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WIND-TUNNEL INVESTIGATION AT LOW SPEED OF THE EFFECT OF
VARYING THE RATIO OF BODY DIAMETER TO WING SPAN FROM
0.1 TO 0.8 ON THE AERODYNAMIC CHARACTERISTICS IN
PITCH OF A 45° SWEPTBACK-WING—BODY COMBINATION

By Harold S. Johnson
SUMMARY

Force and moment data were obtained at low speed for a family of
bodies and wing-body combinations to determine the effects of varying
the ratio of body diameter to wing span from 0.1 to 0.8 on the aerodynamic

characteristics in pitch. The bodies had l% -caliber ogival noses and

cylindrical afterbodies. The untapered 45° sweptback wings had aspect
ratios of 3 and NACA 65A006 airfoil sections parallel to the body center
line. Lift, drag, and pitching-moment data were obtained through a -6°
to about 40O° angle-of-attack range. In addition, the experimental 1ift
characteristics of the body alone and the wing-body combination were
compared with several existing theories. .

There was a linear increase in lift-curve slope at 0° angle of attack
with body-diameter —~wing-span ratio D/b for the D/b = 0.1 to 0.4 range,
and further increases in D/b from 0.4 to 0.8 resulted in only slight
changes in the lift-curve slope. The lift-curve slope as estimated by
an approximate theory was in excellent agreement with experiment for the
D/b range investigated. The body-alone 1lift coefficient (based on the
maximum cross-sectional area of the body) at a given angle of attack
increased with the body fineness ratio for the 4.5- to 7.5-fineness-ratio
range investigated.

INTRODUCTION

Since the advent of supersonic flight, more radical departures from
conventional airplane configurations have been made or are being con-
sidered. The rapid development of guided missiles has indicated that
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even more extreme configurations show promise of providing satisfactory
supersonic flight characteristics. One of the basic airplane design
variables that is being altered by the demands of increased speeds is
the ratio of fuselage diameter to wing span. The combination of low-
aspect-ratio wings and a decrease in the wing area required has resulted
in ratios of fuselage diameter to wing span of as high as about 0.5.
Thus, the determination of mutual interference between a wing and a body
has become more important. Therefore, both experimental data and theo-
retical studies of the forces and moments mutually induced by a wing and
a body are of appreciable interest.

Recent studies (for example, refs. 1 to 6) have provided informa-
tion on this interference effect and show the great variety of problems
involved as well as methods so far employed in dealing with them.

Reported herein are the results of an Investigation made to deter-
mine the low-speed aerodynamic characteristies in pitch of a 45° sweptback-
wing—body combination having a body-diameter——wing-span ratio range of
0.1 to 0.8 for a wide angle-of-attack range that extended well beyond
the wing stall. In addition, theoretical estimates of the 1ift char-
acteristics of the body alone and of the wing-body combination are com-
pared with the experimental results.

COEFFICIENTS AND SYMBOLS

The results of the tests are presented as standard NACA coefficients
of forces and moments about the stability axes (which for the conditions
of these tests (0° yaw) correspond to the wind axes). The pitching-moment
coefficients are given about the guarter-chord point of the mean aero-
dynamic chord shown in figure 1. The positive directions of forces and
moment are shown in figure 2.

A aspect ratio, bE/S

Ag aspect ratio of exposed wing, (b - D)2/Sg

b ' wing span, 1.458 and 2.917 ft

c wing mean aerodynamic chord, 0.486 and 0.972 ft
D maximum body diameter, ft

1 length of body, ft

q ‘ free-stream dynamic pressure, §¢Y2, 1b/sq ft
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Sy maximum cross-sectional area of body, sg ft
Sg exposed wing area, sq ft
Sy wing area, 0.709 and 2.83%6 sq ft
v free-stream velocity, ft/sec
ok angle of attack, deg
P mass density of air, slugs/cu ft
. . . : Lift
Cy 1lift coefficient based on wing geometry, o
Aoy
CLB 1ift coefficient of body based on body geometry, Lift
a5B
C; = §EL at o = 0°
L
X1y
C = —— at o= 0°
ICLB aa
. Drag
Cp drag coefficient based on wing geometry,
aSw
. Drag
CDB drag coefficient of body based on body geometry,
aSg
Cm pitching-moment coefficient based on wing geometry,

