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SUMMARY 

The basic ideas of the slender-body approximation have been applied 
to the nonlinear transonic-flow equation for the velocity potential in 
order to obtain some of the essential features of slender-body theory 
at transonic speeds. The results of the investigation are presented 
from a unified point of view which demonstrates the similarity of 
slender-body solutions in the various Mach number ranges. The primary 
difference between the results in the different flow regimes is repre-
sented by a certain function which is dependent upon the body area 
distribution and the stream Mach number. The transonic area rule and 
some conditions concerning its validity follow from the analysis. 

INTRODUCTION 

Slender-body theory originated with Mink's paper (ref. 1) in 1921I 
in which the forces on slender airships were calculated for low-speed 
flight. In 1938 Tsien (ref. 2) pointed out that Munk's airship theory 
also applied to the flow past inclined, pointed bodies at supersonic 
speeds. The subject gained new importance in 19146 with the appearance 
of Jones's paper (ref. 3) in which it was shown that the basic ideas of 
the slender-body approximation could be used to calculate the forces on 
slender lifting wings at both subsonic and supersonic speeds provided 
that proper account was taken of trailing-vortex sheets. Since Jones's 
paper, the subject has received wide treatment in the literature. In 
an important paper in 1949, Ward (ref. 14) developed a general unifying 
theory for the flow past smooth, slender, pointed bodies at supersonic 
speeds which contains as special cases the, lifting planar wings of Jones 
and the slender nonlifting bodies .t'reate:by Von Krma'n (ref. 5). The 
corresponding problem at subsonic spgs has.-been examined by Adams and 
Sears (ref. 6) who also extended theInder-boy:c oncepts to shapes 
which are "not so slender." Lighthill (ref. 7 has given a method for 
calculating the flow past bodies with discontinuities in slope. Keune 
(ref. 8) has developed solutions for slender wings with thickness and 
various lifting configurations have been treated by Heaslet, Spreiter, 
Lomax, Ribner., and others (refs. 9 to 114). 

CONFIDENTIAL



2	 CONFIDENTIAL	 NACA RM L54A29a 

The slender-body theory presented in references 2 to 14 has been 
based upon the linearized equation for the velocity potential. In the 
present paper, the basic ideas of the slender-body approximation are 
applied to the nonlinear transonic equation for the velocity potential 
in order to obtain some of the essential features of slender-body theory 
at transonic speeds. The attempt has been made to present the results 
from a unified point of view which demonstrates the similarity of the 
slender-body solutions in the various Mach number ranges. 

The authors wish to acknowledge the invaluable aid and advice of 
Dr. Adolf Busemaim of the Langley Laboratory during the writing of this 
paper.

SLENDER-BODY APPROXIMATION 

Slender-body theory deals with that class of shapes whose length 
is large compared with any lateral dimension. For such shapes at both 
subsonic and supersonic speeds, the flow in planes normal to the stream 
direction can be approximated by solutions of Laplace t s equation. The 
justification is that for very slender wings or bodies the variation 
of the geometrical properties in the stream direction is small and, 
consequently, the rate of change of the longitudinal component of the 
velocity in the stream direction is also small. The various slender-
body solutions have all been developed on the basis of the linearized 
potential equation. However, a similar development can be made on the 
basis of the nonlinear transonic equation. 

The simplest differential equation for the disturbance potential 
which is generally valid at transonic speeds (ref. 15, for example) is 

JO	 r r2
(i) 

where x, r, and '5 are cylindrical coordinates, M is the stream 
Mach number, and y is the ratio of specific heats at constant pressure 
and constant volume. With the introduction of the dimensionless 
coordinates	 and	 by x = Z and r br, and of the dimension-

less potential 0 by 0 =12-2 the transonic potential-flow 

equation becomes 

2E	 21	 00 
() L- M2 - (7 + 1)M2 	 +	 ^	 + -= 0	 (2) 
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where 1. is a characteristic length and b is a characteristic width 
such as the largest lateral dimension of the configuration. For suffi-
ciently small values of the width parameter b/i, it appears that the 
terms involving derivatives in the stream direction can be neglected 
to obtain the result that the flow satisfies Laplace's equation 

O rr + r +8,0= 0	 - ( 3) 

in the cross-flow plane. Equation (3) represents the slender-body 
approximation to equation (1). Some conditions will be determined 
subsequently which are necessary in order for solutions of equation (3) 
to be approximate solutions of equation (i). 

