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AT LOW PFESSURE RATIOS 

By John S. Dennard and Barney H. L i t t l e ,  Jr. 

An invest igat ion has been made t o  determine the  pressure r a t i o s  
required t o  operate a s l o t t ed  tunnel through a range of Mach number 
between approximately 0.6 t o  1.4 where t he  speed var ia t ion  i s  ef fected 
by (1)  removal of a i r  from the  main stream by aux i l i a ry  pumping, (2)  use 
of a main-stream-operated e jec tor  located downstream of t he  t e s t  sec- 
t ion ,  or  (3) use of combinations of these methods. The tunnel used f o r  

1 1 these t e s t s  was of constant-area t e s t  section,  4- by 4- inches, with 
2 2 

three  diffuser-entrance cross sections which formed th ree  configurations. 
I n  each configuration t h e  amount of slot-flow air ejected was controlled 
by a f l a p  i n  each s l o t  of the  tunnel f loor .  

For t h e  case i n  which no aux i l i a ry  pumping was used, da ta  were taken 
t o  f ind Mc, t he  Mach number a t t a inab le  i n  the  t e s t  section,  f o r  varying 
pressure r a t i o s  across the  tunnel and varying posit ions of the slot-flow- 
control  f l ap s  f o r  a l l  three  configurations. In two configurations, data  
were taken t o  f ind  the  t e s t  sect ion Mach number as  a function of bleed 
flow f o r  a number of pressure r a t i o s  and f l ap  posi t ions .  These data  were 

6 6 taken a t  Reynolds numbers between 4 X 10 and 7 X 10 per foot .  

It was found that  fo r  operation without bleed t h e  main e f f ec t  of 
t he  f l aps  was t o  f i x  t h e  choking Mach number i n  the  tunnel. For opera- 
t i o n  with bleed f o r  the  range of Mach number and bleed-flow r a t i o  inves- 
t igated,  the  incremental Mach number obtained with an incremental per- 
centage of mass flow bled off was approximately a constant (0 .1  increase 
i n  Mach number f o r  3 .?-percent bleed flow) and was l i t t l e  affected by 
pressure r a t i o ,  f l a p  position, and Mach number. For most economical 
operation t h e  diffuser-entrance area should be chosen no larger  than i s .  
necessary t o  obtain the  maximum desired Mach number. 

Application of these data  t o  p r ac t i c a l  problems showed substant ia l  
power savings could be real ized i n  a s l o t t ed  tunnel by the  use of aux- 
i l i a r y  bleed. 
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The recent development of t he  s l o t t ed  throat  has made transonic 
wind-tunnel operation not only possible but  p rac t ica l .  As a r e s u l t  
several  large-scale transonic tunnels a r e  i n  operation. Examples of 
these a re  the  Langley 8-foot transonic tunnel ( r e f .  1) and t he  Langley 
16-foot transonic tunnel ( r e f .  2 ) .  These tunnels, however, require 
considerably more power than do closed th roa t  tunnels of comparable 
s ize .  A comparison has been made i n  reference 1 t o  show tha t  at a Mach 
number of 1 . 1 t h e  power required f o r  operation of a s l o t t ed  t e s t  sect ion 
i s  about 1.5 times a s  much as  t h a t  f o r  a so l i d  t e s t  section.  It i s  a l so  
shown i n  reference 1 tha t  the  power problem focuses on the  region where 
the  s l o t  flow re jo ins  the  main stream going i n to  t he  d i f fuser .  Not only 
a re  the  l oca l  power losses large i n  t ha t  region, but a l so  it is  there  
t ha t  t h e  performance of the  d i f fuser  i s  considerably affected s ince  t h e  
i n l e t  boundary-layer flow of the  d i f fuser  largely  determines t h e  e f f i -  
ciency of t h a t  component. 

The tunnels described i n  references 1 and 2 both operate on t he  
pr inciple  whereby t he  main stream f romthe  t e s t  sect ion i s  used as  an 
e jec tor  t o  pump a i r  out of t he  s l o t s .  There ' i s ,  however, another method 
of disposing of t h i s  s l o t  flow involving the  use of an auxi l iary  pump t o  
remove a l l  or  a par t  of t he  s l o t  flow from the  plenum chamber around t h e  
t e s t  sect ion and re tu rn  it t o  the  stream at some point downstream. It 
has been used extensively i n  small-scale s l o t t  ed-tunnel i n s t a l l a t i ons  - 
primarily t o  enable these f a c i l i t i e s  t o  operate at Mach numbers much 
higher than those which t he  dr ive  compressors could provide. Examples 
of the  use of t h i s  method f o r  t h i s  purpose a re  given i n  references 3 and 
4 although i n  these  repor ts  no pa r t i cu l a r  a t t en t ion  was cal led t o  i t s  
use. It has never been determined whether the  removal of bleed flow 
from the  s l o t  chamber by means of aux i l i a ry  pumps i s  b e t t e r  from the  
standpoint of t o t a l  power consumed than t he  method of using the main 
stream as an e jec tor .  An attempt has been made i n  reference 5 t o  com- 
pare ana ly t ica l ly  the  known power requirements of a conventional s l o t t ed  
tunnel with some assumed power requirements f o r  a bleed system, and t he  
conclusion w a s  reached tha t  nei ther  system was b e t t e r  than t he  other .  
I n  the  analysis ,  however, t he  author assumed t h a t  t he  increase i n  d i f -  
fuse r  efficiency resu l t ing  from the  use of a bleed system was small. 
Actually, t h e  power savings from such increased d i f fuser  efficiency 
could be considerable because of t he  excellent velocity p ro f i l e  avail-  
able a t  the  d i f fuser  entrance when using t he  auxiliary-pump bleed system. 
This i s  pointed out i n  reference 6 i n  which the  power requirements of 
several  s l o t t ed  t e s t  sections were measured. In t h i s  reference a l so  it 
was concluded t ha t  a t  Mach numbers l e s s  than 1 .2  the  use of an auxi l iary  
pump f o r  slot-flow removal provided power parameters l e s s  than those f o r  
any e jec tor  configuration tes ted .  
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The purpose of t h i s  invest igat ion is  t o  determine the  r e l a t i v e  
advantages of t h e  two systems of handling s l o t  flow and t o  measure the  
e f f ec t  of combining varying amounts of bleed flow with e jec tor  pumping 
by t he  main stream. This i s  done by measuring the  Mach number a t t a in -  
able  i n  a model tunnel  at  a constant pressure r a t i o  but  with varying 
r a t e s  of bleed flow and with di f ferent  slot-flow reentry conditions. 

