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RESEARCH MEMORANDUM 

INVESTIGATION OF A MISSILE AIRFRAME WITH CONTROL SURFACES 

CONSISTING OF PROJECTING QUADRANTS OF THE NOSE CONE 

By Frank A. Lazzeroni 

SUMMARY 

The results of an investigation of a model simulating a missile 
with extensible control surfaces and small-span fins are presented. 
Normal-force, axial-force, and pitching-moment coefficients based on 
body cross-sectional area and diameter are given for various control 
deflections up to a maximum of 300 • Sufficient information is pre
sented to permit an evaluation of the maneuvering performance of the 
airframe at supersonic Mach numbers up to 3. The importance of body 
lift is illustrated by the fact that as the Mach number increases, the 
airframe turning performance compares more and more favorably with that 
of an equivalent body fitted with variable-incidence Wings. 

A comparison between Newtonian impact theory and experiment indi
cates that the theory predicts, with reasonable accuracy, the incre
mental force and moment coefficients due to control-surface deflection 
at the higher Mach numbers. 

INTRODUCTION 

One problem associated with air-to-air guided missiles is that of 
increased airplane drag due to externally mounted missiles or the large 
airplane volume needed to store the weapons internally. This problem, 
of course, is the result of the large size of the missile body needed 
to house electronic components and the span of the wings usually con
sidered necessary to give the lift required for adequate maneuvering, 
particularly at high altitudes and low velocities . The need for large
size bodies may be reduced by advances in electronic design. The need 
for large-span wings to produce lift is also subject to some question, 
especially at high Mach numbers, and it is the purpose of the present 
report to study this matter. 
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It is suggested that a suitable lift-producing device may be a 
control that is flush with the body except when in operation. In order 
to determine the feasibility of such a control, an investigation of one 
type of missile airframe suitable for internal storage in an airplane 
was initiated. The investigation was conducted at Mach numbers of 1.2 
and 1.9 in the Ames 6- by 6-foot supersonic wind tunnel and was extended 
t o a Mach number of 2.94 in the Ames 1- by 3-foot supersonic wind tunnel. 
The results obtained in both facilities are reported herein. 

SYMBOLS 

The data are presented in the form of standard NACA coefficients 
a s follows: 

d 

M 

q 

S 

axial-force coefficient, axial force 
qS 

pitching-moment coefficient about a point 56.4 percent of the 
pitching moment body length aft of the nose, 

qSd 

" normal force normal-force coefflclent, 
qS 

rate of change of pitching-moment coefficient with change in 
dC 

angle of attack, ~ 
da. 

incremental axial- force coefficient due to control-surface 
deflection 

incremental pitching-moment coefficient due t o control-surface 
deflection 

incremental normal- force coefficient due to control-surface 
deflection 

body diameter, ft 

free - stream Mach number 

free-stream dynamic pressure, lb/sq ft 

Reynolds number based on body diameter 

cross - sectional area of body, ft2 

angle of attack of longitudinal center line of body, deg 
- I 
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angle of deflection of control surface measured with respect to 
the surface of the nose cone, deg 

APPARATUS, MODELS, AND TEST PROCEDURE 

The experimental investigation at Mach numbers of 1.2 and 1.9 was 
conducted in the Ames 6- by 6-foot supersonic wind tunnel. In this 

3 

wind tunnel, the Mach number can be varied continuously and the stag
nation pressure can be regulated to maintain a given test Reynolds 
number. A description of the wind tunnel and its stream characteristics 
is given in detail in reference 1. 

The test at a Mach number of 2.94 was performed in the Ames 1- by 
3-foot supersonic wind tunnel No.2 which is an intermittent-operation, 
nonreturn, variable-pressure wind tunnel with a maximum Mach number of 
3.8. The nozzle of this tunnel is equipped with flexible top and bot
tom plates to provide the nozzle contour adjustment necessary for vary
ing the Mach number. 