The boundary conditions for the flow about a body in a uniform 
stream are the vanishing of the disturbance velocities at infinity and 

=	 (l +	 ) 
n dx	 dx 

on the body where n is in the direction normal to the body contour in 
the cross-flow plane. For flows satisfying Laplace's equation in the 
cross-flow plane, the surface boundary condition can be integrated 
(ref. ii. , for example) to give 

fdt =S'(x)
	

(4-) 

where d.t is an element length in the direction of the tangent to any 
contour C in the cross-flow plane enclosing the body, S(x) is the 
cross-sectional area distribution of the body, and the prime denotes 
differentiation with respect to the indicated argument. 

The slender-body solution of equation (1) can be represented by a 
solution of equation (3) plus a function of integration. Since equa-
tion (3) is independent of Mach number, the form of the solution is 
identical with the known slender-body solutions for subsonic and super-
sonic flow. The slender-body analyses of references Ii- and 6 have 
established that the solution can be represented by a distribution of 
sources and higher order singularities on the axis; an equivalent form 
is given by a distribution of sources in the region of the cross-flow-
plane interior to the surface boundary. The slender-body solution is 
then expressed as
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where p denotes the solution of Laplace's equation in the cross-flow 
plane with t appearing as a parameter introduced by the geometry of 
the cross section at t. The function p, being independent of the 
stream Mach number, can be evaluated for incompressible flow past the 
shape under consideration. 

A necessary condition for equation (6) to be an approximate solu-
tion of equation (1) is that the terms neglected in equation (1) be 
small compared with those retained. By assuming for the moment that 
log p is the only singular term in 0, the ratio of the term 

[1 - M2 - (y +	 which is neglected in the slender-body 

approximation, to any of the remaining terms in equation (1) is of the 
order 

()2 {(i - M2)(1og ) + o(i + (2(log2 ) + o(iog ) + O(i} 

where o( ) denotes order of and the nonsingular terms are denoted 
by 0(1). This ratio can be made smaller than any prescribed value € 
by restricting the solution to the interior of a cylinder of some 
radius, say Rh. For given values of M and €, the radius of this 
cylinder increases with decreasing b/i and the ratio R/b approaches 
infinity as b/i approaches zero. Moreover, for given values of € 
and Rh, larger values of b/i are permitted as M approaches 1. 

From equation (6) it is apparent that S'(x/i) and its deriva-
tives must be finite in order to satisfy the requirement of small dis-
turbances. Moreover, an additional restriction on the asymmetry of 
the body is sometimes required (ref. 4), particularly for lifting con-
figurations - namely, the radius of curvature of the body boundary in 
the cross-flow plane must be 0(b) where the boundary is convex outward. 
The restrictions on body shape imposed by the function g(x/l) will be 
considered subsequently after the nature of this function is established. 

The function g(x/i) is determined from considerations involving 
the complete transonic differential equation (eq. 1) and, consequently, 
is dependent upon the stream Mach number. Examination of equation (6) 
at r= LO <	 shows that the contribution of the asymmetric term of 

the source distribution to the potential can be made smaller than any 

prescribed value by making b/R 0 sufficiently small (Po = o
	 o 

To this order of approximation, then, the flow field external to 
is axisymmetric. Moreover, there is an axisymmetric flow which approxi-
mately matches the pressure and flow direction of the slender-body 
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solution at r = R0 . The potential 00 for this associated axisymnietric 

flow satisfies equation (1) and is expressed symbolically as 

_b2[o(x/1) 

L
log + g0 (x/l,r/l	 () 

where the characteristic width b and length 1 are taken the same as 
for the asymmetric shape. In equation (i), s0 (x11) is the area dis-
tribution of the associated body of revolution which has the same outer 
flow (r R0 ) as the asymmetric shape. If this axisyminetric flow 
satisfies the slender-body conditions, then g0 is independent of r 
for r < R. In order for the radial derivatives to match at r = R0, 

s0 (x/l) must be equal to s(x/l); that is., the associated body of 
revolution must have the same axial distribution of cross-sectional 
area as the asymmetric shape. In order for the pressure distributions 
to match at r	 g0(x/2) must be the same as g(x/l). Thus, 
g(x/l) is the same function as that for a body of revolution having 
the same axial distribution of cross-sectional area. 

