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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

WIND-TUNNEL INVESTIGATION AT LOW SPEED OF THE EFFECT OF 

VARYING THE RATIO OF BODY DIAMETER TO WING SPAN FROM 

0.1 TO 0.8 ON THE AERODYNAMIC CHARACTERISTICS IN 

PITCH OF A 470 SWEPTBACK-WING—BODY COMBINATION 

By Harold S. Johnson 

SUMMARY 

Force and moment data were obtained at low speed for a family of 
bodies and wing-body combinations to determine the effects of varying 
the ratio of body diameter to wing span from 0.1 to 0.8 on the aerodynamic 

characteristics in pitch. The bodies had l -caliber ogival noses and 

cylindrical afterbodies. The untapered 470 sweptback wings had aspect 
ratios of 3 and NACA 65A006 airfoil sections parallel to the body center 
line. Lift, drag, and pitching-moment data were obtained through a -60 
to about 1400 angle-of-attack range. In addition, the experimental lift 
characteristics of the body alone and the wing-body combination were 
compared with several existing theories. 

There was a linear increase in lift-curve slope at 00 angle of attack 
with body-diameter--wing-span ratio D/b for the D/b = 0.1 to 0.4 range, 
and further increases in D/b from 0.4 to 0.8 resulted in only slight 
changes in the lift-curve slope. The lift-curve slope as estimated by 
an approximate theory was in excellent agreement with experiment for the 
D/b range investigated. The body-alone lift coefficient (based on the 
maximum cross-sectional area of the body) at a given angle of attack 
increased with the body fineness ratio for the . 7- to 7.7-fineness-ratio 
range investigated.

INTRODUCTION 

Since the advent of supersonic flight, more radical departures from 
conventional airplane configurations have been made or are being con-
sidered. The rapid development of guided missiles has indicated, that 
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even more extreme configurations show promise of providing satisfactory 
supersonic flight characteristics. One of the basic airplane design 
variables that is being altered by the demands of increased speeds is 
the ratio of fuselage diameter to wing span. The combination of low-
aspect-ratio wings and a decrease in the wing area required has resulted 
in ratios' of fuselage diameter to wing span of as high as about 0.5. 
Thus, the determination of mutual interference between a wing and a body 
has become more important. Therefore, both experimental data and theo-
retical studies of the forces and moments mutually induced by a wing and 
a body are of appreciable interest. 

Recent studies (for example, refs. 1 to 6) have provided informa-
tion on this interference effect and show the great variety of problems 
involved as well as methods so far employed in dealing with them. 

Reported herein are the results of an investigation made to deter-
mine the low-speed aerodynamic characteristics in pitch of a 450 sweptback-
wing—body combination having a body-diameter—wing-span ratio range of 
0.1 to 0.8 for a wide angle-of-attack range that extended well beyond 
the wing stall. In addition, theoretical estimates of the lift char-
acteristics of the body alone and of the wing-body combination are com-
pared with the experimental results. 

COEFFICIENTS AND SYMBOLS 

The results of the tests are presented as standard NACA coefficients 
of forces and moments about the stability axes (which for the conditions 
of these tests (00 yaw) correspond to the wind axes). The pitching-moment 
coefficients are given about the quarter-chord point of the mean aero-
dynamic chord shown in figure 1. The positive directions of forces and 
moment are shown in figure 2. 

A	 aspect ratio, b2/S 

AE	 aspect ratio of exposed wing, (b - D)2/SE 

b	 wing span, 1.11 58 and 2.917 ft 

wing mean aerodynamic chord, O.186 and 0.912 ft 

D	 maximum body diameter, ft 

1	 length of body, ft 

q	 free-stream dynamic pressure,	 çw2, lb/sq ft 
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SB	 maximum cross-sectional area of body, sq ft 

SE	 exposed wing area, sq ft 

SW	 wing area, 0.709 and 2.836 sq ft 

V	 free-stream velocity, ft/sec 

a	 angle of attack, deg 

P	 mass density of air, slugs/cu ft

Lift 
CL	 lift coefficient based on wing geometry,

qS 

CLB	 lift coefficient of body based on body geometry, Lift 
qS 

C =-& at a=0° 1  
a

CLB 

CLMB	 6M
 at a=0° 

CD	 drag coefficient based on wing geometry, Drag 
qS 

Cj	 drag coefficient of body based on body geometry, Drag 
SB 

Cm	 pitching-moment coefficient based on wing geometry, 

Pitching moment 

qS 

CmB	 pitching-moment coefficient of body based on body geometry, 

Pitching moment 

qSB1
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Subscripts: 

L	 large wing 

S	 small wing 

The abbreviation F.R. is used for fineness ratio. 