A 4 - by 41- inch t e s t  section with 4 s l o t s  i n  the  top and bottom 
2 

f loors  followed by a d i f fuser  having a 2 : l  area r a t i o  was used i n  t h i s  
invest igat ion.  Slot-flow reentry f l aps  were placed between the  f l oo r  
bars  a t  the downstream end of the  s l o t s .  The f l a p  t r a i l i n g  edge was 
hinged at the  d i f fuser  i n l e t  and the  hinge-line posi t ion w a s  variable.  

6 All da ta  were obtained at Reynolds numbers from 4 X lo6 t o  7 X 10 per  
foot  . 

reference t o t a l  pressure 

computed di f fuser-exi t  t o t a l  pressure 

l o c a l  s t a t i c  pressure 

atmospheric pressure 

s t a t i c  pressure i n  t e s t  section 

Mach number computed from pc and H, 

computed diffuser-exit  Mach nurnber 

mass flow through nozzle 

mass flow bled out of t e s t  section 

f l a p  angle from closed posi t ion 

tunnel height, 4.5 i n .  

di'stance of d i f fuser  f l o o r  surface outboard of s l o t t e d  f l oo r  
surf  ace 

horsepower 
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! APPARATUS AND MGTHOD 

A 4;- by 4 i -  inch t e s t  sect ion with s l o t t ed  f loors  on t he  top and 

bottom walls followed by a two-dimensional d i f fuser  having a 2 : l  area 
r a t i o  and diverging top and bottom walls was  he subject  of t h i s  inves- 
t iga t ion .  The nozzle alone i s  shown i n  f igure  l ( a )  and t he  nozzle and 
d i f fuser  a re  shown i n  f igure  l ( b ) .  

Tunnel.- The s lo t t ed  f loors  which can be seen i n  f igures  l ( a )  and 
l ( b  ) are  s l i gh t l y  modified versions of t he  variable-depth, long-taper 
s l o t t ed  f loors  described i n  reference 3. I n  tha t  reference it i s  shown 
tha t  these  f l oo r s  give good center-l ine Mach number d i s t r ibu t ions  up t o  
a Mach number of about 1 .4 .  The modifications were: 

(1) The stem depth of the  f l o o r  bars  was increased by 

channel t h e  s l o t  flow more completely 

(2)  The f l oo r  bars  were tapered or  boat ta i led  a t  the  downstream end 

(3)  Slot-flow guide f l aps  were added i n  t he  s l o t  channels between 
the  bars 

The f l aps  were 1 tunnel height i n  length and 118 inch thick,  and 
t he  leading and t r a i l i n g  edges were rounded. t o  a 1116-inch radius.  They 
were hinged a t  the  t r a i l i n g  edge i n  such a way t h a t  t he  upper surface of 
t h e  f l ap  a l ined with the  d i f fuser  wall .  The leading-edge posi t ion could 
be s e t  a t  any point between the  top and bottom of t h e  f l oo r  bars.  The 
clearance between the  f l aps  and. t he  f loor  bars was kept a t  a minimum. 
The posi t ion of t h e  f l aps  6~ was measured from the  posi t ion where the  
leading edge w a s  up against t he  f l o o r  surface (see f i g  . 2) .  The f l a p  
posi t ion was remotely controlled by a lever  and gear system. 

I n  f igure  1, configuration I1 i s  shown, i n  which t he  r a t i o  of the  
distance from the  f loor  surface t o  t he  f l a p  hinge l i n e  y t o  t he  half -  

tunnel height h/2 i s  0.239. In configuration I, - 0.106 and i n  =- 
configuration 111, = 0.461. For each configuration a separate s e t  

h/2 
of d i f fuser  blocks was made and, although the. d i f fuser - in le t  height 
changed, t he  e x i t  height and t h e  length were held constant. The contours 
of t he  th ree  configurations a re  shown i n  f igure  2. It should be noted 
t h a t  a t  any given f l ap  angle the  posi t ion of t h e  leading edge of the  
f l aps  r e l a t i ve  t o  t he  f loor  surface i s  independent of hinge-line posit ion.  