Pitching moment

as,c
?itching-moment coefficient of body based on body geometry,

Pitching moment

aSgl
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Subscripts:
L large wing
S . small wing

The abbreviation F.R. is used for fineness ratio.
MODEL AND APPARATUS

The bodies and wing-body combinations were tested in the Langley
300 MPH 7- by 10-foot tunnel by utilizing a sting-support system (fig. 3)
and an electrical strain-gage balance contained within the body. In
order to provide the desired range of body-diameter-wing-span ratio

(%.: 0.1 to 0.8), two wings, having spans of 17.5 inches (referred to as.

the small wing) and 35.0 inches (large wing), were tested in combina-
tion with four bodies having diameters of 3.5, 7.0, 10.5, and 14.0 inches.
Both wings were untapered and had 45° of sweepback, aspect ratios of 3.00,
and NACA 65A006 airfoil sections parallel to the plane of symmetry. The

bodies had ogival noses of li calibers and cylindrical afterbodies.
2

Because of mounting limitations (the body length had to be long enough

to contain the balance and short enough to clear the mounting strut),

the body fineness ratios varied from 4.5 to 7.5. (See fig. 1(c).) The
T.0-inch-diameter body and wing-body configurations were tested at fine-
ness ratios of both 5.0 and 7.0. The wing-chord plane was coincident

with the horizontal plane of symmetry of the body. Drawings of the config-
urations investigated are shown in figure 1. '

TESTS

The tests were made in the Langley 300 MPH 7- by 10-foot tunnel at
dynamic pressures of approximately 30 and 120 lb/sq ft for the config-
urations having the large wing and the small wing, respectively. Body-
alone tests were made at both of these dynamic pressures. The corre-
sponding Mach numbers were 0.14 and 0.29, and the Reynolds number was
about 0.9 x 106 based on the wing mean aerodynamic chords. Lift, drsg,
and pitching-moment data were obtained for an angle-of-attack range of
about -60 to about 40° unless this range was limited by model load or
extreme vibration.
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CORRECTIONS

The angle-of-attack values have been corrected to account for the

. deflection of the balance and support strut under load. Jet-boundary
corrections, computed by the method outlined in reference 7, were applied
to the data. Blockage corrections have been applied to the data according
to the method of reference 8. Buoyancy corrections have been applied to
account for the longitudinal static-pressure gradient in the tunnel.

RESULTS AND DISCUSSION

Presentation of Data

The body-alone aerodynamic characteristics are presented in figure 4
and the effect of body fineness ratio for the T.0~-inch-diameter body-
alone configuration is shown in figure 5. A comparison between the experi-
mentally and theoretically determined variation of CluB with body fine-

ness ratio is shown in figure 6.

The aerodynamic coefficients of the wing-body configurations are
presented in figure 7, and the effect of body fineness ratio for the
wing-body combinations having the 7.0-inch-diameter body is shown in
figure 8. The D/b = 0.2 and 0.4 wing-body configurations having the
large wing are compared with the same configurations having the small
wing in figure 9. The experimentally determined variation of lift-curve
slope at a = 0° with D/b is compared with theory in figure 10. The
theoretical ratio of induced body 1ift to wing 1lift as determined from
reference 4 or 9 is shown in figure 11. The various contributions to
the theoretically determined 1ift of the wing-body configuration are
presented in figure 12 as a function of D/b.

‘Body-Alone Characteristics

‘Lift.- The variation of 1lift coefficient (based on the body geometry)
with angle of attack was similar for the four sizes of bodies investi-
gated and the data exhibited consistent effects of variations in both
body fineness ratio and dynamic pressure (figs. 4(a), 5(a), and 6). At
a given angle of attack, the 1lift coefficient increased with body fine-
ness ratio for the 4.5- to T.5-fineness-ratio range investigated. A
change in dynamic pressure from about 30 1b/sq ft to about 120 1b/sq ft
had a negligible effect on the 1ift data for angles of attack of less
than about 16°. For a given angle of attack greater than about 16°, the
1ift coefficient was greater at the higher dynamic pressure and the change
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in CLB was generally greater for the bodies having the higher fineness-

ratio values. The lift-curve slope did not vary with o« for angles of
attack of less than about 12° to 16°. At angles of attack greater than
about 16°, the lift-curve slope was greater than that for values of a
of less than about 16°, and larger increases in slope at the high values
of a were noted for the bodies having the higher values of body fine-
ness ratio (figs. 4(a) and 5(a)). There was no indication of body
stalling below a = 4OC.