The model consisted of a cylindrical body with a conical nose of 
cone angle 15.80 giving an over-all fineness ratio of 16. The control 
surface consisted of a quadrant of the cone. Eight low-aspect-ratio 
triangular-shape fins were mounted on the rear end of the body. These 
fins were constructed of constant thickness flat plate with leading 
edges rounded. 

In the 6- by 6-foot wind tunnel, the model was mounted on the end 
of a cantilever sting support so constructed that the model was pitched 
in the horizontal plane of the tunnel without changing its axial posi
tion in the test section. A sting-type support system was also used 
in the 1- by 3-foot wind tunnel. However, this support system utilizes 
an arrangement which allows the model to be pitched in the vertical 
plane of the tunnel about a point in the center of the test section. 
The models were mounted on bent stings in both wind tunnels in order to 
increase the positive angle-of-attack range. 

A photograph of the model is shown in figure 1. A dimensional 
sketch of the 6- by 6-foot wind-tunnel model is presented in figure 2. 
The model investigated in the 1- by 3-foot wind tunnel was a 1/3-scale 
representation of the 6- by 6-foot wind-tunnel model. 

The normal forces, axial forces, and pitching moments on the 6- by 
6-foot wind-tunnel model were measured by means of an electrical strain
gage balance contained within the body of the model. Each force and 
moment was measured by an individual strain gage . The strain-gage beams 
were housed within the balance case. The loads were transmitted to the 
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various strain-gage beams by a system of shafts and bearings which 
reduces both friction and interaction to a negligible amount. 

Electrical strain gages were also used to measure the forces and 
moments on the 1- by 3-foot wind-tunnel model. The force gages were 
contained in a balance housing which was part of the sting support sys
tem; whereas the pitching-moment gage was mounted on the sting and 
utilized the sting as a strain-gage beam. 

The investigation at Mach numbers of 1.2 and 1.9 was made at a 
Reynolds number of 0.77 million with a stagnation pressure of 8 and 
9 pounds per s~uare inch absolute, respectively. A constant Reynolds 
number of 0.91 million was maintained at a Mach number of 2.94 with a 
stagnation pressure of 50 pounds per s~uare inch absolute. 

REDUCTION OF DATA 

The test data have been reduced to standard NACA coefficient form. 
Factors which could affect the accuracy of these data, and the correc
tions applied, are discussed in the following paragraphs. 

Angle of Attack 

In the 6- by 6-foot wind tunnel, the determination of the true 
angle of attack of the model under load re~uired that corrections, as 
determined from static load deflection calibrations, be applied to the 
measured angle. In the 1- by 3-foot wind tunnel, schlieren photographs 
with a superimposed grid were used to determine the true angle of attack. 

Stream Variations 

Stream irregularities exist in both the 6- by 6-foot and 1- by 3-
foot wind tunnels. A survey of the 6- by 6-foot wind tunnel at super
sonic speeds (ref. 1) has shown the presence of some stream-angle vari
ations in vertical planes but little in horizontal planes. To minimize 
the effects of these stream irregularities, the model was pitched in the 
horizontal plane of the tunnel where the most favorable flow conditions 
exist. A variation in static pressure along the tunnel caused the model 
to experience a buoyant force in the chordwise direction. Corrections 
for this buoyancy were applied to the axial-force data obtained from 
the 6- by 6-foot wind t1fIillel. Stream-angle variations in the 1- by 
3-foot wind tunnel were determined by survey prior to the present 
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investigation. The irregularities of this type are believed to be 
within the accuracy of measurement of the angle of attack . Although a 
static pressure variation exists in the 1 - by 3- foot wind tunnel, no 
buoyancy correction was necessary since the net effect on the model was 
negligible. 