In the preceding discussion the region of validity of the slender-
body approximation to	 was tacitly assumed to be at least as large 
as that for 0. This condition is certainly true since the singular 
terms in the two solutions are the same. 

In the slender-body approximation the term [i - 	 - (y + i)QIDXX 
is required to be small compared with any of the other terms in the 
transonic. differential equation. If this condition is to be satisfied 
in the neighborhood of weak shock waves where g'(x/l) would be required 
to have, a jump proportional to the pressure rise and g"(x/i) would be 
infinite, the quantities (which were included in the terms denoted 
as	 0(1))	 . .

M2 - ( + l)Moi	 (8) 

and 

g"(x/i) fff (PJ"J; X/ i ) 1og	 os -	 cos	 + in -	 sin i)2Pi i i	 (9) 
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must be bounded there. Thus, at shock waves the coefficients of gtt(x/z) 
in expressions (8) and (9) must vanish. In the first of these expres-
sions, which is axisymmetric, the coefficient of ;glt(x/l) vanishes for 
a local Mach number of 1. Moreover, the average value of the local 
Mach number ahead and behind a weak normal shock wave is 1. With this 
interpretation of shock waves, then, the coefficient of g"(x/l) vanishes 
and the solution should represent the flow in the neighborhood of weak 
normal shocks. Also, since g(x/l) is the same function for both a 
slender configuration and its associated body of revolution, their 
shock-wave systems would have the same strength and location. In order 
for expression (9) to be bounded in the neighborhood of a shock wave, 
the double integral must vanish. Since this double integral gives rise 
to asymmetric shapes and is zero for chordwise locations where the body 
is a.xisymmetric, the additional restriction is obtained that the body 
cross section must be circular in the vicinity of shock waves. 

The slender-body solutions in the various Mach number ranges are 
similar in that they are all represented by equation (6) although the 
function g(x/z) differs for the various speed ranges. Analytic 
expressions for g(x/z) have been obtained for supersonic and subsonic 
flows by considering general solutions of the complete linearized equa-
tion satisfying the boundary condition of vanishing disturbance veloc-
ities at infinity. These solutions were then expanded in the neighbor-
hood of the body to evaluate g(x/l). Ward (ref. Ii-) has determined 
this function for supersonic flows as 

g(x/z) - 1	 (x/l) log(
	 1	

x/ 1 
) -	 sIt(l)log( - 

El)dE 

-	
2 

The corresponding result at subsonic speeds was obtained by Adams and 
Sears (ref. 6) as 

1	 (x/1)1- N2 
2	

iog(	
) -

	 x/l 

11x1 s(i) log ( 1 -)d^ 
/ 1

It 

s ( 1 )log(2S - 1)d 1 + 

where the body extends from x = 0 to x = 1. Although an analytic 
expression for g(x/2) at transonic speeds is not known, it has been 
established that the stream Mach number enters the solution only through 
g(x/z) and that the only geometric property of the body influencing 
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this function is the area distribution. The transonic similarity rule 
for bodies of revolution (ref. 15 or 16) shows that g(x/z) can be 
expressed in the form 

g(x/z) = S, 
(x/1) lo
	 + i)M2()i + f(x/l;K) 

where the similarity parameter is

1 -

/ 
(7 + lN2(j!) 2 

AERODYNAMIC FORCES 

Since the slender-body solutions are all represented by equation (6), 
formal expressions for the aerodynamic forces can be determined which are 
valid throughout the Mach number range. Consequently, many of the 
essential features of slender-body theory at transonic speeds can be 
obtained without resorting to detailed calculations. 

Lift 

The most significant difference between the slender-body solutions 
at subsonic, transonic, and supersonic speeds is that the function g(x/z) 
differs in these various speed ranges. However, the term in the pressure 
arising from the function g(x/l) makes only a uniform contribution to 
the pressure at any value of x and, therefore, cannot affect the lift 
distribution or the lift. Thus, within the slender-body approximation, 
the lift distribution depends only upon the function p and, conse-
quently, is independent of the stream Mach number. Several investigators 
(Robinson and Young (ref. 17) and Heaslet, Lomax, and Spreiter (ref. 9), 
for example) have previously noted that the linearized slender-body 
theory gave consistent results, even at a Mach number of 1, for planar 
systems. 