Flow system.- A l i n e  diagram of the  tunnel flow system i s  shown i n  
f igure  3. The nozzle was enclosed i n  a cyl indr ical  plenum chamber 
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30 inches i n  diameter. This chamber w a s  sealed except where t he  bleed- 
flow connection was made. The main a i r  flow through the nozzle was 
supplied by a compressor capable of delivering a maximum pressure of 
2 atmospheres. Air was bled from the  tes t -sect ion chamber by means of 
a vacuum pump completely independent of the  main drive.  The amount of 
a i r  bled from the chamber was controlled by a bu t te r f ly  valve i n  the  
l i n e  from model t o  pump and a bypass valve on the intake of the  pump 
and metered by means of a cal ibra ted sharp-edge o r i f i c e  i n  the  bleed 
l i n e .  A t  the  d i f fuser  ex i t  a i r  was dumped in to  a 30-inch duct which 
exhausted t o  the  atmosphere. 

Instrumentation.- Stat ic-pressure o r i f i c e s  were i n s t a l l ed  a t  a 
s t a t i on  i n  the  i n l e t  of the  nozzle, i n  the plenum chamber, and i n  the 
model s ide  wal l  from the  ' f lap hinge l i n e  down through the d i f fuser .  
The locat ion of these side-wall tubes i s  shown i n  f igure  2. Reference 
t o t a l  pressures and temperatures were read i n  the 30-inch-diameter duct 
upstream of the nozzle and suf f ic ien t  pressure taps were i n s t a l l ed  i n  
the  bleed l i n e  t o  measure t he  flow there .  A l l  pressures were measured 
on a multitube mercury manometer board, and photographs of t h i s  board 
were taken a t  each point during the runs. The auxi l iary  bleed-flow- 
measuring o r i f i c e  p l a t e  was cal ibra ted by using a venturi  of known flow 
coeff ic ient .  Care was taken t o  ascer ta in  t ha t  there  was no leakage i n  
the  bleed-flow system. 

Test procedure.- The zero-bleed data  were taken with the  bleed l i n e  
blanked off  by replacing the o r i f i c e  with a so l id  p la te .  The f l a p  angle 
was s e t  and the  Mach number & was measured as the  t o t a l  pressure was 
varied by varying the  speed of the  main-drive compressor. This process 
was repeated f o r  each f l a p  angle. 

In the  variable-bleed investigation t he  o r i f i c e  p l a t e  was i n s t a l l ed  
i n  the  vacuum l i ne ,  t he  f l a p  angle was s e t ,  the  t o t a l  pressure was s e t  
by holding the  main-drive-compressor speed constant, and the  Pilach num- 
ber Mc was measured as  the  valves i n  the  bleed l i n e  were adjusted t o  
give d i f fe ren t  bleed-flow r a t i o s .  This process was repeated over a 
range of t o t a l  pressure and f l ap  angle. 

Data reduction.- The tes t -sect ion Mach number Mc was computed 
from the  tes t -sect ion plenum-chamber s t a t i c  pressure pc and the  refer-  
ence t o t a l  pressure %. The bleed mass flow m' was computed from the  
pressure r a t i o  across the  cal ibra ted o r i f i c e  p la te .  The main-stream 
mass flow was computed from the  tes t -sect ion i n l e t  s t a t i c  pressure 
assuming a flow coeff ic ient  of 1.00. 

\ 

The r a t i o  of reference t o t a l  pressure t o  atmospheric pressure &/pa 
was used a s  a parameter indicative of power required. Since t he  flow a t  
the .d i f fuser  ex i t  was always subsonic, the  atmospheric pressure was 
assumed t o  be equal t o  s t a t i c  pressure a t  the  d i f fuser  ex i t  s t a t ion .  
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RESULTS AND DISCUSSION 

Operation Without Bleed Flow 

Effect of pressure r a t i o .  - The pressure r a t i o s  H ~ / ~ ~  required t o  . 
generate various Mach numbers f o r  6~ = oO, lo0, and 20' f o r  each of 
the  three  gap r a t i o s  axe presented i n  f igure  4. For configuration I 

= 0.106 ( f i g .  4 ( a )  ) a t  6~ = O0 the  Mach number r i s e s  rapidly with 
h /2 
pkessure r a t i o  up t o  about M, = 0.95 f o r  H~ /P ,  = 1.3. A t  higher 
pressure r a t i o s  the Mach number changes only s l i gh t l y  and the  tunnel  
never a t ta ined sonic ve loc i t i es  since t he  O0 f l ap  angle precludes the  
e f fec t ive  removal of slot-flow a i r  from the  plenum; consequently, t he  
tunnel chokes i n  the region near the leading edge of the  f laps  which i s ,  
a t  t h i s  f l a p  angle, ef fect ively  a second minimum. Increasing the  f l a p  
angle t o  lo0 or  20' produces l i t t l e  or  no change i n  the  Mach number a t  
low values of Increasing the  pressure r a t i o  a t  these higher 
f l a p  angles causes the  Mach number t o  r i s e  rapidly t o  about 1.1 where 
it again l eve l s  off because of choking near the s t a t i on  of the  f l a p  
hinge l i n e .  S l igh t ly  higher Mach numbers were reached a t  SF = lo0 
than a t  20° since,  a t  6~ = 20°, low-energy flow and poor flow condi- 
t ions  ex i s t  a t  the  leading edge of the  f l ap .  Also, a t  SF = 20°, the  
high def lect ion angle causes flow separation at t he  f l ap  hinge l i n e  and 
a small e f fec t ive  second minimum i s  formed with attendant choking and 
Mach number l imi ta t ions .  