MODEL AND APPARATUS 

The bodies and wing-body combinations were tested in the Langley 
300MPH 7- by 10-foot tunnel by utilizing a sting-support system (fig. 3) 
and an electrical strain-gage balance contained within the body. In 
order to provide the desired range of body-diameter—..wing-span ratio 

(P. = 0.1 to 0.8), two wings, having spans of 17.5 inches (referred to as. 

the small wing) and 35.0 inches (large wing), were tested in combina-
tion with four bodies having diameters of 3 . 5, 7.0, 10.5, and 14.0 inches. 
Both wings were untapered and had 450 of sweepback, aspect ratios of 3.00, 
and NACA 65A006 airfoil sections parallel to the plane of symmetry. The 

bodies had ogival noses of l calibers and cylindrical afterbodies. 
2 

Because of mounting limitations (the body length had to be long enough 
to contain the balance and short enough to clear the mounting strut), 
the body fineness ratios varied from 11.5 to 7 . 5 . (See fig. 1(c).) The 
7.0-inch-diameter body and wing-body configurations were tested at fine-
ness ratios of both 5.0 and 7.0. The wing-chord plane was coincident 
with the horizontal plane of symmetry of the body. Drawings of the config-
urations investigated are shown in figure 1. 

TESTS 

The tests were made in the Langley 300 MPH 7- by 10-foot tunnel at 
dynamic pressures of approximately 30 and 120 lb/sq ft for the config-
urations having the large wing and the small wing, respectively. Body-
alone tests were made at both of these dynamic pressures. The corre-
sponding Mach numbers were 0.1 14. and 0.29, and the Reynolds number was 
about 0.9 x 106 based on the wing mean aerodynamic chords. Lift, drag, 
and pitching-moment data were obtained for an angle-of-attack range of 
about -60 to about 1400 unless this range was limited by model load or 
extreme vibration.
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CORRECTIONS 

The angle-of-attack values have been corrected to account for the 
deflection of the balance and support strut under load. Jet-boundary 
corrections, computed by the method outlined in reference 7, were applied 
to the data. Blockage corrections have been applied to the data according 
to the method of reference 8. Buoyancy corrections have been applied to 
account for the longitudinal static-pressure gradient in the tunnel. 

RESULTS AND DISCUSSION 

Presentation of Data 

The body-alone aerodynamic characteristics are presented in figure Ii. 
and the effect of body fineness ratio for the 7.0-inch-diameter body- 
alone configuration is shown in figure 5 . A comparison between the experi-
mentally and theoretically determined variation of CJ B with body fine-

ness ratio is shown in figure 6. 

The aerodynamic coefficients of the wing-body configurations are 
presented in figure 7, and the effect of body fineness ratio for the 
wing-body combinations having the 7.0-inch-diameter body is shown in 
figure 8. The D/b = 0.2 and 0.11 wing-body configurations having the 
large wing are compared with the same configurations having the small 
wing in figure 9. The experimentally determined variation of lift-curve 
slope at a. = 00 with D/b is compared with theory in figure 10. The 
theoretical ratio of induced body lift to wing lift as determined from 
reference It- or 9 is shown in figure 11. The various contributions to 
the theoretically determined lift of the wing-body configuration are 
presented in figure 12 as a function of D/b. 

Body-Alone Characteristics 

Lift.- The variation of lift coefficient (based on the body geometry) 
with angle of attack was similar for the four sizes of bodies investi-
gated and the data exhibited consistent effects of variations In both 
body fineness ratio and dynamic pressure (figs. It . (a), 5(a), and 6). At 
a given angle of attack, the lift coefficient increased with body fine-
ness ratio for the 11.5- to 7 . 5-fineness-ratio range investigated. A 
change In dynamic pressure from about 30 lb/sq ft to about 120 lb/sq ft 
had a negligible effect on the lift data for angles of attack of less 
than about 160 . For a given angle of attack greater than about 160 , the 
lift coefficient was greater at the higher dynamic pressure and the change 
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in CL  was generally greater for the bodies having the higher fineness-

ratio values. The lift-curve slope did not vary with a. for angles of 
attack of less than about 12 0 to 160 . At angles of attack greater than 
about 160 , the lift-curve slope was greater than that for values of a 
of less than about 160, and larger increases in slope at the high values 
of a were noted for the bodies having the higher values of body fine-
ness ratio (figs. (a) and 5(a)). There was no indication of body 
stalling below a = 400. 