For the 4.5- to 7.5-fineness-ratio range investigated, the lift-curve
slope at a = 0° CIQB increased very nearly linearly with body fineness

ratio as shown in figure 6 and table I. Also presented in figure 6 are
the theoretical CLaB values determined by the methods of references 4

and 10. As determined by the method of reference 4, the lift is a func-
tion only of angle of attack and base area and is independent of the
body fineness ratio (CL = 20 where a 1is expressed in radians and the

reference area is the base area of the body ). It should be noted that
this theory may underestimate the 1ift for bodies that have a base area
less than the maximum cross-sectional area since viscosity effects may

be present and the effective base area of such bodies will be larger than
the actual base area by an amount dependent on the thickness of the bound-
ary layer (ref. 4). In the method of reference 10, this 2a term is
reduced by a factor to approximate the effects of body fineness ratio.

The method of reference 10 also includes a nonlinear a2 term to approx-
imate the effects of the viscous cross flow. For the bodies investigated,
this theory considerably overestimated the increase in lift-curve slope
with «, but the computed increment of CLB resulting from a change in

body fineness ratio is in good agreement with the experimental results.

Drag.- The effects of changes in both body fineness ratio.and dynamic
pressure on the drag characteristics were generally similar to those on
the 1lift data -(figs. 4(a) and 5(a)). At a given angle of attack, the
drag coefficient increased as the body fineness ratio was increased for
the 5.0 to 7.0 range investigated and this change in CDB increased with

angle of attack (fig. 5(a)). The change in dynamic pressure from about
30 1b/sq ft to about 120 1b/sq ft resulted in negligible changes in Cpg

for angles of attack of less than about 20° and increases in CDB for
angles of attack greater than about 20°. This increase in CDB‘ at high
values of o was most pronounced for the bodies having the higher fine-

ness ratios.

Pitching moment .- A direct comparison of the pitching-moment data
for the various bodies tested cannot be made in figure 4(a) since the
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body fineness ratios and the moment-center locations varied (fig. 1).

The experimental results for the two bodies having fineness ratios of

5.0 (D =7.0 in. and 10.5 in.) were in substantial agreement when
referred to the same moment center. As expected, an increase in after-
body length of 2 diameters had a stabilizing effect throughout the angle-
of -attack range investigated (fig. 5(a)).

Wing-Body Characteristics

Lift.- For values of a of less than about 12°, the data of fig-
ures 7 and 8 show that the lift-curve slope generally increased with «
and that this change in lift-curve slope with a increased with D/b
for the 0.1 to 0.6 D/b range. For this angle-of-attack range, the 1lift-
curve-slope values for the D/b = 0.8 configuration were slightly less
than those for the D/b = 0.6 configuration. As the ratio of body diam-
eter to wing span was increased, the effect of the wing stall generally
became less pronounced. For angles of attack above the wing stall
(o = 20°), the 1lift coefficient of the D/b = 0.1 configuration was rel-
atively unaffected by changes in a. For this high angle-of-attack range,
the 1ift coefficient at a given angle of attack increased as the D/b
ratio was increased as a result of both increasing body 1ift with « for
angles of attack beyond the wing stall and induced effects.

The 1ift coefficient at a given angle of attack was increased by a
change in body fineness ratio from 5.0 to 7.0 for the D/b = 0.2 and 0.4
configurations (fig. 8). This increase in Cy with fineness ratio was

of about the same magnitude as was noted for the body-alone configurations
based on the corresponding wing areas (figs. 5(b) and 5(c)). The incre-
ment of 1ift coefficient resulting from the change in body fineness ratio
increased very nearly linearly with «. The lift data for the D/b = 0.2
and 0.4 configurations having the large wing are in very good agreement
with those for the same configurations having the small wing when the
effect of the one-half-caliber difference in body fineness ratio is
considered (fig. 9).

