method, no further measurements need be made t o determine concentration. 

EXPERIMENTAL VERIFICATION OF LIGHT - SCATTERING METHODS 

In order to determine the validity of the light- scattering methods, 
experiments were conducted to measure the size of particles in a 
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chemical fog. An aerosol of ammonium-chloride particles was prepared 
by the combination of the vapors of hydrochloric acid and ammonium 
hydroxide. The particle s were found by preliminary measurements to fall 
in the third group (r ~ "'). Measurements of particle size were made by 
three different methods, and the results were compared. In addition, 
experimental results of reference 7 are given. 

For the light-scattering measurements, a monochromatic light con
sisting of the green line of the mercury spectrum with '" = 5461 ang
strom units was used to illuminate the ammonium-chloride aerosol. (See 
fig. 5.) An average particle radius of 4.1 x 10-5 centimeters was 
determined; however, a large variation existed in the particle-size 
measurements. Radii as mnall as 2.5 X 10-5 centimeters and as large as 
5.0 X 10-5 centimeters were measured in succeeding experiments. This 
variation could be only :?artially attributed to the inherent difficulties 
in measuring scattered l.lght. 

The particles formed in the combination of the vapors are elec
trically charged. Becau:3e of this charge the rate of aggregation tends 
to be reduced and thus a more nearly constant particle size will be 
produced. However, a ffiillLll but definite growth of particles does occur 
during the experiment; therefore, making two successive identical meas
urements becomes very di:~ficult. 

For the light-transrussion measurements, a fog of ammonium-chloride 
particles was illuminated by the green line (5461 A.) and the blue line 
(4358 A.) of the mercury spectrum alternately. (See fig. 6.) Both size 
and concentration of particles were determined. Particles with radii 
varying between 2.9 x 10 ·-5 centimeters and 4.2 X 10-5 centimeters were 
measured. This result is in good agreement with the light-scattering 
measurements. 

Again, the particleEI of ammonium-chloride were found to grow during 
the experiment. The particle size was found to be a function of the 
turbulence in the chamber and the time elapsed since the formation of 
the particle. This obseI~ation explains the variation in sizes meas
ured by these methods. 

A measurement of particle size which was completely independent of 
light-scattering theory ,,'as necessary to provide a reference with which 
results obtained by usinE; light-scattering methods could be compared. 
One such method which makes use of Stokes' law is as follows: 
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If a small spherical particle of radius r passes through a gas 
of viscosity ~ at a constant velocity v, the force F which is 
opposing the motion of the particle is given by Stokes' law as 

F = 61U'~v 

If the particle is falling because of the force of gravity, the force 
tending to accelerate the particle is given by 

where p 
medium. 

F = mg = ~nr3(p - p')g 
3 

is the density of the particle and p' is the density of the 
When the particle is falling at a constant velocity, 

~1U'3( p - p') g = 61U'~v 

r - ,f 9nv 
- V2(p - p')g 

Thus, by measuring the constant velocity at which the particles in the 
fog fall, determination of the particle radius is possible. 

An experiment was performed by applying Stokes' law for the meas
urement of particle size in an ammonium-chloride fog. The average 
velocity of particle fall was found to be 0.00635 centimeter per second. 
With the use of the following parameters, 

6 -6 
~ = 179. X 10 grams per second-centimeter 

p 1.527 grams per centimeter3 

p' ~ 0.001 grams per centimeter3 

2 g = 979. 6 centimeter per second 

t he radius calculated was 5.85 X 10-5 centimeters. 

The experimental results of reference 7 provide another means of 
verifying the light-scattering methods. In these experiments the 
average particle mass of ammonium chloride was measured and the growth 
of particles during aging was noted. The mass was noted to vary with 
air velocity and time. An average particle mass in still air of 
2 X 10-13 grams was found after 2 minutes and 4 X 10-13 grams after 
5 hours. Since the density of ammonium chloride is 1.527 grams per 

-- --. --- -- - - ---------~ ..... 
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cubic centimeter, the average particle radius, if spherical particles are assumed, is calculatei to be 

. - 5 6 -5 r = 3.1 x.D to .3 x 10 centimeters 

For convenience in compar?-ng all the foregoing experimental results, a summary of ammonium-chloride- particle radii is given in the following table: 

Scattered-light measurement • . 