For the 4.5 to 7.5-fineness-ratio range investigated, the lift-curve 
slope at a = 00 Cj

mB
 increased very nearly linearly with body fineness 

ratio as shown in figure 6 and table I. Also presented in figure 6 are 
the theoretical 

LcLB 
values determined by the methods of references Ii-

and 10. As determined by the method of reference 4, the lift is a func-
tion only of angle of attack and base area and is independent of the 
body fineness ratio (CL = 2m where a is expressed in radians and the 

reference area is the base area of the body). It should be noted that 
this theory may underestimate the lift for bodies that have a base area 
less than the maximum cross-sectional area since viscosity effects may 
be present and the effective base area of such bodies will be larger than 
the actual base area by an amount dependent on the thickness of the bound-
ary layer (ref. 4). In the method of reference 10, this 2m term is 
reduced by a factor to approximate the effects of body fineness ratio. 
The method of reference 10 also includes a nonlinear a,2 term to approx-
imate the effects of the viscous cross flow. For the bodies investigated, 
this theory considerably overestimated the increase in lift-curve slope 
with a, but the computed increment of CLB resulting from a change in 

body fineness ratio is in good agreement with the experimental results. 

Drag.- The effects of changes in both body fineness ratio and dynamic 
pressure on the drag characteristics were generally similar to those on 
the lift data (figs. 4(a) and 5(a)). At a given angle of attack, the 
drag coefficient increased as the body fineness ratio was increased for 
the 5.0 to 7.0 range investigated and this change in CD B increased with 

angle of attack (fig. 5(a)). The change in dynamic pressure from about 
30 lb/sq ft to about 120 lb/sq ft resulted in negligible changes in 

for angles of attack of less than about 20 0 and increases in CDB for 

angles of attack greater than about 20 0 . This increase in CD at highB. 
values of a was most pronounced for the bodies having the higher fine-
ness ratios. 

Pitching moment.- A direct comparison of the pitching-moment data 
for the various bodies tested cannot be made in figure 4(a) since the 
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body fineness ratios and the moment-center locations varied (fig. 1). 
The experimental results for the two bodies having fineness ratios of 
7.0 (D = 7.0 in. and 10.7 in.) were in substantial agreement when 
referred to the same moment center. As expected, an increase in after-
body length of 2 diameters had a stabilizing effect throughout the angle-
of-attack range investigated (fig. 7(a)). 

Wing-Body Characteristics 

Lift.- For values of a of less than about 12 0 , the data of fig-
ures 7 and 8 show that the lift-curve slope generally increased with a. 
and that this change in lift-curve slope with a increased with D/b 
for the 0.1 to 0.6 D/b range. For this angle-of-attack range, the lift-
curve-slope values for the D/b = 0.8 configuration were slightly less 
than those for the D/b = 0.6 configuration. As the ratio of body diam-
eter to wing span was increased, the effect of the wing stall generally 
became less pronounced. For angles of attack above the wing stall 
( a 200 ), the lift coefficient of the D/b = 0.1 configuration was rel-
atively unaffected by changes in a. For this high angle-of-attack range, 
the lift coefficient at a given angle of attack increased as the D/b 
ratio was increased as a result of both increasing body lift with a for 
angles of attack beyond the wing stall and induced effects. 

The lift coefficient at a given angle of attack was increased by a 
change in body fineness ratio from 7.0 to 7.0 for the D/b = 0.2 and O.1-
configurations (fig. 8). This increase in CL with fineness ratio was 

of about the same magnitude as was noted for the body-alone configurations 
based on the corresponding wing areas (figs. 7(b) and 7(c)). The incre-
ment of lift coefficient resulting from the change in body fineness ratio 
increased very nearly linearly with a. The lift data for the D/b = 0.2 
and 0.14 configurations having the large wing are in very good agreement 
with those for the same configurations having the small wing when the 
effect of the one-half-caliber difference in body fineness ratio is 
considered (fig. 9) 

The experimentally determined lift-curve slopes for the various wing-
body combinations at a. = 00 are given in table I and are presented in 
figure 10 approximately adjusted (by using the experimental body-alone 
and wing-body data) to body fineness ratios of 5.0 and 7.0 where neces-
sary. A linear increase in C 	 with D/b is shown for the D/b = 0.1 

to 0)4 range, and further increases in D/b from 0.4 to 0.8 resulted 
in only slight changes in C. The lift-curve slope for D/b = 1.0 