The experimentally determined lift-curve slopes for the various wing-
body combinations at o = 00 are given in table I and are presented in
figure 10 approximately adjusted (by using the experimental body-alone
and wing-body data) to body fineness ratios of 5.0 and 7.0 where neces-
sary. A linear increase in Cp = with D/b is shown for the D/b = 0.1

to 0.4 range, and further increases in D/b from 0.4 to 0.8 resulted
in only slight changes in CLa' The 1lift-curve slope for D/b = 1.0

(obtained from the body-alone data with the 1ift coefficient based on
the area of a hypothetical untapered aspect-ratio-3 wing) was appreciably
higher than that for the D/b = 0.8 configuration. The Ci, values

computed by the method of reference 1 are in excellent agreement with
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the experimentally determined values (fig. 10). In this method, the

1ift of a wing-body combination is considered to be the summation of four
contributions: 1ift of the exposed wing, body 1ift, induced wing 1lift
(resulting from the body upwash flow field), and the induced body 1lift
(resulting from the wing flow field). The 1ift of the exposed wing is
approximated by assuming that the fuselage acts as an infinite end plate
(AE = (b - D)E/SE ) In the calculations presented in this paper, the

1lift-curve slope of the exposed wing was computed by the following
. equationl: '

Ag/57.3

1 dr1v2 Ap V2 [agM)P
2\ (eers) - (&
b1 b8 ap cos A ao

where ag 1is the section lift-curve slope per radian, A 1is the sweep

of. the 50-percent-chord line in degrees, and M is the Mach number.

The induced wing 1ift is approximated by increasing the wing angle of
attack by the average upwash angle over the exposed span of the wing as
determined by potential theory (refs. 11 or 12). This average upwash
angle is shown to be equal to (D/b)a and the effective angle of attack
of the exposed wing is therefore (1 + D/b)a. The induced body 1lift
(resulting from the upwash flow field ahead of the wing, the downwash
behind the wing, and the loading carried over the body in the vicinity
of the wing) is approximated by assuming this 1ift to have the same rela-
tionship to the 1ift of the wing in the presence of the body as that for
a configuration having a wing mounted on a cylinder of infinite length
(refs. 4 or 9). This ratio of induced body 1lift to wing 1ift is shown
in figure 11 as a function of D/b. The variation of these four con-
tributions to the 1lift of the wing-body configuration investigated with
D/b is shown in figure 12 with the body 1ift computed by the methods

of references 4 and 10. Also shown in figure 12 is the change in lift
resulting from a reduction of the ‘body upwash to account for the effect
of the finite wing thickness. The increment of wing 1lift resulting from
the body upwash field was reduced by the ratio of body cross-sectional
area above and below the wing to the cross-sectional area of the body.
(See ref. 5.)

CL(J.=

1mhis equation was derived by Mr. Edward C. Polhamus of the Langley
Aeronautical Laboratory and was presented (in modified form) in unpublished
lecture notes which were distributed at the Wright Field Seminar on Com-
pressibility Effects on Aircraft Design, 1950. The derivation of this
equation is similar to the lift-curve equation of reference 13 and gives
results that are in excellent agreement with experimental results for
wings having a wide range of plan forms.
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Calculations were also made and good agreement with the experimental
CLa values was obtained by using the method of reference 1 for the wing-

body combinations of references 2, 1k, and 15 (tapered unswept wing,
tapered sweptback wings, and delta wihg, respectively) and for the 1lift
of the wing in the presence of the bodies for the configurations of ref-
erence 2. The methods of references 2 to 5 were not used because they
either do not apply to the configurations of the subject investigation
or require considerable modifications to account for the blunt bodies
and large D/b values investigated.

Drag.- At a given angle of attack, the drag coefficient increased
as the ratio of body diameter to wing span was increased (fig. 7). The
drag coefficient at a given angle of attack was increased by a change
in body fineness ratio of from 5.0 to 7.0 for both the D/b = 0.2 and 0.4
wing-body combinations (fig. 8).

Pitching moment.- For the wing-body combinations having body fine-
ness ratios of 5.0, the instability increased with D/b (fig. 7). In
general, an increase in afterbody length resulted in a reduction in the
instability (figs. 7 and 8). There were large stabilizing changes in
the pitching-moment slopes de/dCL resulting from the addition of the

wing to the body (figs. 4(b), 4(c), and 7).