For the  medium gap r a t i o ,  configuration I1 = 0.239 ( f i g .  4 (b)  ), 
h/2 

the  curves show a s imilar  r i s e  i n  Mach number with increasing pressure 
r a t i o  but without the choking l imi ta t ions  a t  high f l a p  angles observed 
f o r  configuration I. Tests a t  SF = 0' were not extended t o  high values 
of %Ipa, but the  l imited data  obtained indicate  a probable maximum 
Mach number very near the  same value found f o r  configuration I. A t  
EF = 10' and 20°, the  h c h  number r i s e s  with pressure r a t i o  a t  about 
the  same r a t e  as  observed f o r  configuration I up t o  H ~ / ~ ~  = 1.35. Above 

t h i s  value, a t  which configuration I choked, the  r a t e  of Mach number 
increase i s  reduced and the  tunnel appears t o  be approaching a choked 
condition near the  upper l i m i t  of t he  t e s t  range ( H ~ / ~ ,  = 1.9 and 

& = 1.32). 

~t -L = 0.461, configuration 111 (f ig .  4 ( c )  1, the  da t a  a t  6~ = o0 
h/2 

again exhibit  a r i s e  i n  Mach number with pressure r a t i o  up t o  H,/@, = 1.4.  
' ~ t  pressure r a t i o s  above 1.4, the  tunnel chokes a t  a subsonic Mach number, 
and the  choke pe r s i s t s  t o  = 1.6 where the Mach number increases 
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abruptly from 0.96 t o  1.10. This abrupt jump occurs i n  a range of Mach 
number and pressure r a t i o  which i s  of l i t t l e  operational  i n t e r e s t  since 
it represents a condition requiring high power consumption f o r  a re la -  
t i v e l y  low Mach nuuiber. The mechanism of the  jump phenomenon i s  of 
i n t e r e s t ,  however, and i s  associated with leakage of air through the  
small clearance allowed between the  edges of the f l a p  and' the lower por- 

t i o n  of the  f l oo r  bars .  For t h i s  large  gap r a t i o ,  - 0.461, the  h/2- 
zero f l a p  posi t ion presents a highly divergent passag& over the  f l a p  
and between t h e  f loor  bars .  A t  low pressure ra t ios ,  the  stream does 
not flow i n  t h i s  highly divergent passage but, i n  e f fec t ,  separates 
from the  leading edge of the  f l ap ,  leaving a region of reverse flow 
with low energy over the  f l ap  surface i n  each separate s l o t .  As the  
pressure r a t i o  i s  increased, the  main tunnel a i r  becomes and remains 
attached over the  f l ap  leading edge, producing very low pressures and 
high Mach numbers over t he  surface of the  f l ap .  The flow pa t te rn  changes 
abruptly and the  low pressures, thus produced, induce a leakage flow from 
the  plenum through the  small f l a p  clearances and i n to  t he  d i f fuser .  
Based on re la t ionships  between a one-dimensional area r a t i o  and t h e  Mach 
number, t he  leakage flow necessary t o  produce t h i s  abrupt increase i n  
Mach number would be l e s s  than 1 percent of the  t o t a l  tunnel  a i r  flow. 
I f  the  pressure r a t i o  had been ra i sed  t o  a suf f ic ien t  level ,  it i s  qui te  
possible t h a t  a s imilar  abrupt Mach number increase would have occurred 
with the  gap r a t i o  of 0.239. It i s  noted t ha t  the  i n i t i a l  r i s e  i n  Mach 
number with pressure r a t i o  i s  somewhat l e s s  rapid f o r  configurations I1 
and I11 than f o r  configuration I a t  the  0' f l ap  posit ion.  It i s  believed 
t ha t  t h i s  difference i s  due t o  losses  produced by the  sudden enlargement 
i n  cross sect ion a t  the  entrance t o  the  mixing tube and t o  subsequent 
losses  i n  d i f fuser  performance. 

Increasing 6~ t o  lo0 o r  20°, f igure  4 ( c  ), again makes very l i t t l e  
change i n  t he  Mach number generated a t  low values of / With 
increasing pressure r a t i o ,  the  Mach number increases a t  about t h e  same 
r a t e  as f o r  configuration I1 ( f i g .  4 ( b ) )  up t o  H ~ / P ~  = 1.65. Above 
t h i s  point the  Mach number continues t o  r i s e  smoothly f o r  6F = 20') 
and a small abrupt jump occurs f o r  6~ = 10'. This jump i s  a t t r ibu tab le  
t o  leakage, as i n  the  case f o r  6~ = 0°, which i s  induced by low-pressure 
a i r  over the  surface of t h e , f l a p .  This low-pressure region i s  again the  
r e su l t  of an expansion from the  leading edge of the  f l a p  under the  
influence of a high pressure r a t i o .  The jump is  followed by a choked 
region of constant Mach number. 