Transmitted-light measurements 

Measurement utilizing Stokes' law 

Measurements of reference 7 . 

Radius 
(cm) 

4.1 X 10-5 

2.9 x 10-5 to 4.2 x 10-5 

. 5.85 x 10-5 

3.1 x 10-5 to 6.3 x 10- 5 

The agreement between the -farious methods is a verification of lightscattering methods. 

APPLICATION OF LIGHT-SCAT~~ERING MEI'RODS TO MEASUREMENT OF CONDENSATION 
PARTICLES IN ~;UPERCOOLED HYPERSONIC AIR FLOW 

The size and concentrEtion of condensation particles in supercooled hypersonic air flow were measured by the light-scattering method and light-transmission method. 

The experimental arraLgements used are given in figures 7 and 8. The air was expanded throu€p a nozzle which produced a temperature ratio of 0.096 corresponding t o a. pressure ratio of 0.00028 when no condensation takes place. With the assumption that the condensation particles were nitrogen or o~gen, tbe measurements gave a particle radius of the order of 5.0 X 10- centimeters and concentrations of the order of 10 10 particles per cubic centimeter. If the particles measured were really droplets of water wbich has an index of refraction of 1.33 rather than oxygen or nitrogen with an index of 1.20, the error in the particle-size measurement would be only 5 percent. 

Since only a single scattering has been assumed t o occur when the particles are separated by a distance of 100 times the particle radius, for particles of radius 10-6 centimeters concentrations up to 1012 particles per cubic centimeter should yield single scattering. Since the 

-----,-- -- --- --- -----~ 
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tunnel concentrations are of the order of 1010 particles per cubic 
centimeter, single scattering can be assumed for these measurements. 

CONCLUDING REMARKS 

15 

Optical methods involving light scattering for measuring the size 
and concentration of condensation particles in supercooled hypersonic 
air flow have been discussed. Two methods based on scattered-light 
measurements and on transmitted-light measurements have been given which 
can be used for obtaining quantitative measurements provided (1) that 
steady-state conditions can be achieved during the time required for the 
measurement of light intensity, (2) that condensation particles are 
approximately spherical in shape and essentially uniform in size, and 
(3) that the index of refraction of the condensation particles is known 
approximately. 

Langley Aeronautica l Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., May 15, 1951 
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APPENDIX 

SOLUTION OF WAVE EQUATION AND EXPRESSION 

FOR SCATTERING-AREA COEFFICIENT 

Mie I s Solution of the Wave Equation 

The solution of M~rell's wave equation in spherical coordinates 
has been derived by GUsteN Mie (see reference 2) for the case of a plane 
wave incident on a spherE: of radius r and with an index of" refrac
tion m. The angular-lie~t-intensity-distribution functions i l (8) 

and i 2 (8) are proportional t o the plane-polarized light components 

scattered at an angle e by the sphere. The planes 
of i l and i2 are, reEpectively, perpendicular to 

of observation. (See fig. 3.) The functions i 1 (8) 

given as follows (see reference 6) : 

of oscillation 
and in the plane 

and i 2 (8) are 

i l (8) k ~(n~ 1) zn + 
bn Gzn -(1 _ x2)"»] 2 

n(n + 1) 

2 L ~ ~ LX"» - (1 - X
2)zn] b j i2(8) = + n z 

n(n + 1) n(n + 1) n 
n=l 

where 

T""---~ 
J 
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and 

1/2 
S (x) ==(10{2) J lex) 
n n~ 

F (x) == S (x) + iC (x) n n n 

1 dbn(x) 
z == z (x) == ~--=-~ 

n n n(n + 1) dX 

a,== 2:rtr 
A. 

f3 == ma, 

x == cos e 
The quant it ie s are Bessel functions of and J _n_1(x) 

2 
bn(x) 

half integral order and is the Legendre polynomial of 
n(n + 1) 

degree n. Primes denote a first-order derivative. 

17 

The expressions for il(e) and i 2 (8) are both infinite series. 

Each term in this series is made up of two parts - a magnetic and an 
electric component. The term ~ is the magnetic component and the 

term bn is the electric component. For the case where r« A., the 

terms of this series diminish rapidly and a satisfactory approximation 
is given by including only the electric component of the first term. 
The case of r« A. is the case of a simple electric dipole. The 
results of using this approximation agree with the relation determined 
by Rayleigh for very small particles. 