CONCLUSIONS

A wind-tunnel investigation was made at low speed to determine the
effects of varying the ratio of body diameter to wing span D/b from
0.1 to 0.8 on the aerodynamic characteristics in pitch of a wing-body
combination having an untapered 45° sweptback wing of aspect ratio 3
and a body having an ogival nose and a cylindrical afterbody. The results
of the investigation led to the following conclusions:

1. There was a linear increase in lift-curve slope at 0° angle of
attack with D/b for the D/b = 0.1 to 0.4 range and further increases
in D/b from O.4 to 0.8 resulted in only slight changes in the 1ift-
curve slope.

2. Lift-curve-slope values near O° angle of attack estimated by an

approximate theory were in excellent agreement with the experimental
results.
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3. At a given angle of attack, the body-alone 1ift coefficient (based
on the maximum cross-sectional area of the body) increased with body
fineness ratio for the 4.5- to 7.5-fineness-ratio range investigated.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., October 5, 1953.
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TABLE I
LIFT CHARACTERISTICS OF THE BODY ALONE AND
WING-BODY COMBINATIONS
Body alone
“Log ‘o ‘Lo
D, in. F.R.
(a) (a ) (a c)
3.5 7.5 0.0350 0.0008 0.0033%
7.0 5.0 .0319 .0030 .0120
7.0 7.0 .0340 .0032 .0128
10.5 5.0 .0320 .0068 .0271
14.0 4.5 .0317 .0119 OLTT
aFor q =~ 30 and 120 1b/sq ft.
bBased on S, of large wing (b = 35.00 in.).
CBased on S, of small wing (b = 17.50 in.).
Wing-Body Combinations
c C
D, in. |b, in. |D/b |F.R. to. D, in. |{b, in. [D/b |F.R to
(a) (e)
3.5 35.0 {0.1|7.5]0.0525 3.5 | 17.5 |0.2]7.5]0.0555
7.0 35.0 .215.0] .0546 7.0 17.5 4 15.0] .0590
7.0 35.0 217.0] .0550 7.0 17.5 Ll7.0] .0598
10.5 35.0 315.0] .0568 10.5 17.5 615.0| .0595
14.0 35.0 LA ih.5 1 0583 14.0 17.5 Bluh.5] .0585

dg =~ 30 1b/sq ft

eq =~ 120 1b/sq ft
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35.00
3
N
N
©
Large wing h
) -1
—-17.50
|0
;T.
)
S %
Small wing i
(a) Wings.
20t¢g
~——20+& ' /—Mameﬂf centers

/ . :
/ 5 D Variable

(b) Bodies.

Figure 1.- Dimensional characteristics of the wings, bodies, and wing-
body combinations. Unless otherwise noted, all dimensions are in

inches.
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.Figure 2.- System of stability axes. Positive values of forces, moments

J
and angles are indicated by arrows.
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(a) Coefficients based on the body geometry. (Cp about 0.25& location

of the large wing.

See fig. 1.)

Figure 4.- Longitudinal aerodynamic characteristics of the body-
alone configuration.
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(b) Coefficients based on the geometry of the large wing.‘ q = 30 1b/sq ft.

Figure 4.- Continued.
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(c) Coefficients based on the geometry of the small wing. q =~ 120 1b/sq ft.

Figure k.- Continued.
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- Figure %.- Concluded.
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FigureA6.- Comparison with theory of the experimentally determined variation
of CLmB with body fineness ratio.
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(a) Bodies with large wing. q =~ 30 1b/sq ft.

Figure 7.- Longitudinal aerodynamic characteristics of the wing-body
combinations.
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(b) Bodies with small wing. gq = 120 1b/sq £t.

Figure 7.- Continued.
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Figure 7.- Concluded.
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Figure 10.- Comparison with theory of the experimentally determined
variation of Cp = with D/b.
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0

Ratio of induced body Iift to lift of the wing
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Figure 11.- Theoretical variation with D/b of the ratio of the lift
induced on the body by the wing to. the lift of the wing in the
- presence of the body (from ref. 4 or 9). .
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Figure 12.- Variation with D/b of the contributions to the llft of the
wing-body configuration as determined by the method of reference 1.
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