Diffuser stat ic-pressure dis t r ibut ions . -  In f igures  5, 6, and 7 a re  
presented several  typ ica l  d i f fuser  stat ic-pressure d i s t r ibu t ions  f o r  
6F = 0' and 10' f o r  each of t he  three  gap r a t i o s .  For & = 0.106 a t  

-1 - 

6~ = oO, f igure  5 ( a ) ,  the  di f fuser  presents a t yp i ca l  subsonic pressure 
r i s e  a t  the  lower pressure r a t i o s .  For these low pressure r a t i o s ,  the  
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s t a t i c  pressure i n  the  constant-cross-section mixing tube i s  very nearly 
constant, r i s i n g  only s l i gh t l y  under the  influence of t he  d i f fus ion  
afforded by t he  sudden increase i n  area from the  downstream end of the  
f l oo r  bars  t o  t he  mixing tube. Increasing t he  pressure r a t i o  above 1.35 
causes no fu r ther  changes i n  the  s ta t ic-pressure  d i s t r i bu t i on  i n  t he  
mixing sect ion but provides a s tab le  pa t te rn  of r e l a t i ve ly  weak shocks 
and expansions. Above &/pa = 1.35, however, a Prandtl-Meyer t u r n  
occurs at t h e  d i f fuser  entrance with, at the  higher pressure r a t i o s ,  
rapid expansion t o  high supersonic Mach numbers. The supersonic accel- 
e ra t ion  i s  then followed by a normal shock and subsonic di f fus ion t o  
t he  e x i t  of the  d i f fuser .  It i s ,  of course, obvious t ha t  operation 
with supersonic flow i n  the  d i f fuser  i s  wasteful of power and should be 
avoided whenever possible. For €IF = lo0, f igure  5 (b ) ,  a s imilar  s e t  

of da ta  is  obtained where t he  mixing-tube s ta t ic-pressure  d i s t r i bu t i on  
remains unchanged a t  a l l  pressure r a t i o s  above about 1.35 and the  d i f -  
fuse r  entrance produces Prandtl-Meyer turns  t o  low pressures and high 
supersonic ve loc i t i es .  Reference t o  f igure  4 ( a )  shows t ha t  everywhere 
t he  mixing-tube stat ic-pressure d i s t r i bu t i on  becomes fixed corresponds 
t o  a choked condition i n  the  tunnel t e s t  sect ion and a l l  fu r ther  increases 
i n  pressure r a t i o  (and power) are  only diss ipated i n  increasingly stronger 
normal shocks i n  the  d i f fuser .  

For configuration I1 = 0.239 a t  6~ = 0' only a l imited 
h / 2  

pressure-rat io range was inv&stigated and a choked condition was never 
a t ta ined ( f ig .  6 ( a ) ) ;  the  stat ic-pressure d i s t r ibu t ions  generally 
following the  t yp i ca l  subsonic pat tern .  For 6~ = lo0, f igure  6(b) ,  
a t  the  highest pressure r a t i o  &/pa = 1.821, t h e  d i s t r i bu t i on  i n  t he  
mixing tube indicates the  existence of both shocks and expansions but 
no expansion originated a t  the  d i f fuser  entrance. This point appears 
t o  be the  beginning of choke f o r  t h i s  configuration and fur ther  increases 
i n  pressure r a t i o  would only be wasteful of power. 

Stat ic-pressure d i s t r ibu t ions  f o r  configuration I11 = 0.461 
h/2 

a t  6~ = o0 are  presented i n  f igure  7 ( a ) .  Here, a t  low pressure r a t i o s ,  
an appreciable amount of subsonic di f fus ion i s  accomplished i n  the  mixing 
tube under the  influence of t he  abrupt expansion from the  downstream end 
of the  s l o t t ed  f loors  t o  the  mixing tube. A s l i gh t  increase i n  pressure 
r a t i o  from 1.58 t o  1 .61 produces the  widely di ' ffering pat terns  of s t a t i c  
pressure noted i n  the  f igure .  This change i n  pa t te rn  corresponds t o  the  
abrupt jump i n  Mach number noted i n  f igure  4 ( c ) .  It i s  in te res t ing  t o  
note tha t  the  Mach l i ne s  corresponding t o  the  Mach nmbers indicated by 
the  pressures between s ta t ions  -5 and -1.5 can be projected forward t o  
t h e  leading edge of the  f laps .  These stat ic-pressure dis t r ibut ions ,  
then, o f fe r  confirmation of t h e  expansion over the  leading edge of t he  
f l ap  and subsequent leakage which i s  responsible f o r  the sudden increase 
i n  Mach number shown i n  f igure  4 ( c )  . 
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Increasing the  f l a p  angle t o  10' produces the d i s t r ibu t ions  shown 
i n  f i b w e  7(b).. Here a t  low pressure r a t i o s  the  pa t te rn  is  again t yp i ca l  
of t he  subsonic d i f fuser .  As the  pressure r a t i o  increases t o  1.45 and 
1.65, t he  d i s t r i bu t i on  through the  mixing region f l a t t e n s  and, a t  

= 1.71, an expansion occurs through the  mixing-tube region, the  
o r ig in  of which can again be traced t o  the  v i c in i t y  of t he  leading edge 
of t he  f l ap .  These conditions are  again indicat ive  of high power con- 
sumption with strong shocks occurring a t  excessively high Mach numbers 
i n  t h e  d i f fuser .  