PRECISION 

The following table lists the estimated uncertainties in the 
measurements, exclusive of the effects of stream-angle variations: 

Quantity Accuracy 

M = 1.2 z 1 · 9 M = 2 . 94 

Cc ±0. 01 ±0.01 
Cm ±. 02 ± . 02 
CN ±.04 ±. 04 
M ±.Ol ±. Ol 
Re ±. 03X10 6 ±.03X106 

Q ±.l ±.2 

RESULTS AND DISCUSSION 

The results of the investigation in the form of normal - force, 
pitching-moment, and axial- force coefficients are given in figures 3, 
4, 5, and 6 . A study of these data shows several interesting aerodynamic 
phenomena. For example, the pitching-moment effectiveness of the con
trol surface with the tail either on or off (figs . 3 and 4) is approxi
mately independent of Mach number at angles of attack near zero and 
increases with Mach number at the highest angles (Q ~ 160

). This char
acteristic coupled with the marked increase in the value of the par
ameter Clla with increasing Mach number (fig . 3 ) results in a rapid 
increase of the maximum trimmed lift with Mach number for the tail-on 
configuration (see fig. 5 ). Thus, the airframe should have improved 
maneuvering characteristics at high Mach numbers . On the other hand, 
it must be considered detrimental to this configuration that the axial 
force accompanying control - surface deflection is generally quite high 
(fig. 6). Finally, it is observed that the airframe is quite stable at 
low Mach numbers and the control surface is capable of developing only 
small normal accelerations. This characterist ic may aid in reducing 
launching errors, but it also limits the maneuverability at low Mach 
numbers. 
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In order to obtain some idea of the relative maneuvering character
istics of the airframe, the trim normal-force coefficients attainable 
with a control-surface deflection of 150 (obtained by interpolation of 
the data of fig. 5 ) are plotted in figure 7 and compared with unpublished 
data obtained with the same basic body fitted with variable-incidence 
wings. The maximum incidence of the variable-incidence wings is limited 
by physical interference of adjacent wing panels to 150 • At M = 2.94 
the comparison is based on an extrapolation of the data of figure 5(c). 
For these conditions, the comparison indicates that as the Mach number 
increases, the present airframe compares more and more favorably with 
the variable- incidence-wing airframe. Evidently, then, the requirement 
of large wing span tends to disappear with increasing Mach number. In 
any case, however, the advantages and disadvantages of the present air
frame cannot be fully assessed until further investigations are made. 
The induced rolling moments may, for example, be significant and the 
general dynamic behavior of the airframe as a part of a missile system 
needs study. 

As a final pOint, it is natural to inquire if there is a method of 
predicting the aerodynamic characteristics of the projecting control. 
For high- supersonic-speed application the Newtonian impact theory is 
suggested . For low-aspect-ratio shapes the theory may be applicable 
at somewhat lower speeds . Therefore, inasmuch as the control surface 
of the present airframe was a low-aspect - ratio segment of a body of 
revolution, Newtonian theory (ref. 2) was used to determine the incre
mental force and moment coefficients due to control- surface deflection. 
These theoretical results are compared with experimental values for 
the tail-off configuration in figure 8. 1 As may be seen, the Newtonian 
impact theory predicts these incremental forces and moments with from 
fair to reasonable accuracy, the agreement between theory and experi
ment improving, as would be expected) with increasing Mach number. 

CONCLUSIONS 

A brief analysis of the results of this investigation reveals the 
following: 

1. The present a i rframe has adequate static stability in pitch 
and provides reasonable lift throughout the Mach number range investi
gated. 

2. As the Mach number increases, the turning performance of t he 
present airframe compares more and more favorably with that of an air
frame with an equivalent body fitted with variable-incidence wings. 
1The tail-on configuration is not treated here because the theory is 
inadequate for predicting flow approaching the fins. 
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3. Newtonian theory predicts, with reasonable accuracy, incre
mental force and moment coefficients due to control-surface deflection 
at higher Mach numbers. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Dec. 21, 1953 
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Figure 1 .- Photograph of the model . 
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