(obtained from the body-alone data with the lift coefficient based on 
the area of a hypothetical untapered aspect-ratio-3 wing) was appreciably 
higher than that for the D/b = 0.8 configuration. The CL, values 

computed by the method of referenóe 1 are in excellent agreement with 
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the experimentally determined values '(fig. 10). In this method, the 
lift of a wing-body combination is considered to be the summation of four 
contributions: lift of the exposed wing, body lift, induced wing lift 
(resulting from the body upwash flow field), and the induced body lift 
(resulting from the wing flow field). 'The lift of the exposed wing is 
approximated by assuming that the fuselage acts as an infinite end plate 
(AE = (b - D) 2/SE). In the calculations presented in this paper, the 

lift-curve slope of the exposed wing was computed by the following 
equation1:

A 
CI.ct =	

E/57 .3

1 

+ \I1/i\1 2 + (a.AE 	 \2 - (A'2 

N''	 o cos A)	 ao ) 

where a0 is the section lift-curve slope per radian, A is the sweep 
of the 50-percent-chord line in degrees, and M is the Mach number. 
The induced wing lift is approximated by increasing the wing angle of 
attack by the average upwash angle over the exposed span of the wing as 
determined by potential theory (refs. 11 or 12). This average upwash 
angle is shown to be equal to (D/b)m and the effective angle of attack 
of the exposed wing is therefore (1 + D/b)a.. The induced body lift 
(resulting from the upwash flow field ahead of the wing, the downwash 
behind the wing, and the loading carried over the body in the vicinity 
of the wing) is approximated by assuming this lift to have the same rela-
tionship to the lift of the wing in the presence of the body as that for 
a configuration having a wing mounted on a cylinder of infinite length 
(refs. 4 or 9). This ratio of induced body lift to wing lift is shown 
in figure 11 as a function of D/b. The variation of these four con-
tributions to the lift of the wing-body configuration investigated with 
D/b is shown in figure 12 with the body lift computed by the methods 
of references 4 and 10. Also shown in figure 12 is the change in lift 
resulting from a reduction of the body upwash to account for the effect 
of the finite wing thickness. The increment of wing lift resulting from 
the body upwash field was reduced by the ratio of body cross-sectional 
area above and below the wing to the cross-sectional area of the body. 
(See ref. 5.) 

'This equation was derived by Mr. Edward C. Polhamus of the Langley 
Aeronautical Laboratory and was presented (in modified form) in unpublished 
lecture notes which were distributed at the Wright Field. Seminar on Com-
pressibility Effects on Aircraft Design, 1950. The derivation of this 
equation is similar to the lift-curve equation of reference 13 and gives 
results that are in excellent agreement with experimental results for 
wings having a wide range of plan forms. 
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Calculations were also made and good agreement with the experimental 
C1 values was obtained by using the method of reference 1 for the wing-

body combinations of references 2, 14, and 15 (tapered unswept wing, 
tapered sweptback wings, and delta wing, respectively) and for the lift 
of the wing in the presence of the bodies for the configurations of ref-
erence 2. The methods of references 2 to 5 were not used because they 
either do not apply to the configurations of the subject investigation 
or require considerable modifications to account for the blunt bodies 
and large D/b values investigated. 

Drag.- At a given angle of attack, the drag coefficient increased 
as the ratio of body diameter to wing span was increased (fig. 7). The 
drag coefficient at a given angle of attack was increased by a change 
in body fineness ratio of from 5.0 to 7.0 for both the D/b = 0.2 and 0.4 
wing-body combinations (fig. 8). 

Pitching moment.- For the wing-body combinations having body fine-
ness ratios of 5.0, the instability increased with D/b (fig. fl. In 
general, an increase in afterbody length resulted in a reduction in the 
instability (figs. 7 and 8). There were large stabilizing changes in 
the pitching-moment slopes dCjdCL resulting from the addition of the 

wing to the body (figs. 4(b), li-(c), and 7). 