According to slender-body theory, the lift distribution can be 
obtained completely from solutions of Laplace t s equation in the cross-
flow plane. Since this equation is linear, the lift is proportional 
to the angle of attack even at transonic speeds. Ward has obtained 
an especially simple form for the drag due to lift in which 
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DL = a.L 

where a is the angle of attack measured from zero lift and L is 
the lift.

Drag 

By computing the momentum change of the fluid passing through a 
cylinder enclosing the body, the drag is determined as 

- (b2) 2 [2 f 1	 ))d + f p	 at1	 (10) 
q 	 C 

where the body extends from 	 0 to t =1, C' denotes the contour 

of the body at the stern which in the case of wings or wing-bodycom.- 
binations includes the trailing-vortex wake, q is the stream dynamic 
pressure, and Db is the base drag. Equation (10) is valid throughout 
the Mach number range provided the appropriate forms of the func-
tion g(x/z) are employed. The line integral is zero for nonlifting 
configurations if the body is closed or if the body ends in a cylindrical 
section whose elements are parallel to the stream. The effect of Mach 
nuniber.(excluding the variation of base drag with Mach number) is con.-. 
tained in the term involving g(x/l). 

When the subsonic form of g(x/l) is used in equation (10), the 
correct result is obtained that the drag of nonhifting configurations 
is zero. By using the supersonic form of g(x/L), the drag varies with 

Mach number like [s'(1)] 2log(M2 - i). For pointed bodies, or for 

bodies which end in a cylindrical section, the supersonic slender-body 
theory indicates that the drag is independent of Mach number. For 
'bodies which do not satisfy these conditions, the supersonic result 
indicates that the drag approaches infinity as the Mach number 
approaches 1. These results from linear theory cannot be considered 
satisfactory at transonic speeds since they give a discontinuity in 
the drag as the Mach number is increased through 1; whereas experimental 
data show that the drag starts to increase rapidly at a subsonic Mach 
number and varies smoothly through 1. However, the,-.few known solutions 
of the nonlinear transonic-flow equation are in good agreement with - 
experiment in this regard. Consequently, the drag rise of slender shapes 
should be correctly approximated by equation (10) when the transonic 
form of g(x/l) is employed in the drag equation. 
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Transonic Area Rule 

The body shape enters into the function g(x/z) only as a function 
of the cross-sectional area distribution throughout the Mach number 
range. This property of the slender-body solutions leads to an important 
result even though the analytic expression for g(x/i) is not known at 
transonic speeds. Examination of equation (io) shows that the body, 
cross-sectional shape enters into the slender-body drag expression only 
through the contour integral evaluated at the stern of the configura-
tion. For a fixed geometry at the base, then, the drag of nonlifting 
configurations depends only on the axial distribution of the body cross-
sectional area and is independent of the cross-sectional shape. Thus, 
within the slender-body approximation, the drag of a nonhifting configu-
ration is the same as that of the associated body of revolution having 
the same streamwise distribution of cross-sectional area provided the 
base geometry is fixed. It is in this sense that an equivalent body of 
revolution is associated with a wing-body combination. This result, 
often referred to as the area rule, is especially significant at 
transonic speeds where larger values of the width parameter b/i are 
permitted than in other speed ranges. 

The property of the dependence of the drag upon the distribution 
of cross-sectional area has previously been obtained by Ward (ref. ) 
and Graham (ref. 18) for supersonic flow and has been observed experi-
mentally by Whitcomb (ref. 19, for example) at transonic speeds. . The 
importance of this result was first noted by Whitcomb who demonstrated 
that the area rule could be used as a basis for the design of low-drag 
wing-body combinations at transonic speeds. 

From the preceding development, the transonic area rule is subject 
to the restrictions of slender-body theory with the additional condition 
that the base geometry be fixed. These restrictions imply that modifi-
cabions to the equivalent body of revolution must be performed in the 
region between shock waves. However, the seriousness of violating this 
condition is not well understood at the present time. For example, 
schlieren photographs seem to indicate that, even in cases where the 
presence of the wing affects the strength of the shock, the average 
strength of the shock may be close to that for the equivalent body of 
revolution. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., January 18, 1954. 
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