Scattering-Area-Coefficient Expression 

The integral expression for the scattering-area coefficient k, 
as given in reference 6, is 
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where 8 is the angle between the incident beam and the reverse direc
tion of observed scattered light and i l (8) and i 2(e) are defined in 

the first section of thi f3 appendix. The integral term on the right 
represents the total sca-~tered light. 
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TABLE 1. - EXTENSION OF TABLES OF SCATrERING-AREA 

COEFFICIENTS FOR AN INDEX OF 

REFRACTION m = 1.20 

a.. k a.. k 

0.1 4.354 x 10-6 0.5 2.588 x 10-3 

.2 6.925 x 10-5 .6 5.233 x 10-3 

.3 3.471 x 10-4 .8 1.543 x 10-2 

.4 1.081 x 10 
-3 

1.0 3.405 x lO-2 

1.2 6.167 x 10-2 



TABLE 2. - EXTENSION OF TABLES OF ANGULAR -LIGHT- INTENSITY-DISTRIBUTION FUNCTIONS 

FOR AN INDEX OF REFRACTION m = 1. 20 

9 11 (9) 1
2

(9) 11 (9) 12(9) 11 (9) 
(deg) 

a. = 0 .1 CI = 0 .2 

20 1 . 626 x 10- 8 1. 436 x 10-8 1.022 X 10-6 9.026 X 10-7 1.130 X 10- 5 

30 1 . 627 X 10- 8 1. 220 X 10- 8 1.024 X 10- 6 7. 674 X 10-7 1.133 X 10- 5 

40 1. 628 X 10- 8 9. 549 X 10- 9 1.025 X 10- 6 6.012 X 10-7 1.137 X 10- 5 

140 1 . 638 X 10- 8 9. 615 X 10- 9 1.052 X 10- 6 6.180 X 10-7 1. 206 X 10- 5 

150 1. 639 X 10-8 1.229 X 10-8 1.054 X 10-6 7. 909 X 10- 7 1 . 210 X 10- 5 

160 1. 639 X 10- 8 1. 448 X 10- 8 1.055 X 10- 6 9. 321 X 10-7 1. 214 X 10- 5 
-

CI = 0 . 4 0. =0 . 5 

20 6.078 X 10- 5 5. 363 X 10-5 2.190 X 10- 4 1. 931 X 10-4 6.083 X 10- 4 

30 6.109 X 10-5 4. 574 X 10- 5 2.207 X 10- 4 1. 651 X 10 -4 6.154 X 10-4 

40 6.151 X 10- 5 3. 599 X 10- 5 2. 231 X 10- 4 1. 303 X 10- 4 6. 251 X 10- 4 

140 6. 825 X 10- 5 4.017 X 10- 5 2. 625 X 10- 4 1. 548 X 10- 4 7. 903 x 10- 4 

6. 871 X 10- 5 5. 162 X 10 - 5 2. 653 X 10- 4 I , 
8.022 x 10- 4 150 1. 995 x 10 ' ~ 

160 6 . 905 X 10-5 6.102 x 10- 5 2. 673 X 10- 4 2. 363 x 10- 4 8. lli X 10- 4 

0. =0 . 8 CI = 1.0 

20 2 . 806 X 10-3 2. 470 X 10- 3 8.053 x 10- 3 7.069 x 10- 3 1. 605 x 10-2 

30 2 . 866 x 10- 3 2 .134 X 10-3 8. 337 x 10- 3 6.169 x 10- 3 1. 695 x 10-2 

40 2 . 949 x 10- 3 1. 707 X 10- 3 8. 736 X 10- 3 5.000 x 10- 3 1. 823 X 10-
2 

140 4. 495 x 10- 3 2. 670 x 10- 3 1. 714 x 10-2 1.027 X 10-2 5.026 X 10- 2 

150 4. 616 x 10- 3 3. 484 x 10-3 1 . 787 X 10-2 1. 355 X 10-2 5. 339 x 10-2 

160 4. 707 X 10- 3 4.168 X 10-3 1. 842 x 10-2 1. 634 X 10-2 5. 581 x 10-2 

1 --_ ._- _ . --- ---

12(9) 

a. = 0 . 3 -l 
9. 971 X 10- 6 

8. 489 X 10- 6 i 

6. 663 X 10- 6 I 

7.088 X 10- 6 

9.085 X 10- 6 

1 .072 X 10- 5 
I 

a. = 0 . 6 ! 