Observations from zero-bleed data.- From these da t a  it can be 
deduced t ha t ,  f o r  zero-bleed-flow conditions, t he  flow changes effected 
by f l a p  def lect ion r e s u l t  primarily f romthe  f l a p  charac te r i s t i c  of 
f ix ing  the  choking Mach number i n  the  tunnel.  For 6~ = oO, choking 
always occurred near t he  leading edge of the  f l ap .  A t  6~ = 10' and 20') 
configurations I and I1 choked at the  f l a p  hinge l ine ,  producing a s e r i e s  
of r e l a t i ve ly  weak shocks and expansions i n  t he  mixing tube. The la rges t  
gap r a t i o  = 0.461, configuration 111, choked a t  the  f l a p  leading edge T f o r  FjF = 10 as  evidenced by the  sudden change i n  s ta t ic-pressure  d i s t r i  
bution and the  Prandtl-Meyer tu rn  f o r  a l l  pressure r a t i o s  above 1.71. I f  
operation is  attempted at high pressure r a t i o s  and low f l a p  angles f o r  a 
large  gap r a t i o  i n  a geometrically s imilar  t e s t  section,  leakage flow may 
occur and cause abrupt changes i n  the  tes t -sect ion Mach number. It i s  
important, however, t o  se lec t  a gap large  enough t o  generate the  desired 
Mach number without choking. 

Operation With A u x i l i q  Bleed Flow 

Two of the  t e s t  configurations = 0.239 and 0.461 have been G 
t e s ted  using an auxi l iary  bleed a i r  pump t o  supplement the  f l aps  i n  
handling the  bleed a i r  flow. Results of these t e s t s  are  presented i n  
f igure  8. 

Effect  of varying bleed flow.- The var ia t ion of Mach number with 
auxi l iary  bleed flow r a t e  f o r  three  d i f fe ren t  f l a p  angles f o r  configura- 
t i o n  I1 i s  presented i n  f igure  8 ( a ) .  Each curve represents a c o n s t k t  
value of pressure r a t i o  and a l l -  cunres a re  nearly s t r a igh t  with approxi- 

aM,- 0 1  mately a uniform slope, - - -; t h i s  r e su l t  indicates  t h a t  t he  
0.035 P 

bleed-flow quanti ty required f o r  a specif ied change i n  Mach number i s  
independent of f l a p  angle, gap r a t i o ,  pressure r a t i o ,  and Mach number. 
It i s  in te res t ing  t o  note that. t h i s  slope is  near t h a t  predicted by the  
theore t ica l  relations hi^ between a one-dimensional a rea  r a t i o  and the  

& 

w = 0.1 . Mach number f o r  t he  r,ange between M = 1.1 and M = 1.4, 7 
0.0314 

m 
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In  the  range near M, = 1.0 the  slope of these curves changes s l i gh t l y ,  
more noticeably fo r  the lower f l a p  angles. This i s  largely  a t t r ibu ted  
t o  the  f ac t  tha t ,  f o r  the t heo re t i c a l  re la t ionship  between a one- 
dimensional area  r a t i o  and the  Mach number, a small increase i n  area  
causes rapid changes i n  Mach number i n  the-range near M = 1.0. 

For a l l  Mach numbers l e s s  than 1.0, it is  noted t h a t  the  posi t ive  
slope of these curves i s  contrsuy t o  t h a t  expected on the  bas i s  of the  
theore t ica l  re la t ionship  between a one-dimensional area  r a t i o  and the  
Mach number. The f a c t  t ha t  both the  subsonic and supersonic ranges 
have the  same slope appears t o  be for tui tous .  For t h e . 1 0 ~  subsonic 
Mach numbers, the  withdrawal of bleed a i r  so improves the  boundary 
layer and d i f fuser  performance t ha t  larger  quant i t ies  of a i r  are  handled 
by the  tunnel and the  Mach number i s  thus increased. A t  high subsonic 
Mach numbers where choking occurs i n  the region near the f laps ,  auxi l iary  
bleed air obviously can a l l ev i a t e  choking and cause increases i n  tunnel 
Mach number. 