CONCLUSIONS 

A wind-tunnel investigation was made at low speed to determine the 
effects of varying the ratio of body diameter to wing span D/b from 
0.1 to 0.8 on the aerodynamic characteristics in pitch of a wing-body 
combination having an untapered 45 0 sweptback wing of aspect ratio 3 
and a body having an ogival nose and a cylindrical afterbod.y. The results 
of the investigation led to the following conclusions: 

1. There was a linear increase in lift-curve slope at 00 angle of 
attack with D/b for the D/b = 0.1 to 0.4 range and further increases 
in D/b from 0.4 to 0.8 resulted in only slight changes in the lift-
curve slope. 

2. Lift-curve-slope values near 00 angle of attack estimated by an 
approximate theory were in excellent agreement with the experimental 
results.
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3 . At a given angle of attack, the body-alone lift coefficient (based 
on the maximum cross-sectional area of the body) increased with body 
fineness ratio for the 4.5- to 7.5-fineness-ratio range investigated. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., October 5, 1953. 
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TABLE I 

LIFT CHARACTERISTICS OF THE BODY ALONE AND

WING-BODY COMBINATIONS 

Body alone 

C Ct:t C 
D, in. F.R.

(a) (a b) (a c) 

3 . 5 7.5 0.0350 0.0008 0.0033' 
7.0 5.0 .0319 .0030 .0120 
7.0 7.0 .0340 .0032 .0128 

10.5 5.0 .0320 .0068 .0271 
14.O 11.5 .0317 .0119 .011.77 

aFor q 30 and 120 lb/sq ft. 
bBased on Sw of large wing (b = 37.00 in.) 
CBased on S of small wing (b = 17.50 in.). 

Wing-Body Combinations

CLM 
D, in. b, in. D/b F.R.

d 

3 . 5 35.0 0.1 7 . 5 0.0525 
7.0 37.0 .2 5.0 .o511.6 
7.0 35.0 .2 7.0 .0550 
10.5 35.0 .3 5.0 .o68 
114.0 35.0 .14 4.7 .0583

D. in. b, in 'D/b F.R. 

3 . 5 17.5 0.2 7 . 5 0.0555 
7.0 17.5 .4 5.0 .0590 
7.0 17.5 .14 7.0 .0598 

10.5 17.5 .6 5.0 .0595 
14.o 17.5 .8 14.5 .0585

dq 30 lb/sq ft	 eq 120 lb/sq ft 
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/750 

Small wing N_is 
(a) Wings. 

20f 
__________ 

 
2D0 - fr_Moment centers 

Ii 
Cj

/ 0	 -	 Variable 

(b) Bodies. 

Figure 1.- Dimensional characteristics of the wings, bodies, and wing-
body combinations. Unless otherwise noted, all dimensions are in 
inches.
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r:i 

Figure 2.- System of stability axes. Positive values of forces, moments, 
and angles are indicated by arrows. 
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20

CD9 

/0 

0 

02 

0/ 

CL5

0 

-I

-8 0 8 /624 

a, deg

32 40 48 

(a) Coefficients based on the body geometry. (Cm about 0.27 location 
of the large wing. See fig. 1.) 

Figure 4, Longitudinal aerodynamic characteristics of the body-
alone configuration. 
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(b) Coefficients based on the geometry of the large 'wing. q , 30 lb/sq ft.

Figure 4 . _ Continued. 
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(c) Coefficients based on the geometry of the small wing. q 120 lb/sq ft. 

Figure Ii._ Continued. 
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Figure 6.- Comparison with theory of the experimentally determined variation 
ofCj	 with body fineness ratio. 
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(a) Bodies with large wing. q 30 lb/sq.ft. 

Figure 7.- Longitudinal aerodynamic characteristics of the wing-body
combinations. 
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(b) Bodies with small wing. q 120 lb/sq ft.

Figure 7.- Continued. 

CONFIDENTIAL 



NACA RM L5JO9a	 CONFIDENTIAL	 27 

36 

32 

2.8 

24 

2.0 

1.6 

q 0,/n. FR. 

oO.2 35 75 
0.4 7.050 

o0.6 /0550 
vO.S 140 45

Cm 1.2 

IM 

-1.2 L 

-8 o 8 16 24 32 40 48 

a ., deg 

(b) Concluded.

Figure 7.- Concluded. 
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Figure 10.- Comparison with theory of the experimentally determined 

	

variation of C	 with D/b. 
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Figure 11.- Theoretical variation with D/b of the ratio of the lift 
induced on the body by the wing to. the lift of the wing in the 
presence of the body (from ref. 4 or 9). 
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Figure 12.- Variation with D/b of the contributions to the lift of the
wing-body configuration as determined by the method of reference 1. 
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