I 

5. 363 X 10- 4 i 

4. 597 X 10- 4 

3.641 X 10- 4 

4. 669 x 10-4 

6.039 x 10- 4 

7.174 x 10 - 4 

a. = 1. 2 

1. 403 x 10 -2 

1. 241 X 10- 2 

1. 025 x 10 
-2 

3.042 X 10-2 

4.071 x 10-2 

4. 963 X 10-2 

----

~ 

~ 
:x> 
1-3 
!2: 

rD 
+" 
+" 
f--J 

rD 
f--J 
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MERCURY ARC SOURCE 
LENS 

NACA 

Figure 1. - Setup of ligh·~ - scattering experiment. (From reference 1.) 

(a) No preheating of air . Stagnation 
temperature of 5400 F abBolute. 

(b) Air preheated . Stagnation 
temperature of 11600 F 
absolute. 

Figure 2.- Photograph of light beam pa s sing through test section of Langley 
ll- inch hyperflonic tunnel. (From reference 1.) 
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Incident ray -------,~----~~ 

Plane 

Scattering 
particle 
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Figure 3.- Directional notation used in light-scattering experiments. 
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NACA TN 2441 

.02~ __ ~~ __ ~~~~ ___________ ~I~ ____ ~'~ __ ~'~~~I~~I~~I~~ 
.5. .7 .8 .9 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

a. 

Figure 4.- Illustrative curve of scattering-area coefficient k as a 
function of a for index of refraction 1.44. (Data from reference 6.) 
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A High-voltage photocell power supply 

B RCA lP2l multiplier phototube 

C Ballantine model 304 vacuum-tube voltmeter 

D Chamber for generating ammonlum-chlorlde fog 

E Glass vindows 

~ Vratten ligh1;-fllter monochrClll8.t 77A 

G Focusing lens 

R Vater infrared filter 

I Adjustable slit 

J A~ooled mercury-vapor high
pressure lamp GE type B-H6 

K Lamp power supply 
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A 

B C 

C 

Figure 5.- Experimental arrangement used in measuring particle sizes in 
ammonium-chloride fog by light-scattering methods. 
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A 
H 

I 
I--

f-

B D D F G 

- -

A Lamp power supply 

BLow-pressure mercury lamp 

C Wratten light-filter :m.onochrana.t 77A 

D Glass windows 

E Chamber for generating ammonium-chloride fog 

F RCA lP2l multiplier pbototube 

G Ballantine model 304 ~acuum-tube voltmeter 

H Photocell power suppl,y 

Figure 6.- Experimental a.rrangement used in measuring particle size and 
concentration by light-transmission method. 
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A High-voltage photocell p~Ter supply 

B RCA lP2l multiplier phototube 

C Narrow-band amplifier 

D Test sectioo of the Langley ll-inch hypersonic tunnel 

E Glass windows 

F Wratten light-filter monochromat 77A 

G Focusing lens 

H Water infrared filter 

I Adjustable slit 

J Air-cooled mercury-vapor high
pressure lamp GE type B-H6 

K Lamp power supply 

L Brown Electronik strip chart 
recorder 

Directioo of air 
flow in wind -------I 

tunnel 

F 

A 

B 

D 

B 

A 

K 

27 

L 

C 

C 
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Figure 7.- Experimental arrangement used in measuring particle sizes by 
light-scattering methods in condensation experiments in the Langley 
II-inch hypersonic tunnel. 
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A 8 C 

I--

])1rection a! 
air flow 

I 
I 

I , 
. 

1 
A Current-etabl11zed pilot .l.8mp 

B Wratten light-filter mcnochrcaat 77A 

C Glass windows 

NACA TN 2441 

G 

I 
r---" 

C E f-- F 

'--

D Test sectIon of the Langley ll-inch hypersonic tunnel 

E RCA lP2l multiplier phototube 

r Brown Electronik strip ohu-t recorder 

G Photocell paver supply 

Figure 8. - Experimental arrangement used in measuring condensation particle 
concentration by light- ;ransmission method in the Langley II-inch 
hypersonic tunnel. 

NACA.Langley ·8·21·51 • 1000 
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