The dashed l i n e  shown i n  f igure  8 ( a )  i s  taken from reference 6 and 
i s  indicat ive  of the required bleed flow i n  a tunnel of constant cross 
section a t  a constant value of %IPa where it i s  intended t ha t  none of 
the  s l o t  flow should be returned t o  the  main stream. This curve which 
approximately pa ra l l e l s  the ,present  da ta  again i l l u s t r a t e s  the  near 
l i n e a r i t y  of A& with % through most of the Mach number range and 

a l so  i l l u s t r a t e s  the  increase i n  slope near Mc = 1.0. The da ta  f o r  
configuration 111, shown i n  f igure  8 (b) ,  again exhibit  a nearly uniform 

slope of @$ = -. fo r  constant values of %Ipa a t  the  four f l a p  

% 0.035 

angles t es ted .  The changes i n  slope of these curves near Mc = 1.0 i s  
l e s s  pronounced than f o r  the  curves of configuration I1 because of low- 
pressure-induced leakage flow around the edges of the f laps .  With 
increasing f l a p  angles, the  curves again remain essen t ia l ly  s t r a igh t  
and p a r a l l e l  as was the  case f o r  configuration 11. 

~ f f e c t  of f l a p  angle.- The da ta  of f igures 4 and 8 have been cross- 
p lo t ted  i n  f igure  9 t o  show the  bleed flow required a t  various f l a p  
angles and a constant pressure r a t i o  t o  obtain a specified Mach number. 
For configuration 11, figure 9 ( a ) ,  these curves indicate  a very s l i gh t  
var ia t ion of m l / m  with f l ap  angle up t o  6~ '= 10'. Above 6~ = lo0, 
the  lower values of / require increasing amounts of m l / m  with 
increasing EF, whereas f o r  the  higher values of IIo/pa, 1.35 at Mc = 1.3, 
the  opposite i s  t rue .  It appears t h a t  a t  low values of %Ipa, the shock 

occurs forward of the f l ap  hinge l i n e  and the  high-pressure a i r  behind 
the  shock wave tends t o  run i n t o  the  plenum; thus an increase i n  f l a p  
angle reduces the  r e s t r i c t i on  t o  the  reverse flow and thereby increases 
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the  bleed-flow requirements. A t  high values of H ~ / ~ ~ ~  t he  shock i s  i n  
the  mixing tube and t he  high-pressure air behind the  shock cannot move 
i n to  the  plenum; opening t h e  f laps ,  therefore,  increases the induction 
pumping by the main stream and reduces the  bleed-flow requirements. It 
i s  i n t e r e s t i ng  t o  note t ha t  a value of &Ipa near 1 .2  would o f f e r  a 
nearly constant bleed-flow requirenient f o r  a given Mach number regardless 
of f l a p  angle. 

Increasing the  r a t i o  t o  configuration gives 

t he  r e s u l t s  shown i n  f igure  g (b) .   ere, f o r  the  lower values of Mach 
number and %Ipa, it appears t ha t  a f l a p  angle of about 5' would be 
optimum i n  regard t o  bleed-flow requirements. Above 637 = 5' there  is, 
as i n  configuration 11, a tendency f o r  m l / m  t o  increase with increases 
i n  6 ~ ;  t h i s  tendency again i s  s tab i l i zed  o r  even reversed a t  t h e  higher 
values of &Ipa. For t h i s  gap r a t i o  there  i s  na s ingle  value of H ~ / ~ ~  
which w i l l  provide a constant bleed-flow requirement a t  all f l a p  angles, 
but ra ther  several  values are  noted between IIolPa = 1.18 and 1.3 
depending on t he  Mach number. 

A comparison of configurations I1 and I11 shows t h a t  f o r  given 
values of &/pa, 6 ~ ,  and M ~ ,  the  smaller gap r a t i o  w i l l  almost 
always require l e s s  auxi l iary  bleed flow. Operation with e i t h e r  gap 
r a t i o  i s  possible a t  minimum bleed- f low requirements at f l ap  angles 
of 10' except at the  higher Mach numbers and pressure r a t i o s .  For 
higher values of 4 o r  &/pa, a l a rger  f l a p  angle i s  desirable.  

Estimates of Power Requirements 

On the  bas i s  of data  f o r  configuration I1 = 0.239 and the  rn 
assumption t ha t  / remains fixed, it i s  concluded t ha t  a tunnel  
which could be operated up t o  Mc = 1.0 a t  6~ = 10' without auxi l iary  

pumping could operate a t  Mc = 1.1 using 1 A  - percent aux i l i a ry  bleed a i r  
2 

and a t  Mc = 1 .2  using 49 - percent auxfl iary bleed a i r .  (see f i g .  8 ( a ) .  ) 
These bleed flow r a t e s  have been applied t o  a power-requirement example 
with t he  following considerations: 

I n  order t o  make the  example applicable t o  most wind tunnels i n  
operation it i s  assumed tha t  the  i n l e t  t o t a l  pressure Ho remains con- 
s t a n t .  An idealized f l a t  diffuser-exit  velocity p ro f i l e  determined by 
t h e  measured s t a t i c  pressure and the  known mass flow was assumed. With 
these assumptions and t he  values of 4, &IPa, and m'/m just,  given, 

t he  following tab le  can be calculated: 
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The hp r a t i o s  i n  the  t ab l e  are  based on isentropic  compression, and 
the  main-drive power and bleed-air power a re  weighted on a mass-flow 
bas i s  t o  a r r ive  a t  t he  t o t a l  required power. The bleed-air power i s  
t h a t  necessary t o  compress -tihe bleed air from the  plenum s t a t i c  pressure 
t o  the  di f fuser-exi t  t o t a l  pressure. This example is ,  perhaps, not 
exact i n  i t s  power r a t i o s  but does i l l u s t r a t e  the  approximate savings 
i n  power t h a t  may be real ized by t he  use of auxi l iary  bleed air pumps t o  
supplement the  main tunnel  dr ive  i n  generating Mach numbers i n  the  range 
of these  t e s t s .  It i s  noted t ha t ,  at constant values of IIolpa, the  
auxi l iary  hp increases rapidly with Mc, but there  i s  s t i l l  a consider- 
able saving i n  t o t a l  power over t ha t  required t o  operate a t  the  higher 
Mach numbers with no auxi l iary  bleed flow. 

M, 

1.0 

1.1 

1.1 

1.2  

1 .2  

A comparison of t he  power required f o r  varying amounts of auxil iary 
bleed flow at a constant Mach number i s  shown i n  the  following example. 

The Mach number i s  chosen as 1.2; i n  addition, = 0.239 and BF = lo0. hJ2 \ 

m ' - 
mo 

O 

0 

l 

o 

.Oh5 

The r a t i o  of auxi l iary  power t o  main-tunnel power increases rapidly 
with mt/m, but  t he  t o t a l  power i s  reduced t o  approximately 65 percent 
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of t he  zero-bleed value by increasing the bleed t o  8 percent.  A t  t h i s  
operating condition, t he  bleed-pump power w i l l  be 70 percent of the  
main-tunnel power. 

From these examples the  conclusion may be drawn t h a t ,  f o r  a p rac t i -  
c a l  closed-circuit  wind tunnel, the  Mach number may be r a i s ed  from 1 .0  t o  

1 .2  by t he  addit ion of an auxi l iary  bleed a i r  pump t o  handle 4; percent 

of t he  t o t a l  air flow a t  a pressure r a t i o  of 2.1. The t o t a l  power of 
t he  system would be- 1.32 times the power t o  operate at Mach number 1.0 
as compared t o  1.9 i f  the  system were operated using main-tunnel power 
only, and without an auxi l iary  pump. A t  a constant- tunnel  Mach number 
of 1.2, t h e  auxiliary-pump power increases with bleed flow ra te ,  but  
t h e  main-stream power and t o t a l  power decrease with increases i n  bleed 
flow r a t e .  Diffuser-exit veloci ty  p ro f i l e s  other than the  ideal ized 
f l a t  d i s t r ibu t ion  may lead t o  power r a t i o s  s l i gh t l y  d i f f e r en t  from 
those of t h e  preceding example. 

CONC WSIONS 

On the  bas i s  of t h e  data  presented f o r  t h i s  square-cross-section 
s l o t t e d  tunnel, together with the  p r ac t i c a l  examples of application of 
these  data,  t he  following conclusions have been formulated: 

1. For operation of a s lo t t ed  tunnel  without aux i l i a ry  bleed air 
pumping, the  Mach number changes effected by varying the  f l a p  deflec- 
t i o n  are  caused primarily by changes i n  t he  e f fec t ive  m i n i m  area  and 
resu l tan t  choking near t he  t es t - sec t ion  e x i t .  

2. For operation i n  a configuration similar t o  t h i s  one at large  
gap r a t i o s  and low f l a p  angles with unsealed f l aps ,  leakage flow past  
t h e  f l aps  may e f f ec t  abrupt changes i n  Mach number as t h e  pressure r a t i o  
i s  increased. 

3. For operation with bleed f o r  the  range of Mach number and bleed- 
flow r a t i o  investigated,  t he  incremental Mach number obtained with an 
increment a 1  percentage of mass flow bled off w a s  approximately constant 
( 0 .1  increase i n  Mach number f o r  3.5-percent bleed flow). 

4. For most economical operation, the  gap r a t i o  should be chosen 
no la rger  than i s  necessary t o  provide the  maximum desi red Mach number. 

5. For 10' f l a p  def lect ion and a gap r a t i o  of 0.239, t he  t e s t -  
sect ion Mach number of t h i s  tunnel  was increased from 1 . 0  t o  1.1 by 

1 the  use of auxi l iary  air purnps handling 1- percent of the  t o t a l  flow 
2 
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and t o  1 .2  by the  use of 46 - percent blebd flow air. Calculations indi-  

ca te  t ha t  a 81 -percent increase i n  over-al l  power would be r e q u i r e d t o  
2 

increase the  Mach number from 1.0 t o  1.1 and 32-percent power increase 
i s  necessary t o  reach Mach number 1.2. I f  these Mach number increases 
were effected without the  use of auxi l iary  pumping, main-stream power 
increases of the  order of 34 and 9 l p e r c e n t  would be required. 

Langley Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley Field,  Va., November 10, 1953. 
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(b) Test section and diffuser assembly. 

Figure 1.- Concluded. 
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Figure 6 . - Concluded. 
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m ' 
Bleed mass-flow ratio, 7 

Y (a)  Configuration II h/2 = .23 9. 
Figure 8 . - Variation of test - section Mach number 

mass - flow ratio, 

------- ref. 6 
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0 ,02 .04 .O 6 -08 '#I0 .I2 
m' Bleed mass-flow ratio, ;;;- 

(b) Configurotion m & = .46l. 
Figure 8. - Concluded. 
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